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Background: Bupivacaine (BUP) acts as a local anesthetic, which is extensively used for

clinical patients but could generate neurotoxicity in neurons. Tetramethylpyrazine (TET)

exhibits strong neuron protective effects against neurotoxicity. Hence, we investigate the

effect of TET on BUP-induced neurotoxicity in SH-SY5Y cells.

Methods: CCK-8 assay was used to detect cell proliferation in SH-SY5Y cells. In addition,

Western blotting was used to examine Bax, Bcl-2, active caspase 3, LC3II, Beclin 1 and p-62

protein levels in cells. Moreover, ELISA assay was used to detect the levels of total

glutathione (GS), superoxide dismutase (SOD) and malondialdehyde (MDA) in cells.

Results: In this study, we found that TET attenuated the neurotoxicity of BUP on SH-SY5Y

cells. Meanwhile, TET alleviated BUP-induced apoptosis in SH-SY5Y cell via decreasing

the expressions of active caspase-3 and Bax and increasing the expression of Bcl-2. In

addition, monodansylcadaverine staining assay and Western blotting results confirmed that

TET induced autophagy in SH-SY5Y cells via increasing the LC3II/I and Beclin 1 levels.

Furthermore, TET attenuated BUP-induced oxidative damage in SH-SY5Y cells via upregu-

lation of the levels of total GS and SOD and downregulation of the level of MDA.

Interesting, the protective effects of TET against BUP-induced neurotoxicity in SH-SY5Y

cells were reversed by autophagy inhibitor 3-methyladenine (3MA).

Conclusion: These data indicated that TET may play a neuroprotective role via inhibiting

apoptosis and inducing autophagy in SH-SY5Y cells. Therefore, TET may be a potential

agent for the treatment of human neurotoxicity induced by BUP.
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Introduction
Local anesthetics (LAs) are grouped into ester and amide types due to their

chemical structure, which are indispensable for regional anesthesia in surgical

procedures.1,2 However, clinical studies indicated that exposure to LAs for long

duration or at high dosage may cause spinal neurotoxicity or may induce nonre-

versible neurological complications.3–5 Moreover, LAs also may cause postsurgical

nervous complications.1 For example, bupivacaine (BUP) acts as a LA and is

extensively used for epidural anesthesia, nerve blockade and postoperative analge-

sia in clinical patients.1,6 However, the mechanism of LA toxicity remains unclear.

Hence, it is indispensable to develop effective methods to prevent its neurotoxicity.
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Tetramethylpyrazine (TET) is an alkaloid that origin-

ally extracted from a traditional Chinese herbal medicine

Ligusticum chuanxiong.7,8 TET has been used as an effec-

tive compound to remedy patients with kidney, heart and

brain diseases.9–11 In addition, TET also has been reported

to provide neuroprotective effect against ischemic brain

damage in rats.9 Several studies have shown that TET

exhibited strong protective effects against neurotoxicity

in Alzheimer’s disease and Parkinson’s disease.12,13 Hu

et al studied that TET derivative could protect primary

neurons against glutamate-induced excitotoxicity.12

Moreover, TET also demonstrated a potent neuroprotective

role in MPP+-induced neuro cells via activating transcrip-

tion factor MEF2D.13

In spite of many reports indicating that TET plays a

protective effect against neurotoxicity, little is known about

the effect of TET on BUP-induced neurotoxicity. Hence, the

present study aimed to investigate the mechanisms under-

lying the protective effect of TET against BUP-induced

neurotoxicity in vitro.

Materials and methods
Cell cultures and cell transfection
Human neuroblastoma cell line SH-SY5Y (ATCC) were cul-

tured in DMEM (Thermo Fisher Scientific, Inc., Waltham,

MA, USA) medium with 10% FBS (Thermo Fisher

Scientific) and 1% penicillin/streptomycin in a constant tem-

perature incubator at 37°C and at 5% CO2 concentration.

TETwas dissolved with 0.1% DMSO (stock solution of

10 mM TET in DMSO). To study the role of TET in BUP-

induced SH-SY5Y cell neurotoxicity, SH-SY5Y cells were

pretreated with 10 μM 3-methyladenine (3MA, an autop-

hagy inhibitor) for 1 hr, and then treated with TET for 24

hrs. Later on, cells were treated with BUP for 48 hrs. BUP

(Art. No. B5274) and TET (Art. No. 95162) were purchased

from Sigma Aldrich (St. Louis, MO, USA).

Cell Counting Kit-8 (CCK-8) assay
CCK-8 is metabolically reduced in viable cells to a water-

soluble formazan product. The amount of formazan is pro-

portional to the number of living cells. This characteristic

can be used for cell viability analysis. Therefore, cell via-

bility was evaluated using a CCK-8 assay (Beyotime

Institute of Biotechnology, Haimen, China) according to

the manufacturer’s protocol. SH-SY5Y cells were plated

into a 96-well plate at 5×103 cells/well in 100 μL culture

medium. BUP (0, 100, 250, 500, 1,000 μM), or TET (0,

100, 200, 400, 800 μM) was added into each well, and cells

were incubated in a CO2 incubator at 37°C. In addition,

BUP (0, 500 μM) and/or TET (0, 100, 150, 200, 300, 400

μM) were added into each well, and cells were incubated in

a CO2 incubator at 37°C. After that, each well was added

with 10 μL of CCK-8 solution and cultured at 37°C for

another 3 hrs. The OD value was measured at 450 nm using

a Thermo Multiskan FC microplate reader (Thermo Fisher

Scientific). SH-SY5Y cells were pretreated with TET for 24

hrs, and then were treated with BUP for another 48 hrs. The

recovery rate of viability was calculated by the equation:

(ViabilityBUP+TET − Viability BUP)/Viability BUP. Median

effect concentration (EC50) was calculated with GraphPad

Prism software (version 7.0, La Jolla, CA, USA).

Immunofluorescence assay
The Ki-67 protein (also known as MKI67) is a cellular marker

for proliferation.14 SH-SY5Y cells (4×105 cells/well) were

plated to 24-well plates overnight, then treated with BUP

(500 μM) and/or TET (200 μM), or BUP+TET+3MA. After

that, cells were fixed in pre-cold methanol at −20°C for 10

mins. Next, cells were incubated with primary antibodies for

anti-Ki67 (Abcam; ab15580) (1:1,000) and DAPI (ab104139)

(1:1,000) at 4°C overnight. Subsequently, cells were incubated

with secondary antibodies (Abcam; ab150080) (1:5,000) at

37°C for 1 hr. The samples were observed by fluorescence

microscope at once (Olympus CX23 Tokyo, Japan).

Flow cytometric analysis of cell apoptosis
Apoptotic cells were detected according to a previously

described method.15 Briefly, SH-SY5Y cells (5×105 cells/

well) were seeded to 6-well plates overnight, then treated

with BUP (500 μM) and/or TET (200 μM), or BUP+TET

+3MA. Cell scraper was used to detach the cells from the

culture plate. After that, apoptotic cells were stained with dual-

staining Annexin V-fluorescein isothiocyante (FITC)-

propidium iodide (PI) (Thermo Fisher Scientific) and mea-

sured by FCM flow cytometer (BD Bioscience, San Jose,

CA, USA).

Western blot analysis
SH-SY5Y cells (5×105 cells/well) were seeded to 6-well plates

overnight, then treated with BUP (500 μM) and/or TET (200

μM), or BUP+TET+3MA.BCAProteinAssayKit (Beyotime,

Shanghai, China) was used to quantify the soluble protein

concentration in the supernatant. Protein samples (30 μg/
lane) were separated by polyacrylamide gel electrophoresis.

Following polyacrylamide gel electrophoresis, proteins were
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transferred onto polyvinylidene fluoride membranes (PVDF,

Thermo Fisher Scientific). PVDF membranes were treated

with primary antibodies overnight at 4°C. On the next day,

the PVDF membrane was treated with secondary antibody at

room temperature for 1 hr. The following primary antibodies

were used: anti-active caspase 3 (Abcam ab2302) (1:1,000),

anti-β-actin (Abcam ab8227) (1:1,000), anti-Bax (Abcam

ab32503) (1:1,000), anti-Bcl-2 (Abcam ab32124) (1:1,000),

anti-LC3I (Abcam ab62720) (1:1,000), anti-LC3II (Abcam

ab48394) (1:1,000), anti-Beclin 1 (Abcam ab207612)

(1:1,000), and anti-p62 (Abcam ab155686) (1:1,000).

The second antibody was HRP-labeled anti-rabbit (1:5,000,

PTG (Carlsbad, CA, USA), USA). Finally, the PVDF mem-

branes were incubated with ECL reagent (Santa Cruz

Biotechnology, Santa Cruz, CA, USA). The density of blots

for targets was normalized to β-actin.

Monodansylcadaverine (MDC) staining
SH-SY5Y cells (4×105 cells/well) were seeded to 24-well

plates overnight, then treated with BUP (500 μM) and/or

TET (200 μM), or BUP+TET+3MA. After that, cells were

stained with a 0.05 mM MDC (Sigma Aldrich, #D4008) at

37°C for 30 mins. Fluorescence of cells was instantly

observed and counted with a Hitachi F-2000 fluorescence

microscope (Olympus Corporation).

Measurement of cytokines by ELISA
SH-SY5Y cells (4×105 cells/well) were seeded to 24-well

plates overnight, then treated with BUP (500 μM) and/or

TET (200 μM), or BUP+TET+3MA. After that, the levels of

total GS, MDA and SOD in SH-SY5Y cells were measured

using ELISA kits in accordance with the manufacturer’s

instructions (Beyotime).

Glutathione assay
Levels of intracellular reduced glutathione (GSH) and

oxidized glutathione (GSSG) were measured using

ELISA kits according to the manufacturer’s specifica-

tions (Beyotime). Absorbance was read at 450 nm by

Thermo Multiskan FC microplate reader (Thermo Fisher

Scientific). The level of total glutathione (total GS) is

the sum of GSH level and GSSG level.

Superoxide dismutase (SOD) and

malondialdehyde (MDA) assays
The levels of SOD and MDA were measured using ELISA

kits according to the manufacturer’s specifications

(Beyotime). For MDA detection, the absorbance was read

at 532 nm by Thermo Multiskan FC microplate reader

(Thermo Fisher Scientific). For SOD detection, the absor-

bance was read at 532 nm by Thermo Multiskan FC micro-

plate reader (Thermo Fisher Scientific).

Statistical analysis
Each group executed at least three independent experi-

ments, and all data were presented in the form of mean ±

SD. Student’s t-test was used to analyze the comparison

between two groups. The comparisons among multiple

groups were made with one-way ANOVA followed by

Dunnett’s test. P<0.05 or P<0.01 was considered to indicate

a statistically significant difference (*P<0.05, **P<0.01).

Results
TET attenuated BUP-induced

neurotoxicity in SH-SY5Y cells
The chemical structure of TET is indicated in Figure 1A.

CCK-8 assay was used to evaluate the effects of TET on the

viability of SH-SY5Y cells. As shown in Figure 1B, TET

(100, 150, 200, 300 or 400 μM) had no effect on SH-SY5Y

cell viability. In contrast, BUP dose dependently inhibited SH-

SY5Y cell viability and 500 μMBUP induced about 50% cell

growth inhibition (Figure 1C). Therefore, BUP (500 μM) was

utilized in the following experiments. In addition, BUP inhib-

ited proliferation in SH-SY5Y cells, which was significantly

reversed by 200 μM TET treatment (Figure 1D and E). The

EC50 for TET was 146 μM. Ki67 is normally used as

a detector of cells in a proliferative state.16 In immunofluores-

cence assays, TET exhibited markedly protective effects

against BUP-induced cell death (Figure 1F and G). These

results suggested that TETcould attenuate BUP-induced cyto-

toxicity in SH-SY5Y cells.

TET attenuated BUP-induced cytotoxicity

via inhibition of apoptosis in SH-SY5Y

cells
To further explore the effects of TET on BUP-induced apop-

tosis in SH-SY5Y cells, flow cytometry was applied. As

indicated in Figure 2A and B, BUP significantly induced

apoptosis in SH-SY5Y cells, which was markedly attenuated

by TET. In addition, Western blotting was used to detect the

expression of apoptosis-related proteins Bax, Bcl-2 and

active caspase 3. The data indicated that the expressions of

Bax and active caspase 3 were significantly increased, while

the level of Bcl-2 was decreased in the BUP-treated group
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Figure 1 TET attenuated BUP-induced cytotoxicity in SH-SY5Y cells. (A) The chemical structure of TET. (B) Cell viability of SH-SY5Y cells treated with TET (0, 100, 200,

400, 800 μM) for 24 hrs was determined using CCK-8 assay. (C) Cell viability of SH-SY5Y cells treated with BUP (0, 100, 250, 500, 1,000 μM) for 48 hrs was determined

using CCK-8 assay. (D) Cell viability of SH-SY5Y cells treated with TET (0, 100, 150, 200, 300, 400 μM) and/or BUP (500 μM) was determined using CCK-8 assay. *P<0.05,
**P<0.01 compared with 0 μM group; ##P<0.01 compared with 500 μM BUP group. (E) The recovery rate of cell viability. (F) SH-SY5Y cells were exposed to 200 μM TET

with or without 500 μM BUP. Relative fluorescence expression levels were quantified by Ki67 and DAPI staining. (G) The number of Ki67 positive cells was counted.

**P<0.01, compared with DMSO group; ##P<0.01 compared with 500 μM BUP group

Abbreviations: BUP, bupivacaine; TET, tetramethylpyrazine.
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Figure 2 TETattenuated BUP-induced cytotoxicity via inhibition of apoptosis in SH-SY5Y cells. SH-SY5Y cells were exposed to 200 μM TETwith or without 500 μM BUP. (A)

Apoptotic cells were detected with Annexin Vand PI double staining. (B) The apoptosis cell rates were calculated. (C) Expressions of Bax, Bcl-2 and active caspase-3 were analyzed

byWestern blotting in SH-SY5Y cells. (D) Bax relative expression was quantified by normalizing to β-actin. (E) Bcl-2 relative expression was quantified by normalizing to β-actin. (F)
Active caspase-3 relative expression was quantified by normalizing to β-actin. **P<0.01, compared with DMSO group; ##P<0.01 compared with 500 μM BUP group.

Abbreviations: BUP, bupivacaine; TET, tetramethylpyrazine.
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compared with the DMSO group (Figure 2C–F). However,

these effects were significantly reversed by TET in BUP-

treated SH-SY5Y cells (Figure 2C–F). These results sug-

gested that TET attenuated BUP-induced cytotoxicity via

inhibition of apoptosis in SH-SY5Y cells.

TETattenuated BUP-induced cytotoxicity

via stimulation of autophagy in SH-SY5Y cells
To investigate whether TET attenuated BUP-induced

cytotoxicity via regulation of autophagy, MDC assay

was performed in this study. As shown in Figure 3A

and B, the autophagic vacuoles and autophagosome

were dramatically increased in the TET-treated group

compared with the DMSO group or BUP group. As

expected, the autophagic vacuoles and autophagosome

were significantly decreased in the presence of 3MA

treatment (Figure 3A and B).

Western blotting was next utilized to detect the expres-

sion of autophagy-related proteins LC3II, Beclin 1 and

p-62. As shown in Figure 3C–F, the levels of LC3II and

Beclin 1 were dramatically increased, while the expression

of p-62 was decreased in the TET-treated group. However,

TET-induced LC3II and Beclin 1 protein increases were

significantly reversed by 3MA treatment. All these results

suggested that TET attenuated BUP-induced cytotoxicity

via stimulating autophagy in SH-SY5Y cells.

TET attenuated BUP-induced cytotoxicity

via inhibition of oxidative damage in

SH-SY5Y cells
Previous studies have indicated that TET exhibited

protective effects on oxidative damage of vascular

endothelial cells in response to hydrogen peroxide.17

As indicated in Figure 4A–C, TET significantly

increased the levels of total GS and SOD in SH-SY

5Y cells, compared with the DMSO group. Meanwhile,

the results of ELISA revealed that BUP-induced total

GS and SOD downregulation and MDA upregulation

were markedly reversed by TET treatment in SH-SY5Y

cells. However, when 3MA was present, the protective

effect of TET was abolished (Figure 4A–C). These

results suggested that TET attenuated BUP-induced

cytotoxicity via inhibition of cell oxidative damage in

SH-SY5Y cells.
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Inhibition of autophagy abolished the

protective effect of TETagainst BUP in

SH-SY5Y cell
To confirm the protective effect of TET against BUP in

SH-SY5Y cell via stimulation of autophagy, 3MA was

used in this study. As indicated in Figure 5A, D, and E,

the protective effect of TET in BUP-treated SH-SY5Y

cells was reversed by 3MA. Meanwhile, the antiapoptotic

effects of TET in BUP-induced SH-SY5Y cells were also

alleviated by 3MA (Figure 5B and C). All these results

confirmed that TET attenuated BUP-induced cytotoxicity

in SH-SY5Y cells via stimulation of autophagy.

Discussion
In the present study, we demonstrated the protective effect of

TET in BUP-induced neurotoxicity in SH-SY5Y cells. TET

(200 μM) pretreatment suppressed BUP-induced neurotoxi-

city, apoptosis and cellular redox indicators accumulation in

SH-SY5Y cells. Our results suggested that TET attenuated

BUP-induced neuronal injury through inhibiting apoptosis

and inducing autophagy.

SH-SY5Y cells are widely used for studying the neuro-

toxicity of BUP, because they can simulate the biological

characteristics of neurons. In this study, 500 μM BUP sig-

nificantly inhibited SH-SY5Y cell proliferation, as evidenced

by the CCK-8 assay results. In addition, we observed that 200

μM of TET had no effect on SH-SY5Y cell proliferation, but

could prevent BUP-induced SH-SY5Y cells toxicity.

Dangduga et al found that TET performed neuroprotective

activity in 3-nitropropionic acid-induced Huntington’s dis-

ease-like symptoms.18 Meanwhile, Li et al found that TET

could protect rat from alcoholic-induced chronic alcoholic

encephalopathy.7 These results were consistent with our find-

ing, and confirmed TET may serve as a neuroprotective role

in BUP-treated SH-SY5Y cells.

Apoptosis is a basic process which is participated in

a variety of physiological conditions. We also observed

that TET reduced the expression of Bax and active cas-

pase 3 and increased the level of Bcl-2 in BUP-treated
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SH-SY5Y cells. Chen et al found that paeoniflorin atte-

nuated neurotoxicity in BUP-treated SH-SY5Y cells via

suppressing the level of Bax and caspase 3 and increasing

the level of Bcl-2.19 Similarly, Wang et al demonstrated

neuroprotection by epigallo catechin gallate against BUP-

induced cell toxicity via regulating Bax, Bcl-2 and cas-

pase 3 in SH-SY5Y cells.20 Consistent with these find-

ings, we indicated that TET attenuated BUP-induced

cytotoxicity via reducing the expression of Bax and

active caspase 3 and increasing the level of Bcl-2.

Autophagy also plays important roles in neuro-cell

survival and death, and is receiving increasing focus in

neurotoxicity research.21 A previous study indicated that

small molecules demonstrate a neuroprotective effect by

enhancing autophagy and inhibiting apoptosis, such as

flubendazole, flupirtine and aromatic carbamates.22–24 In

addition, dexmedetomidine protects neurons from the toxi-

city of the anesthetic sevoflurane by enhancing autophagy

and inhibiting apoptosis.25 Thus, to further examine the

neuroprotective effect of TET, we also investigated

whether TET induced autophagy in SH-SY5Y cells.

MDC staining and Western blotting results revealed that

TET could induce autophagy in SH-SY5Y cells. Previous

studies demonstrated that autophagy act as a pro-survival

action via increasing the expression of LC3II/I and Beclin

1.26,27 Li et al found that Tris(1, 3-dichloro-2-propyl)

phosphate induced autophagy in SH-SY5Y cells via

increasing the level of LC3II/I and Beclin 1 and decreas-

ing the level of p62,28 which was in accordance with our

findings. In addition, a previous study also indicated that

BUP could mediate the upregulation of LC3II and the

downregulation of P62.21 Differently, our study showed

that BUP (500 μM) could not induce autophagy in SH-SY

5Y cells. The difference between our result and previous

study might reflect differences in the dose of BUP expo-

sure (500 μM vs 900 μM).21

In order to confirm whether TET-induced autophagy is

pro-proliferative or proapoptotic, we used autophagy inhibitor
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Figure 5 Inhibition of autophagy abolished the protective effect of TET against BUP in SH-SY5Y cell. SH-SY5Y cells were exposed to 200 μM TETwith 500 μM BUP and

BUP+TET+3MA. (A) Cell viability was determined using CCK-8 assay in SH-SY5Y cells in 72 hrs. (B) Apoptotic cells were detected with Annexin V and PI double

staining. (C) The apoptosis cell rates were calculated. (D) Relative fluorescence expression levels were quantified by Ki67 and DAPI staining. (E) The number of Ki67

positive cells was counted. **P<0.01 compared with DMSO group; ##P<0.01 compared with 500 μM BUP group; ^^P<0.01 compared with BUP+TET group.

Abbreviations: 3MA, 3-methyladenine; BUP, bupivacaine; monodansylcadaverine; TET, tetramethylpyrazine.
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3MA to suppress SH-SY5Y cell autophagy. Our results indi-

cated that 3MA significantly inhibited TET-induced autop-

hagy. Furthermore, inhibition of autophagy by 3MA further

increased cell proliferation inhibition and apoptosis. All these

reports further confirm our findings that autophagy inhibition

could enhance cell apoptosis. These results indicated that

autophagy may exhibit a prosurvival effect (Figure 6).

GSH and SOD are intracellular antioxidants, while

MDA serves as an indicator of lipid peroxidation, which

all play a vital role in the action of apoptosis and

autophagy.29,30 In this study, TET treatment increased the

total GS and SOD levels. Huang et al indicated that Xiangxi

flavor vinegar exhibits the effect of antioxidant via upregu-

latiton of the levels of GSH and SOD in C. elegans.31 This

result verified that TET may act as an antioxidant property.

Meanwhile, BUP-induced total GS and SOD downregula-

tion and MDA upregulation were reversed by TET treat-

ment. Consistent with our findings, Guo et al also found that

TET could attenuate cardiac function from myocardial

injury via increasing the level of GSH and SOD and

decreasing MDA.32 These data indicated that TET could

reverse BUP-induced oxidative damage in SH-SY5Y cells.

However, when 3-MA was present, the level of total GS,

SOD and MDA returned to the level of the BUP group. All

these reports confirm our findings that inhibition of autop-

hagy could enhance oxidative damage in SH-SY5Y cells.

These results indicated that autophagy may exert an anti-

oxidant role (Figure 6). A previous study found that SOD

could suppress BUP-provoked apoptosis of human mono-

cytic cells.33 Li et al indicated that BUP induces neurotoxi-

city through inducing excessive ROS, but the underlying

mechanism remains unclear.34 Similarly, limitation of this

study should be noted. We did not investigate the mechan-

isms by which TET protects BUP-induced cytotoxicity on

SH-SY5Y cells from the perspective of oxidative stress.

Conclusion
The present study indicated for the first time that TET

induced apoptosis, autophagy and antioxidant activity in

SH-SY5Y cells. These results also demonstrated that

autophagy may play prosurvival and antioxidant effects

Figure 6 The overview of TET attenuated BUP-induced neurotoxicity in SH-SY5Y cells. BUP-induced SH-SY5Y cell apoptosis and oxidative damage were reversed by TET

treatment. In addition, TET induced SH-SY5Y cell autophagy, and autophagy exerts prosurvival and antioxidant roles.

Abbreviations: BUP, bupivacaine; monodansylcadaverine; TET, tetramethylpyrazine.

Wang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Drug Design, Development and Therapy 2019:131194

http://www.dovepress.com
http://www.dovepress.com


in BUP-treated SH-SY5Y cells. Therefore, these findings

indicated that TET may serve as a potential agent for the

treatment of human neurotoxicity induced by BUP.
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