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Abstract: In bulk heterojunction polymer solar cells (BHJ-PSCs), poly(3,4-ethylenedioxythiophene)
doped with poly(styrene sulfonate) (PEDOT:PSS) is the most commonly used hole selective interlayer
(HSIL). However, its acidity, hygroscopic nature, and the use of indium tin oxide (ITO) etching can
degrade the overall photovoltaic performance and the air-stability of BHJ-PSCs. Solvent engineering
is considered as a facile approach to overcome these issues. In this work, we engineered the HSIL
using ethanol (ET) treated PEDOT:PSS to simultaneously enhance the photovoltaic performance
properties and air-stability of the fabricated devices. We systematically investigated the influence
of ET on the microstructural, morphological, interfacial characteristics of modified HSIL and
photovoltaic characteristics of BHJ-PSCs. Compared with the BHJ-PSC with pristine PEDOT:PSS,
a significant enhancement of power conversion efficiency (~17%) was witnessed for the BHJ-PSC
with PEDOT:PSS-ET (v/v, 1:0.5). Consequently, the BHJ-PSC with PEDOT:PSS-ET (v/v, 1:0.5) as HSIL
exhibited remarkably improved air-stability.
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1. Introduction

Recently, bulk-heterojunction polymer solar cells (BHJ-PSCs) have attracted widespread
attention in the photovoltaics field, owing to their cost-competitiveness, mechanically flexibility,
and lightweight [1–3]. The BHJ-PSC power conversion efficiency (PCE) has been increased over ~11%
via efficient strategies on the material engineering, the addition of additives/dopants, and fabrication
process [4,5]. In order to enhance photovoltaic (PV) performance of BHJ-PSCs, an interlayer was
sandwiched between the electrode and the photoactive layer [6]. In existing studies, the main role of
interlayer are to provide ohmic contact with the photoactive layer, transport the photoinduced carriers,
select required carriers and block undesired carriers, and adjust the work function (WF) of the anode or
cathode [7]. This kind of interlayer can be designated as either a hole selective interlayer (HSIL) which
selects holes to pass through this layer and blocks electrons, or an electron selective interlayer (ESIL)
which selects electrons and blocks holes [8]. Among the numerous conducting materials, one of the
polymer materials, namely, poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)
becomes the most popular HSIL in BHJ-PSCs due to its favorable electrical properties and excellent
optical transparency. Scheme 1a exhibits the chemical structure of PEDOT:PSS [9,10].
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In general, the instability of the device hampers the industrialization of BHJ-PSCs. The instability
originates from the presence of localized moisture encroachment and the interfacial passivation
at the organic/cathode interface [11]. In the case of using PEDOT:PSS as HSIL, the large
proportion of insulating and highly acidic PSS aggregations in PEDOT:PSS could affect the electrical
conductivity of PEDOT:PSS film, corrode the indium tin oxide (ITO) electrode and damage the PV
performance and air-stability of the BHJ-PSCs [12–14]. Therefore, numerous approaches have been
used to overcome these disadvantages of PEDOT:PSS, such as PEDOT:PSS with judicial solvent
modifiers [15,16]. Among the different strategies for the modification of PEDOT:PSS, incorporation
of additives (e.g., dimethyl sulfoxide [17], tetramethylene sulfone [18], N,N-dimethylformamide [19],
methoxyethanol [20], isopropyl alcohol [21], N-methyl-2-pyrrolidone [22]) effectively and drastically
improves the PV performance and air-stability of BHJ-PSCs [23].

In this study, we demonstrate the ethanol (pKa = 15.9, denoted as ET) modified PEDOT:PSS
(PEDOT:PSS-ET) as HSIL, and the influence on the PCE and air-stability of BHJ-PSCs. ET is a polar
solvent with a hydroxyl (OH) group. These results propose that the hydroxyl group with a high
electronegativity of oxygen in ET can form interaction with PEDOT chains’ dipoles or with the positive
charges, and form hydrogen bonding with PSS which induces that the random coil conformation of
PEDOT chains changes the ordered expanded coil/linear structure (Scheme 1b) [24]. When the above
conformational change takes place, the related structural transition of PEDOT chains occurs from
the benzenoid form to the quinoid form which is more conductive; this structural transformation is
shown in Scheme 1c [25]. As a consequence, charge carriers can be transported faster in the expanded
coil/linear conformation, enhancing the PV performance of BHJ-PSCs. Although the previous studies
report ET as a useful additive in PEDOT:PSS, few studies demonstrate the influence of PEDOT:PSS-ET
on the air-stability of BHJ-PSCs. The neutral nature of ET has an impact on the acidity of PEDOT:PSS,
by weakening the ITO etching and improving the air-stability of BHJ-PSCs.
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Scheme 1. (a) PEDOT:PSS structure, (b) conformation transformation of PEDOT and PSS chains and
(c) transformation of the PEDOT structure.

The poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) based
BHJ-PSCs were processed according to the classical structure: glass/ITO/HSIL/P3HT:PCBM/zinc
oxide nanocrystals (ZnO NCs)/aluminum (Al) (Figure 1a), and the optimized volume ratio of
PEDOT:PSS-ET was found to be 1:0.5 [26,27]. Figure 1b exhibited the schematic energy band diagram
of fabricated devices.
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We systematically examined the influence of ET on the structure transformation, morphology
modification, and surface variation of the PEDOT:PSS-ET film, as well as, the tuned WF at the interface
between ITO/PEDOT:PSS-ET. By adding ET into PEDOT:PSS, an enhancement of ~17% in PCE is
achieved. Subsequently, the air-stability of PEDOT:PSS-ET (v/v, 1:0.5) based BHJ-PSCs is significantly
superior to the pristine device.

2. Materials and Methods

2.1. Materials and HSIL Preparation

PEDOT:PSS (Clevios P VP AI. 4083, ratio of 1:6,) was obtained from H.C. Starck, Inc., Newton,
MA, USA. P3HT and PCBM were purchased from Luminescence Technology Corp., Taiwan, China,
and used as received. O-dichlorobenzene (DCB) was obtained from Sigma-Aldrich, Seoul, Korea.
ET (99.9%) was bought from Samchun Pure Chemical CO. LTD. (Pyeongtaek, Korea) and used without
any purification.

The PEDOT:PSS and ET aqueous solutions were mixed with the different volume ratios of 1:0.125,
1:0.25, 1:0.375, 1:0.5, and 1:0.625. These mixtures were ultrasonicated for 1 h at room temperature.

2.2. Fabrication and Characterization of the BHJ-PSCs

ITO-coated glass slides were ultrasonic washing by using acetone, methanol and deionized water
for 10 min, respectively [28]. Then, the ITO substrates were treated in an ultraviolet oven for 15 min.
The HSILs (35 ± 5 nm) were prepared by spin-coating on the ITO substrates and thermally annealed
at 150 ◦C for 10 min. The 20 mg of P3HT and 20 mg of PCBM were blended into 1 mL of DCB and
stirred at 60 ◦C overnight and deposited onto the ITO/HSIL. The formed photoactive layer (~205 nm)
was solvent annealed inside a covered glass dish for 1 h and thermally annealed at 100 ◦C for 10 min
in a vacuum oven. Subsequently, ZnO NCs was spin-coated as ESIL on the P3HT:PCBM active layer.
Finally, a top cathode of Al was thermally evaporated with an area of 9 mm2 at a pressure of 10−6 Torr.
All the film fabrication processes were performed under ambient conditions (15–25% humidity in air).
The PV performance parameters were measured using a 2400 series source meter (Keithley, Inc., Seoul,
Korea) under 100 mW·cm−2 with AM 1.5 G illumination.

2.3. Thin Film Characterization

The transmittance spectra of HSILs coated on ITO were recorded using an ultraviolet-visible
(UV-vis) spectrophotometer (Cary 5000, Agilent Technologies, Inc., Santa Clara, CA, USA). The Raman
scattering spectra of HSILs was carried our using a Raman spectrometer (Model inVia, Renishaw,
London, UK) with a 532-nm excitation laser line. Fourier-transform infrared (FTIR) spectra were
obtained from FTIR spectroscopy (Frontier, PerkinElmer, Inc., Shanghai, China). The morphological
modification of HSILs were taken using atomic force microscope (AFM, Model 5500, Agilent
Technologies, Inc., Santa Clara, CA, USA). The X-ray photoelectron spectroscopy (XPS) data were
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evaluated by a PHI Quantera SXM scanning photoelectron spectrometer microprobe (ULVAC,
Kanagawa, Japan). A contact angle analyzer (Kruss, Hamburg, Germany) was utilized to take the
surface properties (water contact angle) of samples. The WFs of PEDOT:PSS and PEDOT:PSS-ET
(v/v, 1:0.5) films deposited on ITO glass were determined using photoelectron yield spectroscopy
(PYS) (Riken-Keiki CO., LTD, Tokyo, Japan). The acidic nature of aqueous solutions were taken by pH
meter (Mettler Toledo, Shanghai, China). Field emission scanning electron microscopy (Model Hitachi
SU8220, Tokyo, Japan) was used to evaluate the thickness of HSIL and photoactive layer (Figure S1).

3. Results

3.1. Photovoltaic Performance

The PV parameters (open-circuit voltage (Voc), short-circuit current density (Jsc), series resistance
(Rs), fill factor (FF) and PCE and current density-voltage (J-V) curves of the fabricated BHJ-PSCs based
on PEDOT:PSS or PEDOT:PSS-ET (v/v, 1:0.125, 1:0.25, 1:0.375, 1:0.5, 1:0.625) are shown in Table 1 and
Figure 2a. The pristine device exhibits Voc, Jsc, Rs and PCE values of 0.59 V, 8.376 mA/cm2, 241 Ω,
0.58, and 2.92%. On the other hand, the greatest PCE of 3.42% was obtained for the device with
PEDOT:PSS-ET (v/v, 1:0.5) as HSIL with Voc of 0.60 V, Jsc of 8.890 mA/cm2, FF of 0.64 and Rs of 155 Ω.
The observable enhanced PCE is mainly due to an improvement in Jsc and a decrease in Rs. However,
the devices were fabricated in ambient conditions and the degradation of the P3HT:PCBM active layer
by moisture caused the high Rs (over 200 Ω) in this study, which affected the PV performance of
BHJ-PSCs [29–31].

Table 1. PV parameters of the BHJ-PSCs fabricated with PEDOT:PSS and PEDOT:PSS-ET in different
volume ratios. The average parameters were obtained from eight independent devices. PCEa and PCEb

are the best and average PCE values, respectively.

HSIL Voc (V) Jsc (mA/cm2) Rs (Ω) FF PCEa (%) PCEb (%)

pristine 0.59 ± 0.006 8.376 ± 0.07 241 ± 9.3 0.58 ± 0.016 2.92 2.86 ± 0.094
1:0.125 0.59 ± 0.004 8.421 ± 0.04 195 ± 8.5 0.59 ± 0.006 3.10 3.08 ± 0.012
1:0.25 0.60 ± 0.004 8.565 ± 0.03 170 ± 3.7 0.63 ± 0.005 3.22 3.21 ± 0.015

1:0.375 0.60 ± 0.004 8.652 ± 0.06 162 ± 4.6 0.63 ± 0.007 3.33 3.30 ± 0.016
1:0.5 0.60 ± 0.005 8.890 ± 0.05 155 ± 5.8 0.64 ± 0.004 3.42 3.36 ± 0.041

1:0.625 0.59 ± 0.005 8.572 ± 0.08 159 ± 6.4 0.63 ± 0.005 3.27 3.22 ± 0.035
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To investigate the improved performance of the BHJ-PSCs, the transmittance spectra of ITO/HSILs
were recorded and are shown in Figure 2b [32,33]. The transmittance spectra of ITO/PEDOT:PSS-ET
films are lower than that of the pristine ITO/PEDOT:PSS film. The transmittance spectra of
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ITO/PEDOT:PSS-ET (v/v, 1:0.5) and ITO/PEDOT:PSS are similar in the wavelength range of
600–800 nm; while the transmittance of ITO/PEDOT:PSS-ET (v/v, 1:0.5) film is slightly lower than
the ITO/PEDOT:PSS film, from 330 nm to 600 nm [34]. Therefore, the slightly lower transmittance
proves the improved PV performance of BHJ-PSCs based on PEDOT:PSS-ET films is not directly
to the variant transmittance [35]. The PV performance improvement should be derive from the
higher conductivity (7.89 × 10−3 S/cm) of PEDOT:PSS-ET thin film than that of PEDOT:PSS thin
film (2.97 × 10−3 S/cm), resulting in the improved Jsc and reduced Rs [36]. The enhanced electrical
conductivity of PEDOT:PSS-ET film is attributed to the structural transformation of PEDOT and
PSS chains [37].

3.2. Microstructural Properties

In order to understand how ET impacts on the structural transformation of the PEDOT and
PSS chains, Figure 3a presents the Raman data of two HSILs [38]. Both films show six predominant
peaks in Raman spectra [39]. The peak at 1439, 1261, 1369, and 1542 cm−1 represents the Cα=Cβ

symmetric stretching vibrations, Cα–Cα’ inter-ring stretching vibrations, Cβ–Cβ’ stretching vibration,
and the splitting of the asymmetric vibrations, respectively. The two peaks at 1505 and 1563 cm−1 in
the Raman spectra are corresponding with the Cα=Cβ asymmetric stretching vibrations which are
associated with the thiophene rings in the PEDOT chains [40,41]. The intensity of the peak centered
at 1439 cm−1 was increased, and the peak became narrower with the infusion of ET, which reveals
that the benzoid-quinoid tautomerism of PEDOT chains and the conformation transformation from
random coil to expand-coil/linear [42]. Due to the two PEDOT rings, with expanded coil/linear
conformation, being located in almost the same plane, the π-electrons can be delocalized easily in the
PEDOT rings [43]. Hence, the structural transformation of PEDOT chains presumably results in the PV
performance of BHJ-PSCs.

FTIR spectrophotometer is used to evaluate the components of molecule with molecule’s
characteristic absorption of infrared [44]. Figure 3b indicates the FTIR spectral characteristics of
HSILs with and without ET. The peaks at 1520 and 1305 cm−1 are related to the C=C and C–C vibration
band in the thiophene ring of PEDOT, respectively. The band at 813 and 902 cm−1 are assigned to the
C-S bond in the EDOT ring. The stretching mode of the ethylendioxy group is centered at 1178 cm−1.
The stretching vibration from –SO2 and –SO3 groups of PSS appeared as two weaker bands around
1137 and 1384 cm−1. Moreover, an important blue shift from 1520 to 1527 cm−1 of C=C asymmetric
stretch from thiophene ring of PEDOT is noticeable, which is attributed to the delocalization of the
effective π-electrons. This phenomenon corresponds to the Raman spectra, indicating the conformation
transformation and structural change of PEDOT chains [42].
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3.3. Surface Properties

In BHJ-PSCs, the surface morphology of HSIL has an important influence on the hole
transportation. Figure 4a,b presents the surface morphological properties of PEDOT:PSS and
PEDOT:PSS-ET (v/v, 1:0.5) films which were evaluated by AFM images. Three dimensional (3D)
surface morphology is also exhibited in Figure 4c,d. Comparison with the root mean square roughness
(RMS) of the pristine PEDOT:PSS film (0.76 nm), the AFM image of PEDOT:PSS-ET (v/v, 1:0.5) film
presented a smoother, less rough surface with an RMS of 0.68 nm. The less rough surface could
beneficially favor the extraction of hole collection on the ITO side [45]. Moreover, an observable
phase separation between PEDOT-rich and the surrounding PSS-rich regions with the appearance
of larger domains can be seen in the AFM image of the PEDOT:PSS-ET (v/v, 1:0.5), which indicates
that the addition of ET can rearrange the orientation of PEDOT and PSS chains [46,47]. The obvious
separation provided a larger region for continuous carrier mobility without the carriers having to hop
very frequently over the insulating PSS chains, leading to the superior conductivity of PEDOT:PSS-ET
(v/v, 1:0.5) film [48]. The clearer surface morphology was exhibited in the 3D AFM images [49].
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Figure 4. 2D morphology images of (a) the PEDOT:PSS and (b) PEDOT:PSS-ET (v/v, 1:0.5) films,
and 3D morphology images of (c) PEDOT:PSS and (d) PEDOT:PSS-ET (v/v, 1:0.5) films obtained with
AFM at a scale of 0.5 µm × 0.5 µm.

To further investigate the surface chemical composition, the XPS spectra of HSILs with or without
ET were recorded in Figure 5a [48,50]. The atomic weights of C1s, O1s, N1s and S2p in the XPS
spectrum of pristine PEDOT:PSS film were 64.2%, O1s 24.9%, N1s 1.0% and S2p 7.5%, respectively.
However, a slight decrease in the atomic weight % (6.9%) of S2p for PEDOT:PSS-ET (v/v, 1:0.5) was
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observed. The inserted picture presents the S2p spectra of the two films. The two binding energy
peaks around 168 eV and 164 eV, and are associated with the sulfonate group from PSS and thiophene
ring in PEDOT, respectively [51,52]. Due to the PEDOT to PSS ratio of 1:6, the superfluous PSS
enriched on the PEDOT:PSS surface, reducing the PV performance of BHJ-PSCs. The declined S2p
peaks for PEDOT:PSS-ET (v/v, 1:0.5) film revealed a decreased PSS accumulation on the surface of
PEDOT:PSS-ET (v/v, 1:0.5) film, increasing the conductivity of PEDOT:PSS-ET (v/v, 1:0.5) film.

In addition, the water contact angles (Figure 5b,c) of samples have been measured to further
clarify the variation of surface property in the PEDOT:PSS-ET (v/v, 1:0.5) film [53]. The water contact
angle (θcontact) decreased from 33◦ to 12◦ after adding ET to the PEDOT:PSS solution [54]. This indicates
that PEDOT:PSS-ET (v/v, 1:0.5) is more hydrophilic than PEDOT:PSS and PEDOT:PSS-ET (v/v, 1:0.5),
indicating smoother roughness and better interface with the photoactive layer [52]. The improved
interfacial adhesion is a basic factor to form a good film to fabricate the high-efficiency device.
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3.4. Electronic Property

The PYS spectra were measured to characterize the WF of ITO/HSILs as shown in Figure 6a.
The WFs were extracted from the point of X-intercept as −5.25 eV (PEDOT:PSS) and −5.13 eV
(PEDOT:PSS-ET (v/v, 1:0.5)), respectively [55]. The reduced PSS to PEDOT ratio at the PEDOT:PSS-ET
(v/v, 1:0.5) film surface induces a variation in WF [56]. The tuned WF of PEDOT:PSS-ET (v/v, 1:0.5)
in relation to the reduced PSS accumulation on the PEDOT:PSS-ET (v/v, 1:0.5) film surface [57].
The decreased content of PSS has been explained by XPS characterization. In comparison with the
WF (−5.25 eV) of pristine PEDOT:PSS, the WF (−5.13 eV) is better matched to highest occupied
molecular orbital (HOMO) level of P3HT (−5.20 eV) and near the WF (−4.70 eV) of ITO, which could
form efficient holes transportation from active layer to the ITO electrode, leading to shortening hole
extraction route and reducing the charge recombination. Consequently, holes can smoothly transport
the ITO electrode, subsequently helping to improve the Jsc, FF, and reducing Rs in the fabricated PSCs.

3.5. Air-Stability

The device air-stability is one of the significant parameters associated with practical utilization.
To further confirm the influence of PEDOT:PSS-ET on BHJ-PSCs, the air-stability of devices with
pristine PEDOT:PSS and PEDOT:PSS-ET (v/v, 1:0.5) was proposed in Figure 6b,c [58]. The PCE of
pristine device decayed 72%, and the modified device decayed 60% from their initial PCE after 315 h.
Furthermore, the Jsc of the pristine device reduced by 39% and the FF dropped by 55% after 315 h.
However, ~33% of the Jsc and ~39% of FF were dropped in the device with PEDOT:PSS-ET (v/v, 1:0.5).
Simultaneously, the Voc of both two devices showed a similar linear trend. The decreased PCE in both
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BHJ-PSCs is related to the obvious reduced Jsc and FF. In conclusion, the device with PEDOT:PSS-ET
(v/v, 1:0.5) exhibited significantly improved air-stability and longer lifetime than the pristine device.
The corrosion of the ITO electrode and the active layer by acidic PEDOT:PSS is a major cause of poor
air-stability of the device [59]. Therefore, we envisage that the reason for better air-stability in the
completed BHJ-PSCs with PEDOT:PSS-ET (v/v, 1:0.5) is ethanol, which could neutralize or reduce
the acidity of the PSS. The pH values of PEDOT:PSS solutions with various volume ratios of ET were
measured by the pH meter, as shown in Table 2. With the increased volume ratio of ET, the pH value of
PEDOT:PSS was gradually increased. Due to the optimized pH value, the etching of the ITO electrode
and the blend active system caused by PEDOT:PSS, can be controlled. Consequently, the air-stability
of the device with PEDOT:PSS-ET (v/v, 1:0.5) was significantly improved.

Herein, with the enhanced properties of PEDOT:PSS-ET (v/v, 1:0.5) film, the PCE of BHJ-PSCs
were significantly increased from 2.92% to 3.42%; as well as the improved PV parameters, such as the
improved Jsc (from 8.376 to 8.890 mA/cm2), the enhanced FF ( from 0.58 to 0.64) and the reduced Rs

(241 to 155 Ω). The improved PCE is mainly attributed to the improved Jsc, induced by the conformation
transform of PEDOT and PSS chains. Moreover, due to the pH value of the ET (nearly to 7), the device
with PEDOT:PSS-ET (v/v, 1:0.5) exhibited excellent air-stability after aging 315 h, as compared with
the device with pristine PEDOT:PSS.

Materials 2018, 11, x FOR PEER REVIEW  8 of 12 

 

air-stability of the device [59]. Therefore, we envisage that the reason for better air-stability in the 
completed BHJ-PSCs with PEDOT:PSS-ET (v/v, 1:0.5) is ethanol, which could neutralize or reduce the acidity 
of the PSS. The pH values of PEDOT:PSS solutions with various volume ratios of ET were measured by the 
pH meter, as shown in Table 2. With the increased volume ratio of ET, the pH value of PEDOT:PSS was 
gradually increased. Due to the optimized pH value, the etching of the ITO electrode and the blend active 
system caused by PEDOT:PSS, can be controlled. Consequently, the air-stability of the device with 
PEDOT:PSS-ET (v/v, 1:0.5) was significantly improved. 

Herein, with the enhanced properties of PEDOT:PSS-ET (v/v,1:0.5) film, the PCE of BHJ-PSCs 
were significantly increased from 2.92% to 3.42%; as well as the improved PV parameters, such as the 
improved Jsc (from 8.376 to 8.890 mA/cm2), the enhanced FF ( from 0.58 to 0.64) and the reduced Rs 
(241 to 155 Ω). The improved PCE is mainly attributed to the improved Jsc, induced by the 
conformation transform of PEDOT and PSS chains. Moreover, due to the pH value of the ET (nearly 
to 7), the device with PEDOT:PSS-ET (v/v, 1:0.5) exhibited excellent air-stability after aging 315 h, as 
compared with the device with pristine PEDOT:PSS. 

 
Figure 6. (a) PYS data of PEDOT:PSS and PEDOT:PSS-ET (v/v, 1:0.5) films, normalized air-stability 
characteristics of BHJ-PSCs with (b) PEDOT:PSS and (c) PEDOT:PSS-ET (v/v, 1:0.5) over 315 h of 
continuous testing. 

Table2. pH values of PEDOT:PSS and PEDOT:PSS-ET aqueous solutions. 

PEDOT:PSS-ET (v/v) pH Value 
Pristine 1.65 
1:0.125 1.77 
1:0.25 1.96 

1:0.375 1.99 
1:0.5 2.04 

1:0.625 2.14 
ET 6.87 

4. Conclusions 

In this work, BHJ-PSCs based on solvent engineered HSIL were fabricated and appropriately 
characterized. By introducing an inexpensive solvent (ethanol, ET) as a solvent additive in the 
PEDOT:PSS, the conformation of PEDOT:PSS can be transformed from a random coil form to a more-

Figure 6. (a) PYS data of PEDOT:PSS and PEDOT:PSS-ET (v/v, 1:0.5) films, normalized air-stability
characteristics of BHJ-PSCs with (b) PEDOT:PSS and (c) PEDOT:PSS-ET (v/v, 1:0.5) over 315 h of
continuous testing.

Table 2. pH values of PEDOT:PSS and PEDOT:PSS-ET aqueous solutions.

PEDOT:PSS-ET (v/v) pH Value

Pristine 1.65
1:0.125 1.77
1:0.25 1.96

1:0.375 1.99
1:0.5 2.04

1:0.625 2.14
ET 6.87
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4. Conclusions

In this work, BHJ-PSCs based on solvent engineered HSIL were fabricated and appropriately
characterized. By introducing an inexpensive solvent (ethanol, ET) as a solvent additive in the
PEDOT:PSS, the conformation of PEDOT:PSS can be transformed from a random coil form to a
more-ordered expanded coil/linear form; the resulting PEDOT:PSS-ET exhibited better conductivity,
more favorable surface morphology, reduced PSS content and suitable work function with the donor
polymer. With these advantageous properties, the fabricated BHJ-PSCs employing PEDOT:PSS-ET
(v/v, 1:0.5) achieved an increment of ~17% in the PCE. Moreover, the utilized ET can control the
acidity of PEDOT:PSS to avoid the corrosion and degradation of the ITO electrode and the active layer,
significantly improving the air-stability and performance of the device.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/7/1143/s1,
Figure S1: FE-SEM cross-section image of (a) the completed device, (b) ITO/PEDOT:PSS and
(c) ITO/PEDOT:PSS-ET (v/v, 1:0.5).
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