
Low Probability of Initiating nirS Transcription Explains
Observed Gas Kinetics and Growth of Bacteria Switching
from Aerobic Respiration to Denitrification
Junaid Hassan1, Linda L. Bergaust1, I. David Wheat2, Lars R. Bakken1*

1 Department of Environmental Sciences, Norwegian University of Life Sciences, Ås, Norway, 2 Department of Geography, University of Bergen, Bergen, Norway

Abstract

In response to impending anoxic conditions, denitrifying bacteria sustain respiratory metabolism by producing enzymes for
reducing nitrogen oxyanions/-oxides (NOx) to N2 (denitrification). Since denitrifying bacteria are non-fermentative, the initial
production of denitrification proteome depends on energy from aerobic respiration. Thus, if a cell fails to synthesise a
minimum of denitrification proteome before O2 is completely exhausted, it will be unable to produce it later due to energy-
limitation. Such entrapment in anoxia is recently claimed to be a major phenomenon in batch cultures of the model organism
Paracoccus denitrificans on the basis of measured e2-flow rates to O2 and NOx. Here we constructed a dynamic model and
explicitly simulated actual kinetics of recruitment of the cells to denitrification to directly and more accurately estimate the
recruited fraction (Fden). Transcription of nirS is pivotal for denitrification, for it triggers a cascade of events leading to the
synthesis of a full-fledged denitrification proteome. The model is based on the hypothesis that nirS has a low probability (rden,
h21) of initial transcription, but once initiated, the transcription is greatly enhanced through positive feedback by NO, resulting
in the recruitment of the transcribing cell to denitrification. We assume that the recruitment is initiated as [O2] falls below a
critical threshold and terminates (assuming energy-limitation) as [O2] exhausts. With rden = 0.005 h21, the model robustly
simulates observed denitrification kinetics for a range of culture conditions. The resulting Fden (fraction of the cells recruited to
denitrification) falls within 0.038–0.161. In contrast, if the recruitment of the entire population is assumed, the simulated
denitrification kinetics deviate grossly from those observed. The phenomenon can be understood as a ‘bet-hedging strategy’:
switching to denitrification is a gain if anoxic spell lasts long but is a waste of energy if anoxia turns out to be a ‘false alarm’.
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Introduction

A complete denitrification pathway includes the dissimilatory

reduction of nitrate (NO{
3 ) through nitrite (NO{

2 ), nitric oxide (NO),

and nitrous oxide (N2O) to di-nitrogen (N2). Typically, the genes

encoding reductases for these nitrogen oxyanions/-oxides (NOx) are

not expressed constitutively but only in response to O2 depletion,

making denitrification a facultative trait [1]. Hence, during anoxic

spells, the process enables denitrifying bacteria to sustain respiratory

metabolism, replacing O2 by NOx as the terminal electron (e2)

acceptors. Since permanently anoxic environments lack available

NOx, denitrification is confined to sites where O2 concentration

fluctuates, such as biofilms, surface layers of sediments, and drained

soil (which turns anoxic in response to flooding).

From modelling denitrifying communities as a
homogenous unit to a model of regulation of
denitrification in an individual strain

Denitrification is a key process in the global nitrogen cycle and

is also a major source of atmospheric N2O [2]. A plethora of

biogeochemical models have been developed for understanding

the ecosystem controls of denitrification and N2O emissions [3]. A

common feature of these models is that the denitrifying

community of the system (primarily soils and sediments) in

question is treated as one homogenous unit with certain

characteristic responses to O2 and NO{
3 concentrations. This

simplification is fully legitimate from a pragmatic point of view,

but in reality any denitrifying community is composed of a mixture

of organisms with widely different denitrification regulatory

phenotypes [4]. Modelling has been used to a limited extent to

analyse kinetic data for various phenotypes (See [5] and references

therein) and for understanding the accumulation of intermediates

[6]. To our knowledge, however, no attempts have been made to

model the regulation during transition from aerobic to anaerobic

respiration in individual strains, despite considerable progress in

the understanding of their regulatory networks. It would be well

worth the effort, since the regulatory phenomena at the cellular

level provide clues as to how denitrification and NO and N2O

emissions therefrom are regulated in intact soils [7]. Explicit

modelling of the entire denitrification regulatory network,
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however, would take us beyond available experimental evidence,

with numerous parameters for which there are no empirical

values. Considering this limitation, here we have constructed a

simplified model to investigate if a stochastic transcriptional

initiation of key denitrification genes (nirS) could possibly explain

peculiar kinetics of e2-flow as Paracoccus denitrificans switch from

aerobic to anaerobic respiration [4,8].

Although denitrification is widespread among bacteria, the a-

proteobacterium Pa. denitrificans is the ‘paradigm’ model

organism in denitrification research. Recent studies [4,8,9] have

indicated a previously unknown phenomenon in this species that,

in response to O2 depletion, only a marginal fraction (Fden) of its

entire population appears to successfully switch to denitrification.

In these studies, however, Fden is inferred from rates of

consumption and production of gases (O2, NOx, and N2), and a

clear hypothesis as to the underlying cause of the low Fden is also

lacking. To fill these gaps, we formulated a refined hypothesis

addressing the underlying regulatory mechanism of the cell

differentiation in response to O2 depletion. On its basis, we

constructed a dynamic model and explicitly simulated the actual

kinetics of recruitment of the cells from aerobic respiration to

denitrification. The model adequately matches batch cultivation

data for a range of experimental conditions [4,8] and provides a

direct and refined estimation of Fden. The exercise is important for

understanding the physiology of denitrification in general and of

Pa. denitrificans in particular and carries important implications

for correctly interpreting various denitrification experiments.

Regulation of denitrification in terms of relevance to
fitness

Generally, the transcription of genes encoding denitrification

enzymes is inactivated in the presence of O2. A population

undertaking denitrification typically responds to full aeration by

completely shutting down denitrification and immediately initiat-

ing aerobic respiration [10]. Thus, O2 controls denitrification at

transcriptional as well as metabolic level, and both have a plausible

fitness value. The transcriptional control minimises the energy cost

of producing denitrification enzymes, and the metabolic control

maximises ATP (per mole electrons transferred) because the mole

ATP per mole electrons transferred to the terminal e2-acceptor is

,50% higher for aerobic respiration than for denitrification [10].

Denitrification enzymes produced in response to an anoxic spell

are likely to linger within the cells under subsequent oxic

conditions (although, this has not been studied in detail), ready

to be used if O2 should become limiting later on. However, these

enzymes will be diluted by aerobic growth, since the transcription

of their genes is effectively inactivated by O2. Hence, a population

growing through many generations under fully oxic conditions will

probably be dominated by the cells without intact denitrification

proteome. When confronted with O2 depletion, such a population

will have to start from scratch, i.e., transcribe the relevant genes,

translate mRNA into peptide chains (protein synthesis by

ribosomes) and secure that these chains are correctly folded by

the chaperones, transport the enzymes to their correct locations in

the cell, and insert necessary co-factors (e.g., Cu, Fe, or Mo). In E.
coli grown under optimal conditions, the whole process from the

transcriptional activation to a functional enzyme takes #20 min-

utes [11] and costs significant amount of energy (ATP).

Synthesis of denitrification enzymes is rewarding if anoxia lasts

long and NOx remains available, but it is a waste of energy if

anoxia is brief. Since the organisms cannot sense how long an

impending anoxic spell will last, a ‘bet-hedging strategy’ [12]

where one fraction of a population synthesises denitrification

enzymes while the other does not may increase overall fitness.

A delayed response to O2 depletion may lead to
entrapment in anoxia

Most, if not all, denitrifying bacteria are non-fermentative and

completely rely on respiration to generate energy [13,14]. This

implies that their metabolic machinery will run out of energy

whenever deprived of terminal e2-acceptors. When [O2] falls

below some critical threshold, the cells will ‘sense’ this and start

synthesising denitrification proteome, utilising energy from aerobic

respiration [10]. However, if O2 is suddenly exhausted or

removed, the lack of a terminal e2-acceptor will create energy

limitation, restraining the cells from enzyme synthesis, hence,

entrapping them in anoxia. This was clearly demonstrated by

Højberg et al. [15], who used silicone immobilised cells to transfer

them from a completely oxic to a completely anoxic environment.

Such a rapid transition is unlikely to occur in nature; however, the

experiment illustrates one of the apparent perils in the regulation

of denitrification: the cells that respond too late to O2 depletion

will be entrapped in anoxia, unable to utilise alternative electron

acceptors for energy conservation and growth.

Højberg et al.’s [15] observations have largely been ignored in

the research on the regulation of denitrification, and it is implicitly

assumed that, in response to O2 depletion, all cells in cultures of

denitrifying bacteria will switch to denitrification. Contrary to this,

however, Bergaust et al. [4,8,16] followed by Nadeem et al. [9]

proposed that in batch cultures of Pa. denitrificans, only a small

fraction of all cells is able to switch to denitrification. During

transition from oxic to anoxic conditions, they observed a severe

depression in the total e2-flow rate (i.e., to O2+NOx, see Fig. 1),

which was estimated on the basis of measured gas kinetics. Had all

of the cells switched to denitrification as O2 exhausted, the total

e2-flow rate would have carried on increasing, without such a

depression. The depression was followed by an exponential

increase in the e2-flow rate, which was tentatively ascribed to

anaerobic growth of a small Fden (fraction recruited to denitrifi-

cation). It was postulated that this fraction escaped entrapment in

Author Summary

In response to oxygen-limiting conditions, denitrifying
bacteria produce a set of enzymes to convert NO{

3 /NO{
2

to N2 via NO and N2O. The process (denitrification) helps
generate energy for survival and growth during anoxia.
Denitrification is imperative for the nitrogen cycle and has
far-reaching consequences including contribution to
global warming and destruction of stratospheric ozone.
Recent experiments provide circumstantial evidence for a
previously unknown phenomenon in the model denitrify-
ing bacterium Paracoccus denitrificans: as O2 depletes, only
a marginal fraction of its population appears to switch to
denitrification. We hypothesise that the low success rate is
due to a) low probability for the cells to initiate the
transcription of genes (nirS) encoding a key denitrification
enzyme (NirS), and b) a limited time-window in which NirS
must be produced. Based on this hypothesis, we
constructed a dynamic model of denitrification in Pa.
denitrificans. The simulation results show that, within the
limited time available, a probability of 0.005 h21 for each
cell to initiate nirS transcription (resulting in the recruit-
ment of 3.8–16.1% cells to denitrification) is sufficient to
adequately simulate experimental data. The result chal-
lenges conventional outlook on the regulation of denitri-
fication in general and that of Pa. denitrificans in particular.
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anoxia by synthesising initial denitrification proteins within the

time-window when O2 was still present, whereas the majority of

the cells (1{Fden) failed to do so, thus remained unable to utilise

NOx.

The core hypothesis: A low probability of initiating nirS
transcription seems to drive the cell differentiation

Autocatalytic transcription of denitrification genes. In

Pa. denitrificans, denitrification is driven by four core enzymes:

Nar (membrane-bound nitrate reductase), NirS (cytochrome cd1

nitrite reductase), cNor (nitric oxide reductase), and NosZ (nitrous

oxide reductase, see Fig. 2). The transcriptional regulation of

genes encoding these enzymes (nar, nirS, nor and nosZ,

respectively) involves, at least, three FNR-type proteins acting as

sensors for O2 (FnrP), NO{
3 /NO{

2 (NarR), and NO (NNR)

[10,17,18]. NarR and NNR facilitate product-induced transcrip-

tion of the nar and nirS genes: When anoxia is imminent, the low

[O2] is sensed by FnrP, which in interplay with NarR induces nar
transcription. NarR is activated by NO{

2 (and/or probably by

NO{
3 ); thus once a cell starts producing traces of NO{

2 , nar
expression becomes autocatalytic. The transcription of nirS is

induced by NNR, which requires NO for activation; thus once

traces of NO are produced, the expression of nirS also becomes

autocatalytic. In contrast, the transcription of nor is substrate (NO)

induced via NNR, while nosZ is equally but independently

induced by NNR and FnrP [19]. Here we are concerned with the

dynamics that start with the transcription of nirS, since the

experimental treatments that we simulated were not supplemented

with NO{
3 but various concentrations of NO{

2 only (Table 1).

Low probability of initiating nirS transcription. The

transcription of nirS is known to be suppressed by O2 [4,8], but

the exact mechanism remains unclear. Circumstantial evidence

suggests that it is due to O2 inactivating NNR [20] (dashed link in

Fig. 2), but this is not necessary to explain the repression of NirS.

There are several mechanisms through which high O2 concen-

trations may restrain NirS activity, i.e., through post-transcrip-

tional regulation, direct interaction with the enzyme, or due to

competition for electrons. Regardless of the exact mechanism(s),

Figure 1. Data generated by batch cultivation of Pa. denitrificans [4] (redrawn). As the cells transited from oxic to anoxic conditions (Panel A),
Bergaust et al. [4] observed a severe depression in the total e2-flow rate (i.e., to O2+NOx, Panel B), which was taken to indicate that only a fraction of
the cells switched to anaerobic respiration (denitrification). Had all of the cells switched, the total e2-flow would have carried on increasing without
such a depression. The depression was followed by an exponential increase in the e2-flow rate, which was ascribed to anaerobic growth of a small
fraction (Fden) of the cells that escaped entrapment in anoxia and carried on growing by denitrification.
doi:10.1371/journal.pcbi.1003933.g001

Figure 2. The regulatory network of denitrification in Pa. denitrificans. In Pa. denitrificans, denitrification is driven by four core enzymes: Nar
(nitrate reductase encoded by the nar genes), NirS (nitrite reductase encoded by nirS), cNor (NO reductase encoded by nor), and NosZ (N2O reductase
encoded by nosZ). The transcription of these genes is regulated by, at least, three FNR-type proteins, which are sensors for O2 (FnrP), NO{

3 /NO{
2

(NarR), and NO (NNR). NarR and NNR facilitate product-induced transcription of the nar and nirS genes (see positive-feedback loops), where NNR also
counteracts the NO accumulation (negative-feedback loop) [10,17,18]. Circumstantial evidence suggests that O2 inactivates NNR (grey dashed link)
[20], and NirS is also unlikely to be functional in the presence of high O2 concentrations. Hence, for our modelling we hypothesise that the probability

of an autocatalytic transcriptional activation of nirS is zero until O2 falls below a critical concentration O2½ �trigger

� �
. When O2 falls below O2½ �trigger, the

initial nirS transcription is possibly mediated through a minute pool of intact NNR, crosstalk with other factors, or through non-biological traces of NO
found in an NO{

2 -supplemented medium. Regardless of the exact mechanism(s), once nirS transcription is initiated, it will be substantially enhanced
by spikes of internal NO emitted from the first molecules of NirS (the positive-feedback loop). The activated positive-feedback will also induce nor and
nosZ transcription via NNR (although, the latter can also be induced independently by FnrP [19]), facilitating the synthesis of a full-fledged
denitrification proteome. Our model assumes that such recruitment to denitrification will occur with a low probability. We further assume that the
recruitment will only be possible as long as a minimum of O2 O2½ �min

� �
is available because the production of the first molecules of NirS will depend

on energy from aerobic respiration.
doi:10.1371/journal.pcbi.1003933.g002
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the ultimate consequence is the elimination of the positive

feedback via NO and NNR. When O2 falls below a critical

threshold, facilitating NirS activity, this positive feedback would

allow the product of a single transcript of nirS to induce a

subsequent burst of nirS transcription in response to NO. Such

‘switches’ in gene expression by positive-feedback loops are not

uncommon in prokaryotes, and they have been found to result in

cell differentiation because the initial transcription is stochastic

with a relatively low probability [21].

Our model assumes such stochastic recruitment to denitrifica-

tion, triggered by an initial nirS transcription occurring with a low

probability. This initial transcription is possibly mediated by a

minute pool of intact NNR and/or through crosstalk with other

factors, such as FnrP. A NO{
2 -supplemented medium contains

non-biologically formed traces of NO which, once diffused into the

cells while O2 is low, will activate background levels of NNR and,

thereby, may also increase the probability of triggering nirS
transcription.

For this modelling exercise, we do not need a full clarification of

the mechanisms involved but only to assume that the probability of

an autocatalytic transcriptional activation of nirS would be

practically zero as long as O2 concentration is above a certain

threshold. This assumption is backed by empirical data indicating

that NO is not produced to detectable levels before O2

concentration falls below a critical threshold [8,22]. For O2

concentrations below this threshold, the model assumes a low (but

unknown) probability for each cell to initiate the autocatalytic

transcription of nirS, paving the way for the rest of the

denitrification proteome.

O2 is required for the initial production of NirS. We

further assume that the recruitment to denitrification will only be

possible as long as a minimum of O2 is available because the

synthesis of first molecules of NirS will depend on energy from

aerobic respiration.

Can NO produced within one cell help activate the

autocatalytic transcription of nirS in the neighbouring

cells? It is perhaps less obvious that the autocatalytic

transcriptional activation of nirS takes place only within the

NO-producing cell because NO diffuses easily across membranes

[23]. However, the average distance between the cells in a culture

with 109 cells mL21 (roughly the numbers that we are dealing

with) is ,10 mm, which is ,10 times the diameter of a cell. This

implies that an NO molecule produced by a cell has a much higher

probability to react with and activate the NNR inside the same cell

than to do so in another one.

Modelling the cell differentiation
To represent the batch cultivation conducted by Bergaust et al.

[4,8], the model explicitly simulates growth of two sub-popula-

tions, one with denitrification enzymes (NDz) and the other

without (ND{); both equally consume O2, but ND{ cannot reduce

NOx to N2. Once oxygen concentration in the liquid O2½ �LP

� �
falls

below a critical level O2½ �trigger

� �
[22], the cells within ND{ are

assumed to initiate nirS transcription (and thereby ensure

recruitment to NDz) with a rate described by a probabilistic

function: ND{|rden O2ð Þ (cells h21), where rden O2ð Þ is assumed to

be an O2½ �LP dependent probability (h21) for any cell within ND{

to initiate nirS transcription (leading to a full denitrification

capacity). When O2½ �LP falls below O2½ �trigger, rden O2ð Þ triggers and

holds a constant value as long as O2½ �LP is above a critical

minimum O2½ �min

� �
. For O2½ �LPw O2½ �trigger, rden O2ð Þ is zero

(assuming the inactivation of NNR by O2); rden O2ð Þ is also zero for

O2½ �LPv O2½ �min (assuming the lack of energy for protein

synthesis).

The recruitment of ND{ to NDz is simulated as an

instantaneous event; thus, the model does not take into account

the time-lag between the initiation of nirS transcription and the

time when the transcribing cell has become a fully functional

denitrifier. This simplification is based on the evidence that this lag

is rather short. Experiments with E. coli [11] under optimal

conditions suggest lags of ,20 minutes between the onset of

transcription and the emergence of a functional enzyme. In Pa.
denitrificans [8,22], the lag observed between the emergence of

denitrification gene transcripts and the subsequent gas products

suggests that the time required for synthesising the enzymes is

within the same range.

Employing the model to understand ‘diauxic lags’
between the aerobic and anaerobic growth-phases

In a series of experiments with denitrifying bacteria (Pseudo-
monas denitrificans, Pseudomonas fluorescens, Alcaligenes eutro-
phus and Paracoccus pantotrophus) [24–26], oxic cultures were

sparged with N2 to remove O2 and were monitored by measuring

optical density (OD550). All the strains except Ps. fluorescens went

through a conspicuous ‘diauxic lag: a period of little or no growth’
[26]; the OD remained practically constant during the lag period,

lasting 4–30 hours, which was eventually followed by anaerobic

growth.

To understand the diauxic lag, Liu et al. [24] used the common

assumption that all cells would eventually switch to denitrification.

They constructed a simulation model based on the assumption

that all the cells contained a minimum of denitrification proteome

(even after many generations under oxic conditions). This

minimum would allow them to produce more denitrification

enzymes when deprived of O2, albeit very slowly due to energy

limitation. The time taken to effectively produce adequate

amounts of denitrification enzymes ( = the diauxic lag) was taken

to be a function of the initial amounts of these enzymes per cell.

Although their model may possibly explain short time-lags, it

appears unrealistic for lag phases as long as 10–30 hours [25]

because to produce such long lags, conceivably, the initial enzyme

concentration would be less than one enzyme molecule per cell,

which is mathematically possible but biologically meaningless.

Table 1. The simulated experiment of Bergaust et al [4,8].

Batch No. O2HS ððt0 ÞÞ (vol. %)* NO2
{ ððt0 ÞÞ (mM)

1 ,0 0.2

2 ,0 1

3 ,0 2

4 1 0.2

5 1 1

6 1 2

7 7 0.2

8 7 1

9 7 2

*Targeted values for initial O2 in the headspace (where the headspace
vol. = 70 mL). The actual initial O2 measured in the 0, 1, and 7% treatments was
0.012–0.19, 1.2–1.66, 6.6–6.8 vol.%, respectively. The O2 present in the ,0%
treatments was due to traces of O2 left behind despite various cycles of
evacuation of the headspace air and subsequent flushing of the vials with
helium (He-washing).
doi:10.1371/journal.pcbi.1003933.t001
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The model presented in this paper provides an alternative

explanation for the apparent diauxic lags: a sudden shift from fully

oxic to near anoxic conditions (by sparging with N2) would leave

the medium with only traces of O2, which would be quickly

depleted due to aerobic respiration. As a consequence, the

available time for initiating the synthesis of denitrification

proteome would be marginal, allowing only a tiny fraction (Fden)

of the cells to switch to denitrification. This marginal fraction

would grow exponentially from the very onset of anoxic

conditions, but it would remain practically undetectable as

measured (OD) for a long time, creating the apparent 4–30 h

lag. The length of the lag depends on the fraction of the cells

switching to denitrification. To demonstrate this alternative

explanation, we adjusted our model to the reported conditions

and simulated the experiment of Liu et al [24]. The model

produced qualitatively similar ‘diauxic lags’ in the simulated cell

density (OD), although the time length of the lag could be

anything (depending on assumptions regarding the residual O2

after sparging, which was not measured).

Materials and Methods

An overview of the modelled experiment: Batch
incubations in gas-tight vials

Bergaust et al. [4,8] studied aerobic and anaerobic respiration

rates in Paracoccus denitrificans (DSM413). The cells were

incubated (at 20uC) as stirred batches in 120 mL gastight vials,

containing 50 mL Sistrom’s medium [27] (Fig. 3). The medium

was supplemented with various concentrations of KNO3 or

KNO2. Prior to inoculation, air in the headspace was replaced

with He to remove O2 and N2 (He-washing), followed by the

injection of no, 1, or 7 headspace-vol.% O2. Finally, each vial was

inoculated with ,36108 aerobically grown cells.

Figure 3. An overview of the modelled system: batch incubation in a gas-tight vial. The experiment: The stirred Sistrom’s medium [27] was
inoculated with aerobically grown Pa. denitrificans cells, which were provided with different concentrations of O2 and NO{

2 (g or aq with a chemical
species-name represents gaseous or aqueous, respectively). O2 is consumed by respiration, driving its transport from the headspace to the liquid.
Once the aerobic respiration becomes limited, the cells may switch to denitrification (recruitment), reducing NO{

2 to N2 via the intermediates NO and
N2O (not shown). For monitoring O2, CO2, N2, NO and N2O, a robotised incubation system [28] was used, which automatically takes samples from the
headspace by piercing the rubber septum. Each sampling removes a fraction (3–3.4%) of all gases in the headspace, but it also involves a marginal
leakage of O2 and N2 into the vial (as indicated by the two-way arrows at the top of the figure). The model: The model operates with two sub-
populations: one without and the other with denitrification enzymes (ND{ and NDz, respectively). Both consume O2 if present, but ND{ cannot
reduce NOx. The ND{ cells may be recruited to the NDz pool as O2½ �aq falls below a critical threshold. The rate of recruitment (Rrec) is modelled as a

probabilistic function: Rrec~ND{|rden O2ð Þ (cells h21), where rden O2ð Þ represents an O2 dependent specific-probability (h21) for any ND{ cell to
initiate nirS transcription (leading to the synthesis of a full-fledged denitrification proteome).
doi:10.1371/journal.pcbi.1003933.g003
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Treatments selected for simulation. Only NO{
2 -supple-

mented treatments (Table 1) were selected for this modelling

exercise for two reasons. First, NO{
2 was not monitored; hence,

results of the NO{
3 -supplemented treatments could not provide

exact estimates of anaerobic respiration rates (due to an unknown

transient accumulation of NO{
2 ). Second, by excluding the

treatments requiring Nar, we could single out and focus on the

regulation of the other key enzyme NirS.

Aerobic respiration followed by denitrification. O2

diffused from the headspace to the liquid (Fig. 3), where the cells

consumed it before switching to denitrification: the stepwise

reduction of NO{
2 to N2 via the intermediates NO and N2O (not

shown). Headspace concentrations of gases were monitored by

frequent sampling (every 3 hours). A typical result is shown in

Fig. 1A, illustrating the increasing rate of O2 consumption until

depletion, followed by transition to denitrification. The denitrifi-

cation rate increased exponentially till all the NO{
2 present in the

medium was recovered as N2. The medium contained ample

amounts of carbon substrate (34 mM succinate) to support the

consumption of all available electron acceptors.

Sampling procedure. To monitor O2, CO2, NO, N2O, and

N2 in the headspace for respiring cultures, Bergaust et al. [4,8]

used a robotised incubation system, which automatically takes

samples from the headspace by piercing the rubber septum

(Fig. 3). The auto-sampler is connected to a gas chromatograph

(GC) and an NO analyser (For details, see [28]). The system uses

peristaltic pumping, which removes a fraction (3–3.4%) of all the

gases in the headspace and then reverses the pumping to inject an

equal amount of He into the headspace, thus maintaining ,1

atmosphere pressure inside the vial. Sampling also involves a

marginal leakage of O2 and N2 into the headspace (,22 and

,60 nmol per sampling, respectively) through tubing and

membranes of the injection system.

Calculation of gases in the liquid. Concentrations of gases

in the liquid were calculated using solubility of each gas at the

given temperature (20uC), assuming equilibrium between the

headspace and the liquid. However, the O2 consumption rate was

so high that to calculate [O2] in the liquid, its transport rate (from

the headspace to the liquid) had to be taken into account.

An overview of the model
The model effectively represents the physical phenomena

mentioned above, so as to ensure that the simulation results

match the measured data for the right reasons. Net effect of

sampling (dilution and leakage) is included in the simulation of O2

kinetics at the reported sampling times. Transport of O2 between

the headspace and the liquid is modelled using an empirically

determined transport coefficient and the solubility of O2 in water

at 20uC. To simulate the metabolic activity (O2 consumption and

N2 production) and growth, the model divides the cells into two

sub-populations: one without and the other with denitrification

enzymes (ND{ and NDz pools, respectively, see Fig. 3). Both

equally consume O2 if present, but ND{ cannot reduce NO{
2 to

N2. Those ND{ cells that, in response to O2 depletion, are able to

initiate nirS transcription (see Fig. 2) are recruited to the NDz

pool, where NDz = 0 prior to the recruitment. The recruitment

rate (Rrec) is modelled according to a probabilistic function

described below (Eqs. 7–8).

The model ignores sampling effect on N2 (leakage and loss), thus

calculating the cumulative N2 production as if no sampling took

place. That is because the experimentally determined N2

accumulation (which is to be compared with the model

predictions) was already corrected for the net sampling effect.

The model is developed in Vensim DSS 6.2 Double Precision

(Ventana Systems, Inc. http://vensim.com/) using techniques

from the field of system dynamics [29]. The model is divided into

three sectors: I. O2 kinetics, II. Population dynamics of ND{ and

NDz, and III. Denitrification kinetics (Fig. 4).

Sector I: O2 kinetics
Structural-basis for the O2 kinetics is mapped in Fig. 4A: the

squares represent the state variables, the circles the rate of change

in the state variables, the shaded ovals the auxiliary variables, the

arrows mutual dependencies between the variables, and the edges

represent flows into or out of the state variables. Briefly, Fig. 4A

(left to right) shows that O2 in the vial’s headspace (O2HS) is

transported (TrO2
) to the liquid-phase (O2LP), where it is consumed

(CrO2
) by both the ND{ and NDz populations (lacking and

carrying denitrification enzymes, respectively) in proportion to an

identical cell-specific velocity of O2 consumption (vO2
). DO2 Sð Þ

represents net marginal changes in O2HS due to sampling. Below

we present equations and a detailed explanation of the structural

components shown for this sector.

O2 in the headspace. (O2HS, mol vial21) is initialised by

measured initial concentrations (Table 1) and modelled as a

function of transport (TrO2
) between the headspace and the liquid

[28]:

TrO2
~kt| kH O2ð Þ|PO2

{ O2½ �LP

� �
ð1Þ

Units: mol vial21 h21

where kt (L vial21 h21) is the empirically determined coefficient

for the transport of O2 between the headspace and the liquid (See

Table 2 for parametric values and their sources), kH O2ð Þ (mol L21

atm21) is the solubility of O2 in water at 20uC, PO2
(atm) is the

partial pressure of O2 in the headspace, and O2½ �LP (mol L21) is

the O2 concentration in the liquid-phase O2½ �LP~
O2LP

VolLP

� �
.

In addition, changes in O2HS due to sampling are included at

the reported sampling times. The robotised incubation system

[28] used in the experiment monitors gas concentrations by

sampling the headspace, where each sampling alters the

concentrations in a predictable manner: a fraction of O2HS is

removed and replaced by He (dilution), but the sampling also

results in a marginal leakage of O2 through the tubing and

membranes of the injection system. Eq. 2 shows how the model

calculates the net change in O2HS DO2 Sð Þ
� �

as a result of each

sampling:

DO2 Sð Þ~
O2leak{O2HS|Dð Þ

ts

ð2Þ

mol vial21 h21

where O2leak (mol vial21) is the O2 leakage into the headspace,

D (dilution) is the fraction of O2HS replaced by He, and ts (h) is the

time taken to complete each sampling. DO2 Sð Þ is negative if O2HS is

greater than 0.58 mmol vial21 and marginally positive if it is less

than that.

O2 in the liquid-phase. (O2LP, mol vial21, see Fig. 4A) is

initialised by assuming equilibrium with O2HS at the time of

inoculation O2LP t0ð Þ~PO2
|kH O2ð Þ|VolLP

� �
. O2LP is modelled

as a function of its transport into the liquid (TrO2
, Eq. 1) and

consumption rate (CrO2
, mol vial21 h21), where the latter is

Modelling Transition of Bacteria from Aerobic to Anaerobic Respiration

PLOS Computational Biology | www.ploscompbiol.org 7 November 2014 | Volume 10 | Issue 11 | e1003933

http://vensim.com/


modelled as a function of total cell numbers and the cell-specific

velocity of O2 consumption:

d O2LPð Þ
dt

~TrO2
{CrO2

~TrO2
{ ND{zNDzð Þ|vO2

ð3Þ

mol vial21 h21

where ND{ and NDz (cells vial21, see Sector II for details) are

the cells without and with denitrification enzymes, respectively,

and vO2
(mol cell21 h21) is the cell-specific velocity of O2

consumption. Thus, we assume that the NDz and ND{ cells have

the same potential to consume O2.

vO2
is modelled as a Michaelis-Menten function of O2

concentration:

vO2
~

vmax O2ð Þ| O2½ �LP

Km O2ð Þz O2½ �LP

� � ð4Þ

mol cell21 h21

where vmax O2ð Þ (mol cell21 h21) is the maximum cell-specific

velocity of O2 consumption (determined under the actual

experimental conditions), O2½ �LP (mol L21) is the O2 concentra-

tion in the liquid-phase, and Km O2ð Þ (mol L21) is the half

saturation constant for O2 reduction.

Sector II: Population dynamics of the cells without (ND{)
and with (NDz) denitrification proteome

Fig. 4B represents the structure governing the population

dynamics of ND{ and NDz. Briefly, the figure shows that both

the populations are able to grow by aerobic respiration (GrD{ and

GrAE, respectively). Initially, NDz = 0 and is populated through

recruitment (Rrec) of the cells from the ND{ pool, where the

recruitment is a product of ND{ and an [O2] dependent specific-

probability (h21) of the recruitment (rden O2ð Þ, see Eqs. 7–8). The

growth rate of NDz is primarily based on denitrification (GrDE),

but the NDz cells that are recruited before O2 is completely

exhausted also grow by consuming the remaining traces of O2.

Below we present equations and a detailed explanation of the

structural components shown for this sector.

Figure 4. A stock and flow diagram of the model’s structure. The squares represent the state variables, the circles the rate of change in the
state variables, the shaded ovals the auxiliary variables, the arrows dependencies between the variables, and the edges represent flows into or out of
the state variables. A. The panel represents the structure that governs the O2 kinetics. Briefly, it shows that O2 in the vial’s headspace (O2HS) is
transported (TrO2

) to the liquid-phase (O2LP), where it is consumed (CrO2
) by both ND{ and NDz populations with an identical cell-specific velocity

of O2 consumption (vO2
). DO2 Sð Þ represents net marginal changes in O2HS due to sampling. B. The panel represents the structural basis for population

dynamics of the cells without (ND{) and with (NDz) denitrification enzymes. Briefly, it shows that both the populations are able to grow by aerobic
respiration (GrD{ and GrAE, respectively). The growth rate of NDz, however, is primarily based on denitrification (GrDE). Initially, NDz = 0 and is
populated through recruitment (Rrec) of the cells from ND{, where the recruitment is a function of ND{ and an [O2] dependent specific-probability
of the recruitment rden O2ð Þð Þ for any ND{ cell. C. The panel represents the structural basis for the NO{

2 /N2 kinetics. Briefly, it illustrates that NDz

control the consumption rate of NO{
2 (CrNO{

2
), recovered as N2, in proportion to a cell-specific velocity of NO{

2 consumption (vNO{
2

).

doi:10.1371/journal.pcbi.1003933.g004
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The pool of the cells lacking denitrification

proteome. The pool of the cells lacking denitrification pro-

teome (ND{) is initialised with 36108 cells vial21. The population

dynamics of ND{ are modelled as:

d ND{ð Þ
dt

~GrD{{Rrec ð5Þ

cells vial21 h21

where GrD{ (cells vial21 h21) is the (aerobic) growth rate, and

Rrec (cells vial21 h21, Eq. 7) is the rate of recruitment of ND{ to

the NDz pool.

GrD{ is modelled as:

GrD{~ND{|vO2
|YO2

ð6Þ

cells vial21 h21

where vO2
(mol cell21 h21, Eq. 4) is the cell-specific velocity of

O2 consumption, and YO2
(cells mol21) is the cell yield per mole of

O2 (determined under the actual experimental conditions).

The rate of recruitment. The rate of recruitment (Rrec, see

Fig. 4B) of the cells from ND{ to NDz is modelled as:

Rrec~ND{|rden O2ð Þ ð7Þ

cells vial21 h21

where rden O2ð Þ (h21) represents the conditional specific-

probability for any ND{ cell to be recruited to denitrification,

modelled as a function of O2 concentration in the liquid-phase

( O2½ �LP, see Fig. 5):

rden O2ð Þ~
0 for O2½ �LPw O2½ �trigger

rden for O2½ �minv O2½ �LPv O2½ �trigger

0 for O2½ �LPv O2½ �min

8><
>: ð8Þ

h21

where rden (h21) is a constant representing the specific-

probability of the recruitment, O2½ �trigger is the O2 concentration

above which the transcription of nirS is effectively suppressed by

O2, and O2½ �min is the O2 concentration assumed to provide

minimum energy for the initial transcription to result in functional

NirS. Once the first molecules of NirS are produced while

O2½ �minv O2½ �LPv O2½ �trigger, the transcription of nirS will be

greatly enhanced through positive feedback by NO, paving the

way for a full-scale production of denitrification proteome [10]

(See Introduction and Fig. 2 for details).

O2½ �trigger ( = 9.7561026 mol L21) is the empirically determined

O2½ �LP at the outset of NO accumulation: Bergaust et al. [8]

estimated O2½ �trigger between 0.1–12 mM, but recent Pa. deni-

trificans batch incubation data have provided a more precise

estimate between 8.8–10.7 mM (average = 9.75 mM) [22].

Table 2. Model parameters.

Description Value Units Reference

Sector I: O2 Kinetics

D Dilution: the fraction of O2 replaced by He during sampling 0.035 Unitless [28]

kH O2ð Þ Solubility of O2 in water (20uC) 0.00139 mol L21 atm21 [37]

kt The O2 transport coefficient between headspace and liquid 1.62 L vial21 h21 [28]

O2leak O2 leakage into the vial during each sampling 2.0461028 mol vial21 [28]

ts The time taken to complete each sampling 0.017 h [28]

Km O2ð Þ The half saturation constant for O2 consumption 2.561027 mol L21 Model-based
estimation

vmax O2ð Þ The maximum cell-specific velocity of O2 consumption 1.33610215 mol cell21 h21 [4,8]

Sector II: Population dynamics of the cells without (ND{) and with (NDz) denitrification proteome

O2½ �min [O2] in the liquid below which the recruitment to NDz halts 161029 mol L21 Assumption

O2½ �trigger [O2] below which the recruitment to NDz triggers 9.7561026 mol L21 [22]

rden The specific-probability of recruitment of a cell to NDz 0.0052 h21 Model-based
estimation

YNO{
2

The growth yield per molN NO{
2 5.7961013 cells molN21 [4,8]

YO2
The growth yield per mol O2 1561013 cells mol21 [4,8]

Sector III: Denitrification Kinetics

K
m NO{

2ð Þ The half saturation constant for NO{
2 reduction 461026 molN L21 [33,34]

vmax NO{
2ð Þ The maximum cell-specific velocity of NO{

2 reduction 1.83610215 molN cell21 h21 [4,8]

General

R Universal gas constant 0.083 L atm K21 mol21 –

T Temperature 293.1 K [4,8]

VolHS Headspace volume 0.07 L vial21 [4,8]

VolLP Liquid-phase volume 0.05 L vial21 [4,8]

doi:10.1371/journal.pcbi.1003933.t002
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As for O2½ �min, we lack empirical basis for determining the

parameter value, but sensitivity of the model to this parameter was

tested (See Results/Discussion). Our simulations were run with

O2½ �min = 161029 mol L21, which would sustain an aerobic respira-

tion rate equivalent to 0.4% of the empirically determined vmax O2ð Þ
(assuming our estimated Km O2ð Þ = 2.561027 mol L21, Table 2).

As modelled, the time-window for the recruitment to denitri-

fication depends on the time taken to deplete O2½ �LP from

O2½ �trigger to O2½ �min (Fig. 5); for obvious reasons, the length of this

time-window depends on the cell density.

The lag observed between the emergence of denitrification gene

transcripts and the subsequent gas products is as short as

20 minutes [8,22], which is insignificant in the sense that the

estimations of rden and Fden will not be affected by including it in

the model. Therefore, the recruitment (Eq. 7) is modelled as an

instantaneous event.

Calculation of Fden: The fraction of the cells recruited to
denitrification. Fden is calculated based on the integral of the

recruitment (Eq. 7):

Fden~1{e{rden| tm{ttð Þ ð9Þ
Dimensionless

where rden (h21, see Eqs. 7–8 and Fig. 5) is the specific-

probability for the recruitment of a cell to denitrification, tt is the

time when [O2] in the liquid falls below O2½ �trigger (the

concentration below which rden triggers), and tm is the time when

[O2] in the liquid falls below O2½ �min (the concentration below

which rden is assumed to be zero). Hence, effectively, Fden

expresses the probability for any cell to switch to denitrification

within the time-frame tm{tt.

The pool of the cells carrying denitrification pro-

teome. The pool of the cells carrying denitrification proteome

(NDz, see Fig. 4B) is initialised with zero cells, and its population

dynamics are modelled as:

d NDzð Þ
dt

~RreczGrDEzGrAE ð10Þ

cells vial21 h21

where Rrec (cells vial21 h21, Eq. 7) is the recruitment rate, GrDE

(cells vial21 h21) the denitrification-based growth and GrAE (cells

vial21 h21) the aerobic growth rate.

Figure 5. Modelling of rden(h21) as a function of ½O2½ ��LP. A. The panel shows the O2 concentration in the liquid-phase O2½ �LP

� �
falling as a result

of aerobic respiration. B. The panel shows the probability for a cell to switch to denitrification (rden, h21) modelled as a function of O2½ �LP . O2½ �trigger

(Panels A & B) is the concentration below which rden is assumed to trigger (due to withdrawal of the transcriptional control of O2 on denitrification
[22]), whereas O2½ �min is assumed to be the concentration below which rden terminates (due to lack of energy for enzyme synthesis). The double-
headed arrow (at the bottom of Panel A) illustrates the limited time-window (tm{tt) available for the cells to switch to denitrification.
doi:10.1371/journal.pcbi.1003933.g005
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GrDE is modelled as:

GrDE~NDz|vNO{
2

|YNO{
2

ð11Þ

cells vial21 h21

where vNO{
2

(molN cell21 h21, see Eq. 15) is the cell-specific

velocity of NO{
2 reduction, and YNO{

2
(cells molN21) is the

growth yield per molN of NO{
2 as the e2-acceptor (determined

under the actual experimental conditions).

The NDz cells are assumed to have the same ability as ND{ to

grow by aerobic respiration; their aerobic growth rate is

formulated as:

GrAE~NDz|vO2
|YO2

ð12Þ

cells vial21 h21

where vO2
(mol cell21 h21, see Eq. 4) is the cell-specific velocity

of O2 consumption, and YO2
(cells mol21) is the growth yield per

mole of O2 as the e2-acceptor.

Sector III: Denitrification kinetics
The structure controlling the denitrification kinetics is mapped

in Fig. 4C. Briefly, the figure shows that the cells with

denitrification proteome (NDz) control the consumption rate of

NO{
2 (CrNO{

2
), recovered as N2, in proportion to a cell-specific

velocity of NO{
2 consumption (vNO{

2
). The denitrification

intermediates NO and N2O are not explicitly modelled, as they

accumulated to miniscule concentrations only [4,8].

NO{
2 and N2. The NO{

2 pool (molN vial21) is initialised by

measured initial concentrations (Table 1), and the N2 pool is initialised

with zero molN vial21. NO{
2 and N2 kinetics are modelled as:

d NO{
2

� �
dt

~{CrNO{
2

ð13Þ

molN vial21 h21

where CrNO{
2

is the consumption rate of NO{
2 :

CrNO{
2

~NDz|vNO{
2

ð14Þ

molN vial21 h21

where NDz (cells vial21) represents the denitrifying cells, and

vNO{
2

(molN cell21 h21) is the cell-specific velocity of NO{
2

reduction, which is modelled as a function of NO{
2 using the

Michaelis-Menten equation:

vNO{
2

~

v
max NO{

2

� �| NO{
2

� 	

K
m NO{

2

� �z NO{
2

� 	0
@

1
A

ð15Þ

molN cell21 h21

where vmax NO{
2ð Þ (molN cell21 h21) is the maximum cell-

specific velocity of NO{
2 consumption (determined under the

actual experimental conditions), NO{
2

� 	
(molN L21) is the NO{

2

concentration in the liquid-phase, and Km NO{
2ð Þ (molN L21) is the

half saturation constant for NO{
2 reduction.

See Table 2 for a summary of the parametric values and their

sources and Table 3 for the initial values assigned to the state

variables.

Parameterisation
Most of the parameter values used in the model are well

established in the literature (See Table 2). However, somewhat

uncertain parameters include Km O2ð Þ, Km NO{
2ð Þ, O2½ �trigger, and

the assumed parameter O2½ �min:

Km O2ð Þ. Pa. denitrificans has three alternative terminal oxidases

[30] with Km O2ð Þ ranging from nM to mM [31,32], so we decided to

estimate Km O2ð Þ by fitting our model to the data. Unfortunately,

Bergaust et al.’s [4,8] ,0% O2 treatments data, for which Km O2ð Þ is

relevant, has technical problems (needle clogging and/or high O2

leakage during sampling). Therefore, we estimated Km O2ð Þ
( = 2.561027 mol L21) by aptly simulating our model against

another ,0% O2 data-set produced by batch cultivations of Pa.
denitrificans under similar experimental conditions [22].

Km NO{
2ð Þ is given in the literature as 4–5 mM [33,34]. The

model, however, does not show any considerable sensitivity to this

parameter even within a range as wide as 0.1–10 mM because the

simulated experiments were operating with much higher [NO{
2 ].

O2½ �trigger ( = 9.7561026 mol L21) is empirically determined as

the O2½ �LP at the outset of NO accumulation: Bergaust et al. [8]

Table 3. Initial values for the state variables.

Symbol Value Units Reference

Sector 1: O2 Kinetics

Initial O2 in the headspace O2HS t0ð Þ See Table 5 mol vial21 [4,8]

Initial O2 in the liquid-phase O2LP t0ð Þ Equilibrium with O2HS t0ð Þ mol vial21 Assumption

Sector II: Population dynamics of the cells without (ND{) and with (NDz)denitrification proteome

The initial number of cells ND{ t0ð Þ 36108 cells vial21 [4,8]

The initial number of denitrifying cells NDz t0ð Þ 0 cells vial21 Assumption

Sector III: Denitrification Kinetics

Initial NO{
2 in the liquid-phase NO{

2 t0ð Þ See Table 5 molN vial21 [4,8]

Initial N2 in the headspace N2 t0ð Þ 0 molN vial21 [4,8]

doi:10.1371/journal.pcbi.1003933.t003
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estimated O2½ �trigger between 0.1–12 mM, but recent batch

incubation data from Pa. denitrificans have provided a more

precise estimate in the range 8.8–10.7 mM (average = 9.75 mM)

[22]. The model, however, is not sensitive to O2½ �trigger within the

latter range because of a high velocity of O2 depletion.

O2½ �min ( = 161029 mol L21) is assigned an arbitrary low value,

since we lack any empirical estimation/data to support it. To

compensate for the uncertainty, we conducted a sensitivity analysis

exploring the consequences of increasing or decreasing O2½ �min by

one order of magnitude (See Results/Discussion).

Results/Discussion

The specific-probability (rden, h21) of recruitment of a cell to
denitrification

To test the assumption of a single homogeneous population, we

forced our model to achieve 100% recruitment to denitrification

by setting rden = 1 h21. In consequence, the simulated N2

accumulation (molN vial21) showed gross overestimation as

compared to the measured for all the treatments (as illustrated

for some randomly selected ones in Fig. 6).

To find a more adequate value, rden was calibrated to produce

the best possible match between the simulated and measured N2

through optimisation. (The optimisation was carried out in

Vensim DSS 6.2 Double Precision, http://vensim.com/). Table 4

presents the optimal rden for each treatment; no consistent effect of

initial [O2] and [NO{
2 ] was found on the optimal results. The

average for all the treatments = 0.0052, which appears to give

reasonable fit between the simulated and measured N2 (See

Figs. 7, 8, and 9). This indicates that the simulations with

rden = 0.0052 should provide a reasonable approximation of Fden

(the fraction recruited to denitrification) during the actual

experiment.

Sensitivity analysis. O2½ �min (the O2 concentration below

which the recruitment is arrested) was arbitrarily chosen to be

161029 mol L21. In order to evaluate the sensitivity of the model

to this parameter, we tested the model performance by increasing

and decreasing O2½ �min by one order of magnitude. For each

parameter value, we estimated rden for the individual vials by

optimisation (as outlined in the foregoing paragraph). A good fit

was obtained for both the O2½ �min values, but the optimisation

resulted in slightly different rden values. Increasing O2½ �min by a

Figure 6. Comparison of the measured [4,8] and simulated data assuming rden = 1 h21. Assuming a single homogeneous population, as we
forced our model to achieve 100% recruitment to denitrification by setting the specific-probability of recruitment (rden) to 1 h21, the simulated N2

accumulation (molN vial21) showed considerable overestimation as compared to that measured. To illustrate this, the simulated and measured data
are compared here for some randomly chosen treatments. Initial vol.% O2 in the headspace and initial NO{

2 is shown above each panel.
doi:10.1371/journal.pcbi.1003933.g006

Modelling Transition of Bacteria from Aerobic to Anaerobic Respiration

PLOS Computational Biology | www.ploscompbiol.org 12 November 2014 | Volume 10 | Issue 11 | e1003933

http://vensim.com/


factor of 10 (to 161028 mol L21) resulted in 18–38% higher rden

estimates (average = 28% 6stdev 10). Decreasing O2½ �min by a

factor of 0.1 (to 1610210 mol L21) resulted in 5–17% lower rden

estimates (average = 11% 6stdev 6).

The fraction recruited to denitrification (Fden)
A refined estimation with the presented model. Bergaust

et al. [8,16] and Nadeem et al. [9] used data from batch

cultivations of Pa. denitrificans, as illustrated in Fig. 1, to assess

Fden. Their estimation was effectively Fden~
NDz texð Þ

N texð Þ , where tex is

the time when O2 is exhausted, NDz (cells vial21) is the number of

actively denitrifying cells estimated by the measured rate of

denitrification (molN h21) divided by the cell-specific denitrifica-

tion (molN cell21 h21), and N is the total number of cells estimated

on the basis of O2 consumption. Although this equation

indisputably estimates the fraction of the cells that was actively

denitrifying at the time tex, it is a biased estimate of the ‘true’ Fden

because the number of cells does not remain constant through the

recruitment phase: ND{ (the cells without denitrification enzymes)

and NDz will both grow until O2 is depleted, but NDz will grow

faster because their growth is supported by both O2 and NOx. As a

result, the estimation of Fden by this equation might be too high.

Table 4. Specific-probability of recruitment of a cell to
denitrification (rden) estimated for each batch culture by
optimisation (best match between the simulated and
measured N2 kinetics).

Batch No.
Treatment*: O2HS t0ð Þ (vol.%)
NO{

2 t0ð Þ (mM) Optimal rden (h21)

1 ,0, 0.2 0.0066

2 ,0, 1 0.0059

3 ,0, 2 0.0029

4 1, 0.2 0.0033

5 1, 1 0.0062

6 1, 2 0.0020

7 7, 0.2 0.0018

8 7, 1 0.0117

9 7, 2 0.0066

Avg. = 0.0052

*Treatment refers to the initial concentration of O2 in the headspace (measured
as headspace vol.%) and the initial concentration of NO{

2 in the medium (mM).
doi:10.1371/journal.pcbi.1003933.t004

Figure 7. Simulations of the treatments with ,0 vol.% O2HS using rden = 0.0052 h21. The figure compares the measured and simulated O2

depletion (mol vial21) and N2 accumulation (molN vial21) for the ,0 vol.% O2 treatments of Bergaust et al. [4,8], i.e., the vials with near-zero O2 in the
headspace (O2HS) at the time of inoculation. Separate plots are shown for each initial concentration of NO{

2 (0.2, 1, and 2 mM). The measured initial
O2 was somewhat erratic due to episodes of needle clogging and/or high O2 leakage during sampling, so the initial O2HS used in the simulations is
chosen somewhat ad lib so that the simulated O2 depletion coincides with that measured. The discrepancy compared to the measured O2 seems to
be significant for 2 mM NO{

2 treatment. That is most likely due to the inhibitory effect of nitrite on aerobic respiration, which is not taken into
account; all simulations are run with an identical Km O2ð Þ . Near exhaustion, the simulated O2 increases slightly at each sampling time; that is due to the
leakage of O2 via the injection system exceeding dilution of the headspace (with He) during each sampling.
doi:10.1371/journal.pcbi.1003933.g007

Modelling Transition of Bacteria from Aerobic to Anaerobic Respiration

PLOS Computational Biology | www.ploscompbiol.org 13 November 2014 | Volume 10 | Issue 11 | e1003933



Besides, the experimental estimation is prone to error because of

infrequent sampling, since the sampling time does not necessarily

coincide with tex.

In contrast, our model directly and more precisely calculates

Fden (Eq. 9) by a) explicitly simulating the actual kinetics of the

recruitment of the cells to denitrification (in contrast to estimating

total and denitrifying cell numbers from gas kinetics) and b)
avoiding aerobic and anaerobic growth of the cells. Table 5 shows

the model’s estimations of Fden and the time-span of the

recruitment (tm{tt) along with the Fden estimations of Bergaust

et al [8,16].

In the ,0% O2 treatments, Fden is supported by the
sampling leaks of O2. Due to low cell density in the ,0% O2

treatments (initial O2 = 1.5–2 mmol), the O2 leakage into the vial

during sampling (every 3 hours) caused oxygen concentrations to

exceed O2½ �min for 0.1–2.4 hours. This resulted in various spikes of

recruitment after the initial O2 was depleted. The recruitment

through these spikes amounted to, on average, ,19% of Fden in

the ,0% O2 treatments.

Fden,,100%. The model’s estimations of Fden (Table 5)

corroborate the suggestion of Bergaust et al. [8,16] and Nadeem

et al. [9] that in batch cultures of Pa. denitrificans Fden remains

far below 100%. According to Bergaust et al. [8,16], Fden was 2–

21% (average = 10%), whereas the model estimated it between

3.8–16.1% (average = 8.2%).

Fden is inversely related to cell density. Bergaust et al.
[16] argued that as the velocity of O2 depletion is proportional to

cell density, the time-frame available for the cells to produce

(necessary initial) denitrification proteome would be inversely

related to the cell density at the time of O2 depletion. Simulation

results (Table 5) support this: high initial O2 concentrations

resulted in high cell densities at the time of O2 depletion,

shortening the time-span for the recruitment to denitrification,

hence resulting in the low Fden.

Underlying cause of the low Fden. Fden remains low because

of a) the limited time-window available to the cells for the

recruitment and b) the low rden (specific-probability of the

recruitment), presumably due to a low probability of initiating

nirS transcription (subsequently reinforced through positive

feedback by NO).

Simulation of the ‘diauxic lag’
To investigate whether the recruitment of a small fraction of the

cells to denitrification could explain the ‘diauxic lag’ observed by

Liu et al. [24], we used our model to simulate the conditions they

reported for their experiment. In short, Liu et al. [24] incubated

Ps. denitrificans (ATCC 13867) in oxic batch cultures, which were

sparged with N2 as the cultures had reached different cell densities

(OD550 = 0.05–0.17). The sparging resulted in apparent diauxic

lags, i.e., periods with little or no detectable growth. The length of

Figure 8. Simulations of the treatments with 1 vol.% O2HS using rden = 0.0052 h21. The figure compares the measured and simulated O2

depletion (mol vial21) and N2 accumulation (molN vial21) for the treatments with 1 vol.% O2 in the headspace (O2HS) at the time of inoculation;
separate plots are shown for each initial concentration of NO{

2 (0.2, 1, and 2 mM). At each sampling time, the simulated O2 is visibly reduced; that is
because sampling implies 3.4% dilution of the headspace (with He). This contrasts with the simulations of the treatments with low O2 (Fig. 7), where
the leakage of O2 into the system is more dominant.
doi:10.1371/journal.pcbi.1003933.g008
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Figure 9. Simulations of the treatments with 7 vol.% O2HS using rden = 0.0052 h21. The figure compares the measured and simulated O2

depletion (mol vial21) and N2 production (molN vial21) for the treatments with 7 vol.% O2 in the headspace (O2HS) at the time of inoculation;
separate plots are shown for each initial concentration of nitrite (0.2, 1, and 2 mM). At each sampling time, the simulated O2 is visibly reduced
because of sampling, which results in 3.4% dilution of the headspace (with He).
doi:10.1371/journal.pcbi.1003933.g009

Table 5. The model’s and Bergaust et al.’s [16] estimations of the fraction recruited to denitrification (Fden).

Batch No. O2HS t0ð Þ (vol.%) NO{
2 t0ð Þ (mM) O2HS t0ð Þ (mmol)* Model-based Estimations Estimations of [16]

tm{tt** Fden Fden

1 0, 0.2 2 25.8 0.141 0.19

2 0, 1 1.5 29.2 0.161 0.21

3 0, 2 1.7 27.2 0.156 0.19

4 1, 0.2 50.1 10.1 0.052 0.03

5 1, 1 37.8 11.1 0.056 0.07

6 1, 2 38.4 11.3 0.057 0.04

7 7, 0.2 199 7.4 0.038 0.02

8 7, 1 200 7.4 0.038 0.07

9 7, 2 200 7.4 0.038 0.08

Avg. = 0.082 Avg. = 0.1

*Refers to the initial values of O2 in the headspace (O2HS) used in the simulations. The values show some inconsistency for the treatments corresponding to the same
vol.% because of traces of O2 left behind after He-washing.
**tt is the time when [O2] in the liquid falls below O2½ �trigger ( = 9.75 mM [22], the concentration below which recruitment of the cells to denitrification is assumed to
trigger), and tm is the time when [O2] in the liquid falls below O2½ �min ( = 1 nM, a practically zero concentration below which the recruitment is assumed to terminate).

Due to low cell density in the ,0% O2 treatments, the O2 leakage into the vial during sampling (every 3 hours) caused oxygen concentration to exceed O2½ �min for 0.1–

2.4 hours. This resulted in various recruitment spikes after the initial O2 was depleted. If such recruitment is omitted, Fden = 0.126, 0.142, and 0.133 for the treatments 1,
2, and 3, respectively.
doi:10.1371/journal.pcbi.1003933.t005
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such lags increased with the cell density present at the time of

sparging.

Structural amendments and parameterisation of the

model. To tentatively simulate their experiment, two changes

were made in the O2 kinetics sector (Fig. 4A). Firstly, the net

sampling loss of O2HS (DO2 Sð Þ) was omitted, since it was specifically

set up for the robotised incubation system [28] used by Bergaust

et al [4,8]. Secondly, a sparging event was introduced, which

immediately takes O2HS down to very low levels ( = 161029 mol

vial21). Since we lack information about the exact concentration of

O2 immediately after the sparging, the present exercise is only

qualitative.

Liu et al. [24] inoculated the culture to have an initial

OD550 = 0.07, which would correspond to ,6.56109 cells vial21

[4,8]. We used this number to initialise the ND{ pool (shown in

Fig. 4B). They used NO{
3 ( = 157 mmolN vial21) instead of NO{

2 ,

so we replaced the NO{
2 pool (Fig. 4C) by the NO{

3 pool,

initialised it accordingly, and adjusted Eqs. 11 and 15: In Eq. 11,

YNO{
2

was replaced with the cell yield per molN of NO{
3 as the

e2-acceptor (YNO{
3

= 9.6561013 cells molN21 [4,8]). In Eq. 15,

vmax NO{
2ð Þ was replaced with the maximum cell-specific velocity of

NO{
3 consumption (vmax NO{

3ð Þ = 2610215 molN cell21 h21),

calculated using the maximum specific NOx-based growth rate

( = 0.322 h21) reported for their experiment. Finally, in Eq. 4,

vmax O2ð Þ was calibrated ( = 2.28610215 mol cell21 h21) with the

reported maximum specific aerobic growth rate ( = 0.342 h21).

The ‘diauxic lag’ is plausibly the initial growth phase of a

minute Fden (fraction recruited to denitrification). As the

experiment of Liu et al. [24] was simulated with the model’s

estimated rden = 0.0052 h21 (specific-probability of recruitment),

Fden turned out to be 1.1% for the treatment sparged at h = 1.1

and 0.2% for the one sparged at h = 2.55. Simulations of the total

cell density (ND{zNDz) for these cases(Fig. 10A) showed long

apparent lags comparable to 10–30 h lag phases observed in their

later experiments [25]. However, lags in the range that Liu et al.
[24] observed ( = 3 and 6 h for sparging at h = 1.1 and 2.55,

respectively) could be achieved by our model by assuming higher

residual O2 concentrations after sparging (resulting in a higher

Fden). Fig. 10B isolates the OD of NDz for the simulated

treatments and shows them on a logarithmic scale so that their

exponential growth, right from the onset of anoxic conditions,

becomes apparent. The figure initially shows a quick recruitment

of the cells from the ND{ to the NDz pool, followed by the

exponential growth-phase of NDz.

This exercise serves to illustrate that the ‘diauxic lags’ observed

[24–26] may simply be a result of low recruitment to denitrifica-

tion in response to sudden removal of O2. This is possibly a more

plausible explanation than suggested by the authors and further

elaborated by Hamilton et al. [35], claiming that there is a true lag

caused by extremely slow production of denitrification enzymes

due to energy limitation. Our explanation of the apparent diauxic

lag is corroborated by a chemostat culturing experiment conduct-

ed by Bauman et al [36]: A steady state carbon (acetate) limited

continuous culture with Pa. denitrificans was made anoxic and

monitored for denitrification gene transcription, N-gas production,

and acetate concentrations. A transient (8–10 h) peak of acetate

accumulation after O2 depletion suggested an apparent diauxic lag

in the metabolic activity, but denitrification started immediately

and increased gradually throughout the entire ‘lag’ period. They

further observed that the number of denitrification gene

transcripts peaked sharply during the first 1–2 hours. These

observations are in good agreement with our model.

The aforestated observation of Liu et al. [24] that the length of

the apparent lags increased with the aeration period (or the cell

density at the time of sparging) is also in agreement with our model

demonstrating that the time available for the cells to switch to

denitrification is inversely related to the cell density at the time of

O2 depletion.

Model-based hypothesis: Initial O2 determines the
timespan to denitrify all NO{

2 to N2 in a batch
Two sensitivity analyses were run to investigate the system’s re-

sponse to initial O2 in the headspace, O2HS t0ð Þ: one corresponding

Figure 10. Simulation of the ‘diauxic lags’ observed by Liu et al [24]. A. The panel shows cumulated OD (optical density) of the cells without
(ND{) and with (NDz) denitrification enzymes for the simulated experiment of Liu et al. [24], where one treatment was sparged at time = 2.55 h and
the other at 1.1 h. The simulations show, qualitatively, similar ‘lags’ in the two ODs as observed by the experimenters. These apparent lags are due to
exponential growth of a minute fraction of the cells that successfully switched to denitrification. The growth of this fraction remains practically
undetectable (the ‘‘lag’’ phase) until it reaches a level comparable to the large population trapped in anoxia. B. This panel isolates the ODs of NDz

and show them on a logarithmic scale so that the exponential growth of NDz, right from the onset of anoxic conditions, becomes visible. The graph
initially shows a quick recruitment of the cells from the ND{ to the NDz pool, followed by the exponential growth-phase.
doi:10.1371/journal.pcbi.1003933.g010

Modelling Transition of Bacteria from Aerobic to Anaerobic Respiration

PLOS Computational Biology | www.ploscompbiol.org 16 November 2014 | Volume 10 | Issue 11 | e1003933



to a range of initial [O2] in the liquid-phase O2½ �LP t0ð Þ
� �

below

O2½ �trigger (see Eqs. 7–8) and the other for a range much higher than

O2½ �trigger. All other model parameters and initial values remained

as listed in Tables 2 and 3, respectively. The exercise helps illustrate

the relative importance of aerobic growth versus the recruitment

(Fden) in determining the time taken to deplete the NO{
2 pool.

Sensitivity analysis (1). Sensitivity analysis (1) was run with

three O2½ �LP t0ð Þ within a very low range, starting from a

concentration marginally below O2½ �trigger:

1) O2HS t0ð Þ= 2.0261025 mol vial21 O2½ �LP~9:75mM
� �

,

2) O2HS t0ð Þ= 1.0161025 mol vial21 O2½ �LP~4:88mM
� �

,

3) O2HS t0ð Þ= 5.0461026 mol vial21 O2½ �LP~2:44mM
� �

This is rather a simple case demonstrating that increasing

O2½ �LP t0ð Þ within this low range (Fig. 11A) will result in increasing

rates of denitrification (Fig. 11D) by increasing the number of

aerobically grown cells (ND{, Fig. 11B) and, thus, the rate of

recruitment (Rrec, Fig. 11C).

Sensitivity analysis (2). Sensitivity analysis (2) was run with

three initial O2 concentrations much higher than O2½ �trigger:

1) O2HS t0ð Þ= 261024 mol vial21 O2½ �LP~93 mM
� �

,

2) O2HS t0ð Þ= 1.1961024 mol vial21 O2½ �LP~55mM
� �

,

3) O2HS t0ð Þ= 3.8461025 mol vial21 O2½ �LP~18mM
� �

In this case, the cumulated N2 reached stable plateaus at nearly

the same time for all the runs (Fig. 12E), despite that the time

taken to deplete O2 below O2½ �trigger decreased with increasing

Figure 11. Sensitivity analysis (1): Varying initial O2 in the headspace O2HS t0ð Þð Þ within a low range. The figure shows the impact of
varying O2HS t0ð Þ within a low range on: A. O2 concentration in the liquid-phase O2½ �LP

� �
, B. The number of aerobically growing cells (ND{), which

do not possess denitrification enzymes, C. The rate of recruitment of ND{ to denitrification (Rrec), and D. N2 accumulation. Marked in Panel A,
O2½ �trigger is the O2½ �LP below which Rrec triggers, and O2½ �min is the O2½ �LP below which Rrec terminates. In Panel C, the spikes of recruitment

(following the initial recruitment) are due to spikes of O2 by sampling, causing O2½ �LP to transiently exceed O2½ �min . The model predicts that reducing
O2½ �LP t0ð Þ within a low range (Panel A) will lower the number of aerobically grown cells (Panel B) and, thereby, the recruitment rate (Panel C), thus

increasing the time taken to deplete NO{
2 (slower N2 accumulation, Panel D).

doi:10.1371/journal.pcbi.1003933.g011
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Figure 12. Sensitivity analysis (2): Varying initial O2 in the headspace (O2HS(t0)) within a high range. The figure shows the impact of
varying O2HS t0ð Þ within a range much higher than O2½ �trigger (the [O2] below which recruitment of the cells to denitrification is assumed to trigger) on:

A. O2 concentration in the liquid-phase O2½ �LP

� �
, B. The number of aerobically growing cells (ND{), which do not possess denitrification enzymes, C.

The rate of recruitment of ND{ to denitrification (Rrec), D. The number of cells as a result of the recruitment alone (NDz recð Þ), i.e., the denitrifying
cells (NDz) but without aerobic and NOx-based growth, and E. Cumulated N2. The cumulated N2 reached stable plateaus at nearly the same time for
all the runs (Panel E), despite the fact that the time taken to deplete O2 below O2½ �trigger decreased with increasing O2½ �LP t0ð Þ (Panel A). Thus, once

denitrification was initiated, the rates increased with increasing initial O2½ �LP due to an increasing population of oxygen-grown cells (Panels B–D). The
fraction of the cells recruited to denitrification (Fden) declined with increasing initial O2 concentration (not shown), but this was not sufficient to
compensate for the increasing number of oxygen-raised cells.
doi:10.1371/journal.pcbi.1003933.g012
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O2½ �LP t0ð Þ (Fig. 12A), reducing the time available to the cells for

switching to denitrification (See Fig. 5). Thus, once denitrification

was initiated, the rates increased with increasing O2½ �LP t0ð Þ due to

an increasing population of oxygen-grown cells (Fig. 12B–D). Fden

(Eq. 9) declined with increasing O2½ �LP t0ð Þ (Fden = 0.058, 0.041

and 0.028 for runs 3, 2 and 1, respectively), but this was not

sufficient to compensate for the increasing number of oxygen-

raised cells.

If the model is run without any initial O2, there would be no

recruitment and, hence, no denitrification. Verification of this in

batch cultures is difficult because traces of O2 remain after He-

washing of the batches. However, we (Bergaust et al., unpublished

data) have been able to demonstrate that the aerobically grown

Pa. denitrificans cells are indeed entrapped in anoxia if transferred

to anoxic conditions as instantaneously as in the experiments

conducted by Højberg et al. [15].

Conclusion
The prevailing wisdom in denitrification research is that, under

impending anoxic conditions, all cells in a batch culture of

denitrifying bacteria will switch to denitrification. However, recent

experiments with batch cultures of Pa. denitrificans have provided

evidence that, in response to O2 depletion, only a small fraction

(Fden) of the entire population is able to switch to denitrification

[4,8,9]. The evidence is based on indirect analyses of e2-flow rates

to O2 and NOx during the transition of the cells from aerobic to

anaerobic respiration. To provide a direct and refined estimation

of Fden, we constructed a dynamic model and directly simulated

kinetics of recruitment of the cells to denitrification. We first

formulated a hypothesis as to the underlying regulatory mecha-

nism of cell differentiation under approaching anoxia. Briefly, it is

that the low Fden is due to a low probability of initiating

transcription of the nirS genes, but once initiated, the transcription

is greatly enhanced through autocatalytic positive feedback by

NO, resulting in the recruitment of the transcribing cell to

denitrification. Then, as we implemented this hypothesis in the

model, the simulation results showed that the specific-probability

(Fden) of 0.0052 (h21) for a cell to switch to denitrification is

sufficient to robustly simulate the measured denitrification gas

kinetics. The model estimated the resultant Fden between 3.8–

16.1% only (average = 8.2%). The phenomenon may be consid-

ered as a ‘bet-hedging’ regulation ‘strategy’ [12]: the fraction

switching to denitrification benefits if the anoxic spell is long and

NOx remains available, whereas the non-switching fraction

benefits, by saving energy required for the protein synthesis, if

the anoxic spell is short. The strategy has important implications

for the interpretation of numerous experiments on Pa. denitrifi-
cans and other denitrifying organisms, as this study has illustrated

by presenting a more plausible explanation of the apparent diauxic

lags [24] on the basis of the low Fden.

Supporting Information

Dataset S1 contains a Vensim simulation model (Hassan_et_al_

2014.mdl) used in this study along with two files (7%_Oxygen_

2mM_Nitrite.vdf and Measured_Data) containing simulated and

measured data, respectively.
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