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Application of an adapted FMEA 
framework for robot‑inclusivity 
of built environments
Y. J. Ng  1,3*, Matthew S. K. Yeo1,3, Q. B. Ng1,3, Michael Budig2, M. A. Viraj J. Muthugala1, 
S. M. Bhagya P. Samarakoon1 & R. E. Mohan1

Mobile robots are deployed in the built environment at increasing rates. However, lack of 
considerations for a robot-inclusive planning has led to physical spaces that would potentially pose 
hazards to robots, and contribute to an overall productivity decline for mobile service robots. This 
research proposes the use of an adapted Failure Mode and Effects Analysis (FMEA) as a structured 
tool to evaluate a building’s level of robot-inclusivity and safety for service robot deployments. This 
Robot-Inclusive FMEA (RIFMEA) framework, is used to identify failures in the built environment 
that compromise the workflow of service robots, assess their effects and causes, and provide 
recommended actions to alleviate these problems. The method was supported with a case study of 
deploying telepresence robots in a university campus. The study concluded that common failures were 
related to poor furniture design, a lack of clearance and hazard indicators, and sub-optimal interior 
planning.

There is burgeoning use of Artifical Intelligence (AI), Information and Communication Technologies (ICT) and 
service robots as cities transition towards “Smart Cities”. Productivity increase1, cost reduction2 and reduced 
reliance on human labour3 are some of the wide ranging benefits that implementation of service robots and AI 
bring to organisations across various industries. Often defined as a physical embodiment of a computer system 
with a certain level of autonomy2,4, service robots aid in a wide spectrum of use applications such as healthcare, 
manufacturing and education. Delivery services on mobile robotic platforms, teachers operating as avatars and 
humans meeting remotely for training and education are just some of the possibilities of applications identified 
in5.

In the setting of smart campuses, Dong et al.6 highlighted that emerging technologies can be integrated to pro-
vide new learning opportunities such as via virtual systems to interact in cyber-physical conditions. For mobile 
robotic systems, data inputs from sensory information obtained from the environment are used in machine 
learning and map-building7 are crucial elements for autonomous navigation or inducing other actions8. These 
robots are often equipped with various sensors and technical algorithms such as Simultaneous Localization and 
Mapping (SLAM) to sense their surroundings, localise and to move. It is thus essential that the built environment 
supports the leveraging of such advanced technology in smart campuses and smart cities.

In order for humans to reap the full benefits of utilising service robots, it is vital to consider and ensure the 
safety of these service robots9. This brings up the importance of clarifying the definition of the term “robot 
safety” to gain a better understanding of who the target stakeholders are in the aspect of human-robot interac-
tions (HRI). Dhillon10 outlined three aspects of robot safety: preventing damage on the environment by robots, 
preventing harm to humans by robots, and preventing damage to the robots themselves. The term “robot safety” 
in this paper refers to the safety of service robots. Ensuring the safety of robots will allow the robot to perform 
at its full potential where the completion of required tasks are guaranteed and to achieve high productivity rates 
in the process.

Most works define the term “robot safety” as safety to humans11–13 during their operation. Like any other 
machinery under normal circumstances, human accidents or injuries can happen due to factors such as the fail-
ure of a robot’s components14, unpredictable movements15 by both robots and humans, as well as the crossing of 
workspace boundaries16 between the two. In most cases, the problem is mitigated through enhancing the robot’s 
hardware and software, exploring deployments of advanced controlling methods17,18, complex hardware designs19, 
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robust sensors integration20,21, reconfigurable mechanisms22, and artificial intelligence frameworks23. Under HRI, 
other methods of ensuring safety of robots to humans include safety-rated monitored stop, hand-guiding, speed 
and separation monitoring, power and force limiting24–26. Employing these methods improve safety by targeting 
mainly aspects of collision avoidance, failure prevention or human contact safety27,28.

On the other hand, there is less consideration in ensuring the robot safety in terms of preventing damage 
to the robot. Damages to the robot could be a result of environmental factors or hazards29. Just as how sudden 
changes in elevation or obscure protrusions can be potential causes for human injury, robots are also subjected 
to possible damage from such hazards. While service robots are equipped with different levels of autonomy to 
sense their surroundings to carry out tasks that require interaction with their environment such as cleaning, 
building or transporting, they face different environmental conditions that exert varying degrees of difficulties 
and complexities on them1. Unstructured environments call for highly complex and robust navigational and 
obstacle avoidance systems within the robot to adapt to changes in the environment28. These issues are not usu-
ally anticipated during the design development of the robots. This means that the robots are expected to operate 
within “environments that have not been pre-prepared for [their] operation27”. As a result, robots are unable to 
perform their expected tasks or to complete them in an efficient manner, defeating the purpose of their deploy-
ments in the first place. A reduction of challenges in the built environment would in turn decrease the complexity 
required in the robotic control system, enabling more affordable and robust robots.

While some papers have studied the hazards within the operating environments of the robot27,28, there have 
not been any studies on looking into the safety of buildings as a whole for robots. Considering how robots, like 
humans, are also occupants of a building, there is a cause for studying the safety in built environments for robots 
in a systematic manner, analysing buildings by their various components with the greater purpose of improving 
the built infrastructure for robots. Ultimately, the efficient deployment of service robots requires the mutual 
integration of both the robot functionality and the working environment30.

In this regard, a common hazard identification system method known as the Failure Mode and Effects 
Analysis (FMEA)31–33 is considered for determining hazards faced by the service robots during their operation 
in their respective environments. By incorporating environments in buildings and their respective components 
as objects of interest in the FMEA approach, this paper proposes an adapted FMEA framework that is made to 
be robot-inclusive (RIFMEA). It can be used for ascertaining hazards for service robots in various built environ-
ments, to improve the safety of robots for humans, for robots as well as for the environment. In this paper, a case 
study application of the RIFMEA is carried out through the deployment of telepresence robots in the Singapore 
University of Technology and Design (SUTD) campus. Hazards for robots within their workspaces are identi-
fied, categorised and tagged to the relevant building components and elements, before being analysed to assess 
its cause and consequence on the robot’s operation.

The key objective behind hazard identification and classification is to improve the design of buildings with 
spatial recommendations in order to minimise failures and risks imposed by the environment on the robot. By 
making it easier for robots to carry out their tasks, more desirable interactions and cooperation between humans 
and robots can be achieved34. This will also contribute to minimising the wear and tear of the robot, failure rates 
and maintenance costs35, ultimately boosting productivity of robotic deployments for strenuous and menial tasks.

In the following sections, we evaluate the results of the test runs of an application of the proposed RIFMEA 
in which the Double 3 telepresence robot 3 was deployed in different environments within a university campus.

Results
The RIFMEA considers the parameters of Severity (S), Occurrence (O), and Detection (D), which are ratings 
tagged to each failure mode to compute the Risk Priority Number (RPN) for the corresponding failure. The RPN 
value is calculated by multiplying the S, O and D ratings together whereby RPN=S*O*D. The RPN, which ranges 
from 1 to 125 for our proposed rating structure, is a means to rank failure modes in terms of the need for correc-
tive actions to prevent or reduce the probability of the failure occurring33. More details on the individual rating 
systems are elaborated within the “Modified S,O,D Rating System” subsection found in the later sections below.

Three diagnostic tests and two task-based tests were conducted where the Double 3 telepresence robot was 
deployed across four different locations within the Singapore University of Technology and Design (SUTD) 
campus to gather data required for the proposed RIFMEA method. The test sites are shown in Fig. 4. Within the 
tests, building components and their elements the robots interacted with when failures occurred were identified. 
As seen in Fig. 2B, the building components are divided into five categories: Structure, Architecture Exterior, 
Architecture Interior, Services and Plan. The descriptions of the experiments and a breakdown of the proposed 
RIFMEA methodology are elaborated within the “Methods” section of the paper.

The Double 3 robot used for the study is intended for telepresence tasks, such as remote navigation and 
communication which requires a robot operator to perform. On the interface screen which shows the teleopera-
tor what the robot sees through its camera in real time, there is an overlay of a grid of dots which denotes the 
accessible areas of the robot. For navigation, the teleoperator initiates high-level commands by marking a goal 
point on the accessible areas as the teleoperator views the scene through the cameras on the robot. Moreover, 
the operation of the robot is semi-autonomous; the user does not need to concentrate on low-level functions 
such as providing continuous velocity and steering commands. The teleoperator selects a location, and the robot 
itself performs obstacle avoidance and path planning to navigate towards the given goal. In addition, the robot 
can also be moved by using the arrow keys on the computer keyboard.

The type of hazards or failures identified are largely influenced by the exact sensing and detection abilities 
of the robot, which in turn depend on the sensors adopted for perceiving the environment. Most present-day 
robots rely on sensors such as lidars and vision systems. However, information from multiple sensors is fused 
to further improve reliability and accuracy. Even though different sensors are available, the characteristics of 
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sensors can be grouped. For example, 2D/3D lidars and other IR-based proximity sensors can fail in detecting 
glass walls since the IR penetrates through such materials without reflecting. Vision-based systems could also 
experience the same issue. On the other hand, sensors such as ultrasonic are good at detecting transparent 
materials, although they may fail in situations where the reflection characteristics are poor. The Double 3 robot 
used for this study is equipped with both stereovision depth sensors and ultrasonic range sensors for perceiving 
the environment. Therefore, the hazards and failures in this study would be relevant to these two major groups 
of sensing technologies commonly used by most of the present-day robots.

The Double 3 robot has an adjustable neck to control its height and has various operating speed modes 
to choose from. However, the detectability of objects could possibly be influenced by the height at which the 
sensors are placed, which would affect their effective range, as well as the speed at which the robot approaches 
the objects due to the communication and response time required by its sensors. As such, to minimise error 
deviations stemming from these factors, we have kept the maximum speed and height of the robot constant 
throughout the experiments.

Failures across test sites.  The top 15 failures with the highest RPN values out of the total 65 failures are 
seen in Fig. 1A. The failure counts were based on the total number of times a failure occurred when the robot 
interacted with any building component at any one time. Evidently, based on Fig. 1A, the elements in buildings 
that contributed to these failure modes were mainly poor furniture design, followed by sub-optimal furniture 
layout, the presence of electrical casings and outlets on the ground, as well as the lack of spatial clearance. As a 
whole, the mismatch between the ability of the robot to detect and sense the furniture contributed to 25 out of 65 
failure counts in total. 9 out of 25 of furniture-related failures were in relation to office chairs, highlighting that 
the fact that the design of the office chair in particular was a problem for the robot. The cause of the failures were 
largely attributed to the limited ability of the 3D sensors to detect slender, linear objects. As a result, the robot 
either got stuck between the chair legs at times, or the robot veered off course from its intended path, causing 
inefficiencies.

A

B

Figure 1.   Summary of findings from test runs. (A) Failures with highest RPN values. (B) Table of Average RPN 
values for diagnostic and task-based tests.
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The failure with the highest RPN value of 75 was identified in the Cohort Classroom, which is a space used 
for project-based learning and allows for flexible furniture layouts (Fig. 4C). The failure was observed when 
the robot fell flat onto the ground and caused sustained damage to its components. The robot was disengaging 
its retractable brakes while it was very close to a table. The cause of the failure mode was partly due to the self-
balancing feature of the robot and the limited ability of the 3D sensors to detect the linear form of the table top 
edge. A disconnection issue during the event further exacerbated the situation.

A comparison of the average RPN values of all four zones in the building—the Cohort Classroom, a tran-
sitional space, a research lab and the Campus Centre was made, as shown in Fig. 1B. Comparison studies of 
task-based tests and diagnostic tests with references to the failures identified in Fig. 1B are discussed further in 
the sections below.

Task‑based run: Cohort Classroom and research lab.  The average RPN for the task-based test run in 
the research lab (Fig. 4D) was 7.0 as compared to 21.8 for the Cohort Classroom. The higher average RPN value 
for the classroom was due to the serious failure mode in which the robot fell flat onto the ground. The failure 
attained a rating of 5 for both the Severity and Detection ratings, which raised the average RPN value for the 
Cohort Classroom findings.

As compared to the Cohort Classroom, the research lab had a very low average RPN value of 7.0 in for its 
task-based run. The task-based study conducted within the research lab yielded only 3 failure modes stemming 
from poor furniture layout. The failure modes arose due to the lack of clearance imposed by the furniture that 
were loosely placed within the environment. As a result, the robot was unable to smoothly circumvent and navi-
gate through the obstacles due to the tight pathways, causing inefficiencies in recalibration and reorientation to 
continue moving. In all of the failures, the Severity rating had a low value of 1. As the space within the lab was 
more cluttered as a result of cluttered furniture placement, the study generated more failure modes relating to 
the Plan component as compared to the study within the classroom.

The task-based study in the Cohort Classroom also revealed an interesting failure mode—the inability of the 
remote user to locate the charging point. This failure relates to the furniture layout of the classroom setting. The 
spatial layout or features were not informative and intuitive enough for remote users to know and identify where 
the charging point was located. This was due to lack of peripheral visual cues as well as the poor line of sight of 
the floor area through the lens of the robot for the remote user, resulting in a high Detection score.

In general, it was expected that the task-based runs would reveal lesser failure modes than in the diagnostic 
runs, since the total area covered by the robot is reduced for task-based runs. However, the runs shed light on 
some interesting failure modes, which were not observed when carrying out the diagnostic tests.

Diagnostic tests: transitional space, research lab and Campus Centre.  The highest average RPN 
value among the diagnostic tests were found to be from the test performed in the research lab. Given that the 
research lab had the smallest area of only 181 square metres, the cluttered spatial layout made it difficult for the 
robot to navigate, contributing to several failure modes whereby the robot got stuck between obstacles or tight 
paths. Furthermore, the office chairs were supported on multi-pronged legs that were too low to the ground, 
which resulted in conflicting signals received by the robot sensors as irregular surface depths were detected. This 
led to inefficiencies from the robot, expending time and power in recalibration and reorientation. Most of the 
failures recorded were mainly due to the lack of clearance in the pathway and the ill-suited design of office chairs.

Within the transitional space (Fig. 4B), the failure modes that presented the highest RPN values were attrib-
uted to the Interior building components and furniture layout. In these cases, the robot was either rendered 
immobile or took an extended amount of time to recalibrate and reorientate itself. Origins of these failure modes 
were found to be tight and narrow spaces, causing accessibility issues. The failure mode that produced the high-
est RPN value of 40 occurred when the robot moved into a narrow but accessible space between a structural 
column and a glass parapet. As the robot approached the tight corridor, the proximity sensors and collision 
avoidance algorithm of the robot caused the robot to rotate into a position which eventually rendered the robot 
completely immobile as the conflicting sensor data prevented the robot making any further movements. Hence, 
the robot had to be rescued by external intervention. While this failure is unlikely to occur under a typical use 
case setting, running the diagnostic test allowed us to identify such a potential hazard. This also highlighted the 
potential problems of tight or narrow spaces that are just wide enough for the robot to pass through without 
giving any clearance.

The Campus Centre (Fig. 4A) is a multi-purpose, double-storey high, central lobby of the campus that is regu-
larly used for public events or exhibitions. Here, the failure modes that presented the highest RPN values were 
attributed to the Interior building component. Often the failures arose from the difficulty in detecting various 
types of furniture. Portions of a permanent exhibit structure, known as the Time Capsule, as well as furniture 
fittings such as the sofa were out of the robot’s sensor range as they were located either too high or too low. How-
ever, failures that produced the higher RPN rating came from the Services building component. In particular, 
the cables on the floor contributed to these failures. The high RPN values were due to the high Occurrence and 
Detection rating. Although loose cables are additions and do not necessarily form part of the building, cable 
trunking or covers affixed onto the ground are more permanent components, acting as bumps on the ground 
which are a cause of failures for the robot. In our test run, the cable casing cover induced a sudden directional 
change when the robot tried approaching it at an angle. This caused the robot to hit against a metal railing guard 
located next to the cable casing before the robot could respond in time to the sudden induced direction change.

Besides the failures with the highest RPN values, it is also worth mentioning other failures that were outli-
ers or extreme cases that had a score of 5 in any of the S,O,D categories. In the diagnostic test conducted in the 
transitional space, the robot fell into a no-go zone when it was operating very close to a staircase for an extended 
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period of time. The failure was due to a misalignment of the 3D vision sensors when the robot tried to rotate 
and move forward. The failure mode led to a Severity rating of 5. While the Occurrence and Detection rating 
for this failure were low, it may be a cause for concern in the event that a robot would end up moving too close 
to the edge of a staircase, given that the robot did fall onto the stairs during our diagnostic test run despite its 
cliff detection sensors being effective and responsive most of the time.

In the same test run within the transitional space, the robot falsely detected navigable ground when viewing 
closed transparent doors. This implies that the robot had falsely identified an accessible ground plane in which 
the robot could travel on. The failure mode occurred to all doors the robot interacted with in the space, which 
led to an Occurrence rating of 5. The 3D vision sensors of the robot could not detect the transparent glass sur-
faces and did not register glass surfaces as obstacles. This failure could potentially cause problems in the path 
planning process of the robot if what the robot perceives in its surrounding is inaccurate. It is therefore crucial 
to consider the materiality and finishing of building elements in improving the sensing of obstacles by the robot.

Another failure mode with a Detection rating of 5 was the hitting of robot against the door stopper affixed on 
the ground. Even though the Occurrence rating was low as it was located very close to the wall, the door stopper 
was very difficult to detect due to its small size and it being very low on the ground. As such, the presence of 
other similar obstacles outside the range of the robot’s vision may similarly have the potential to cause wear and 
tear of the robot, shortening its shelf life.

Discussion
An extract of the RIFMEA worksheet of consolidated failures for all four test areas is shown in Table 1 while 
the full records of the tests are attached as supplementary material to this paper. During the experiments, there 
exists a challenge in determining the exact cause of failure or the failure mode itself as it is not often very clear. 
For example, during our tests, we observed that transparent surfaces such as glass railings or full-height glass 
doors were often incorrectly shown as accessible regions on the robot’s interface screen. While the ultrasonic 
sensors on the robot are supposed to detect transparent materials, the information from these sensors did not 
appear to be translated into the interface screen and users were allowed to designate these areas as goal points. 
Despite this, we observe that the robot could still autonomously avoid colliding into such surfaces when coming 
in close proximity, showing that the ultrasonic sensors were able to take effect. These failures were thus noted 
down as “false detection for ’clickable ground’ ”.

We also observed that the robot has limitations with regards to being able to accurately sense whether a par-
ticular path has sufficient spatial clearance for it to pass or not. Although some narrow pathways were shown up 
as accessible areas, upon approach, the robot failed to navigate through them due to the sensing of surrounding 
obstacles, entering into a constant loop of approaching and avoiding. We can thus see a discrepancy between 
the robot’s sensor feedback and its accessible area reflected by the interface screen. In these cases, we concluded 
that insufficient clearance is the main cause to these inefficiencies.

Despite having autonomous obstacle detection and avoidance capabilities, there are also other instances dur-
ing navigation where the Double robot still collides with objects, often those with thin, linear-like profiles such 
as office chairs. In addition, we observed that the robot sometimes makes sudden path changes when coming 
in close proximity with such objects, revealing inconsistencies in the detection sensors. We thus concluded that 
the sensors on the robot have difficulty in accurately detecting these profiles.

From our studies, a major contributing factor to failure modes was the lack of spatial clearance. The failures 
occurred when the robot was made to navigate through tight spaces, which were often caused by a sub-optimal 
furniture layout as observed in the research lab and the lift lobby area on level 6. Such problems were absent 
in the campus centre where it was more spacious. As a general rule, accessible corridor spaces for the robot 
should have a minimum width clearance of about 10cm on both sides of the robot’s body, as well as about 10cm 
height clearance to cater for the robot’s head, and provide for the robot’s turning radius. Narrow spaces which 
are dangerous for the robot to enter should have their boundaries demarcated clearly by providing more hazard 
indicators (be it physical or virtual) to warn the teleoperator of possible dangers and preventing the operator 
from moving the robot over these zones. Recommended changes to furniture layouts would involve rearranging 
the movable fittings such that it allows for sufficient clearance for robot to pass through, and thus allow the robot 
to reach the zones it is meant to access during operation.

Glass surfaces and slender, linear-shaped objects were also found to be causes for several failure modes. Built-
in structures like glass parapets and glass doors were a challenge for the robot sensors to detect as obstacles, as 
well as other movable furniture such as signages or office chairs. In addition, thin horizontal elements like the 
tabletop edges were also hard-to-detect objects for the robots. In these cases, increasing the detectability of the 
obstacles by the robot’s sensors would be key to reducing possible collisions or other inefficiencies. For glass, 
design changes to the surface such as fritted patterns, frosted or opaque finishes would help increase detectability 
of the glass by the 3D vision sensors on the robot. While changing the design of slender and linear elements to 
a bulkier form would help increase detectability by the robot’s sensors, it would not be an ideal solution when 
considering aesthetics. Much thought would need to be given to the furniture designs, to strike a balance between 
a design that is aesthetically pleasing, yet easy to detect for the robot. Another potential solution would be to add 
visual demarcations to prevent the teleoperator from driving the robot too close to such hazards.

Bumps on the ground surface caused by electrical components also contributed to the failure modes, causing 
shaking of the robot when the robot navigates over them. This includes the cables and electrical power boxes on 
the ground, which are not entirely flushed with the ground surface. Other protrusions on the ground include 
the door stoppers which are fixed to the ground. These obstacles are very close to the ground and are difficult 
elements for the robot to detect. While one solution may be to avoid going across these obstacles completely by 
rerouting the wiring, this method can cause large infrastructural inefficiencies. Reworking loose electrical cables 
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Table 1.   Extract of consolidated RIFMEA findings from all test sites.

Building Zone
Building 
component

Building 
element

Robot-inclusive 
principles Failure Effect Severity[S] Cause Occurrence[O] Detection[D]

RPN 
(S*O*D) Recommended action

Build-
ing 2

Level 6 
Research 
lab

Plan
Furniture 
layout

Activity
Observ-
ability

Robot veers off 
from intended 
path and got lost

Inefficiency due 
to extended 
recalibration and 
reorientation

2

Too many obstacles 
in close proximity, 
causing interfer-
ence with sensors

4 4 32
Adjust movable obstacles 
to provide clearance

Interior

Furniture 
(transpar-
ent acrylic 
cylinder)

Observability
Robot collides 
into transparent 
acrylic cylinder

Safety risk for robot 2

3D Vision camera 
cannot detect 
transparent 
surfaces well, Sonar 
sensors could not 
detect the curved 
surface of the item

4 3 24
Improve obstacle detect-
ability through additions 
of visual markers

Furniture(TV 
stand)

Observ-
ability

Acces-
sibility

Robot veers off 
from intended 
path by operator

Inefficiency due 
to extended 
recalibration and 
reorientation

3

Linear and point 
objects are difficult 
to detect from a 
safe distance

2 4 24
Consider alternative 
design for the TV stand 
base

Furniture 
(Office chair)

Observ-
ability

Acces-
sibility

Robot’s wheels 
got stuck between 
the chair legs

Inefficiency due 
to extended 
recalibration and 
reorientation

2

Obstacle is too 
low and out of 
sensor’s range to be 
detected at a safe 
distance

4 4 32
Consider alternative 
chair design

Services
Electrical 
outlet cover

Acces-
sibility

Observ-
ability

Vibration and 
shaking of robot

Minor damage to 
robot, Inefficiency 
due to extended 
recalibration and 
reorientation

2

Box with cable 
spacers that 
protrude above the 
ground

4 3 24
Demarcate no-go zones 
by placing markers 
around electrical outlet

Level 6 
Cohort 
Class-
room

Interior
Furniture 
(table)

Observability
The robot hits 
the table

Damage to robot 
and table

2
Sensors were 
unable to detect 
table as obstacle

3 4 24

Provide markings 
around table to denote 
safe, accessible areas/
boundaries

Observ-
ability

Manipu-
lability

The robot falls flat 
onto the ground

Damage to robot 
and table, damage 
to robot casing 
and self-balancing 
required recalibra-
tion

5

The robot’s self bal-
ancing mechanism 
conflicted with its 
obstacle detection 
capabilities when 
unparking

3 5 75

Provision of stable 
internet network. Provide 
markings around table 
to denote safe, accessible 
areas/boundaries

Plan
Furniture 
layout

Activity
Observ-
ability

Cannot find 
charging point

Inefficiency due to 
reorientation

2

User did not have 
information about 
surrounding 
whereabouts

3 4 24
Provide visual/wayfind-
ing markers to denote 
location of charging dock

Building 
2,3

Level 6 
Transi-
tional 
space

Interior

Furniture 
(Cantilevered 
table)

Observability
False detection 
for ’clickable 
ground’

Minor damage to 
robot and environ-
ment, Inefficiency 
due to extended 
recalibration and 
reorientation

2
Detectable area of 
the table for the 
robot is too limited

4 3 24

Improve obstacle detect-
ability through additions 
or introduce visual 
demarcations on table

Pathway 
(gap between 
parapet and 
pillar)

Accessibility
Robot got 
trapped between 
pillar and parapet

Inefficiency due 
to extended 
recalibration and 
reorientation

2

The width of path-
way just fits robot’s 
width, proximity 
sensor detects as 
insufficient clear-
ance

5 4 40
Provide visual demarca-
tions on safe distance 
away from the pillar

Plan
Furniture 
layout

Accessibility
Robot got stuck 
between dustbin 
and pillar

Inefficiency due 
to extended 
recalibration and 
reorientation

2

The width of path-
way just fits robot’s 
width, proximity 
sensor detects as 
insufficient clear-
ance

5 3 30 Reposition dustbin

Level 1 
Campus 
Centre

Interior

Furniture 
(Retractable 
queue barrier)

Observability
Robot collides 
into the retract-
able queue barrier

Possible damage 
to robot and sur-
roundings

2

Difficulty of robot 
in detecting linear 
objects at particular 
height

3 4 24

Consider alternative 
types of queue barriers 
that allows easy detect-
ability

Furniture 
(Sofa)

Activity
Observ-
ability

Robot veered 
onto no-go zone

Contribute to wear 
and tear of robot. 
Disorientation for 
operator. Possible 
damage to robot and 
surroundings

4

Sofa cushion 
surface cannot be 
differentiated with 
the ground surface. 
Cannot detect 
steep level change 
near sofa

2 4 32

Demarcate no-go zones. 
Add cushioning around 
edges to prevent robot 
entry

Services

Cable casing
Acces-
sibility

Observ-
ability

Robot gets disori-
ented and collides 
into guardrails 
below stairs

Safety risk for robot 4

Robot wheels 
overcame cable 
casing bump near 
guardrails and 
completely lost 
balance

3 4 48

Rewire trunking/casing 
to an area away from the 
metal railing. Otherwise, 
introduce a gentler 
gradient

Cables on 
floor

Accessibility Shaking of robot

Contribute to wear 
and tear of robot. 
Disorientation for 
operator

3
Loose cables acting 
as bumps for the 
robot

5 3 45
Add trunking/casing with 
a gentler gradient
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to house them within the flooring would be ideal but can result in drastic changes to the existing or future build-
ing structure. Where cables cannot be relocated, cable trunking or covers should be used but they should not 
compromise the accessibility of both humans and robots and should allow for both wheelchair users or robots 
to travel over them easily. Introducing a more wheel-friendly casing or trunking design for the cables might be 
a more feasible solution.

The main recommended actions in response to the above failures largely involve the rearranging of space, 
furniture and layouts to allow for sufficient clearance to maximise the robot’s accessibility. Provision of more 
hazard indicators to improve detection for both robot and the operator would also be important. Fitting the 
deployment area with furniture that can be easily detected by the robot would be important in improving the 
robot’s observability. Some of the solutions are more context-dependent and specific such as providing visual and 
wayfinding cues for the location of the charging dock. While some solutions may not be easily implemented or 
require more large-scale changes, they are recorded for reference for future building designs and layouts. These 
recommendations would also be listed as follow-up actions to do on the RIFMEA worksheet as well.

Prior research and adapted FMEA approach
Related industry standards.  There have been developments of international safety standards such as the 
ISO 1021836or ISO 1348237detailing the safety requirements of various robots categories and the need to perform 
risk assessments for the robots. However these guidelines are largely geared towards reducing possible risks 
caused by the robots to humans or to their surroundings. There is seldom a consideration for safety issues or 
hazards posed by the environments the robots operate in found within these standards38.

ISO 1021836 is a standard on industrial robot safety requirements. While the safety principles within can be 
applied to robots and industrial robotic manipulators, the standard deals mainly with the robot design and con-
struction and its installation within facilities. The safety measures listed include stopping functions and power 
and force limiting requirements focused on the robot’s end39. Operating methods in collaborative applications 
were introduced but also dealt largely with control and monitoring systems with little focus on the built environ-
ment. Similarly, hazards identified in the standard such as mechanical, thermal and electrical hazards generally 
pertain to the build of the robot40.

The ISO 1348236 is described as the sole reference standard for personal care robots41, detailing safety require-
ments for mobile servant robots, physical assistant robots, person carrier robots in non-industrial environments. 
Safety performance standards are specified for assessment and certification, as well as risk analysis and reduction 
of the 22 hazard types listed within the standard, which includes categories such as hazardous autonomous action 
and hazards due to robot start-up42,43. However, there is a larger emphasis on the performance level, design, and 
safety validation on the robot44. There is also a lack of test methods for each safety section42. Also, while stand-
ards such as ISO 1864645and ISO 2348246 define evaluation methods for mobile service robot performance47, 
they are mainly focused on assessing the robot’s ability with little emphasis on the impediments towards robots 
caused by the surroundings.

The RIFMEA builds upon these safety guidelines by providing a standardised way to explicitly draw out the 
spatial hazards within the robot’s working environment as well as proposing a rating system to assess the hazards. 
Building owners can then prioritise these hazards in terms of the danger posed onto the robot, taking steps to 
rectify them. The RIFMEA thus complements the available standards by capturing the robot hazards from a 
different perspective of the building elements and their interaction with the robots.

Failure mode and effects analysis (FMEA).  Our proposed framework is based on the FMEA approach33, 
which is a systematic method by which a product’s components or process is examined to identify potential fail-
ures, their causes and subsequent effects on the system. While FMEA is often applied to products or processes, 
this paper would scrutinise the building where the service robot is deployed in instead. FMEA is an inductive 
reasoning process to identify and understand the potential failures of each components of the building in hope 
of reducing and minimising safety accidents from occurring.

The FMEA procedure assigns a numerical value to each identified failure, using Severity (S), Occurrence (O) 
and Detection (D) as metrics. The Severity metric refers to the magnitude or gravity of the consequence of a 
system failure. The more severe the consequence, the higher the value of severity that is assigned to the failure. 
The Occurrence metric refers to the frequency that a failure is likely to occur. The greater the frequency the failure 
occurs, the higher the Occurrence rating. The Detection metric refers to the qualitative likelihood of detecting 
the failure before it occurs to preempt the failure from happening in the first place. The harder it is to detect the 
failure before it happens, the greater the Detection rating tagged to it.

When carrying out the FMEA, ratings of S, O, D are assigned to each failure and are multiplied to give a Risk 
Priority Number (RPN), where RPN=S*O*D. The RPNs are then ordered to create a priority list of failures to 
resolve. Different rating systems are used across various FMEA efforts, with some using alphabetical gradings, 
and others using numerical grading systems.

Literature review of applications of existing FMEA framework.  The FMEA approach has been 
applied in existing research work to assess the failures of building designs or building components. In48, Yang 
et al. looked into isolating and prognosticating faults in the heating, ventilation and air-conditioning (HVAC) 
systems of buildings. Machado et al.49 assessed the accessibility of faculty buildings in a university, accounting 
for Persons with Disabilities (PWD). The work50 studied an adapted FMEA framework to identify, categorise 
and prioritise the latent safety threats of newly constructed buildings for human users while the study51 applied 
an approach based on the FMEA to assess risks and failures in a large-scale building project delivery. However, 
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there are yet to be papers that discuss how the FMEA approach can be adopted to assess building designs on 
ensuring the safety of robotic deployments.

Works sharing a similar thought trajectory to this paper include27 and28, which highlighted the need to iden-
tify hazards beyond the robot’s intended necessary functions to allow the robot to maintain its state of operational 
readiness. In both works, they assessed the area of operation and evaluated the spatial conditions and quality 
through the lens of the service robots, and recognising them, as important stakeholders in the equation in addi-
tion to humans. In27, Dogramadzi et al. proposed a new variant of hazard analysis known as the Environmental 
Survey Hazard Analysis (ESHA) approach, classifying potential hazards for autonomous mobile robots into 3 
categories: Environmental Features, Objects and Agents. While the method provided a helpful classification 
framework to analyze potential environmental-related threats, the paper raised concerns over their application 
being a relatively shallow breadth-first approach. It also highlighted the challenge in choosing a hazard clas-
sification scheme that would provide full coverage of all the possible non-mission interactions that take place 
in any robotic application.

In contrast, the FMEA approach may provide a more comprehensive framework to better identify and cat-
egorise the causes of failures, whether it is a failure on the robot’s part or in the design of the environment. In 
that sense, the solutions would be more targeted to ensure the overall safety and effective deployment of service 
robots. Here we have decided to explore and apply the FMEA model as an alternative hazard analysis approach. 
We adapted the FMEA approach to better relate failures to both the properties of the robot and the design of the 
building environment it operates in.

Adapting current FMEA to robot‑inclusive FMEA.  In consideration of robot safety in our adaption 
of the FMEA method, robot-inclusive design principles were used as a categorisation tool and framework to 
analyse failures. The robot-inclusiveness is defined as the metrics for evaluating how much the design of the 
environment takes into account robot safety. Five robot-inclusive design principles, namely: safety, accessibil-
ity, activity, observability, and manipulability, were inspired by and derived from universal design methods52,53. 
Safety is the overarching principle which serves as a foundational base to the other four principles. Accessibility 
involves maximising the robots’ area coverage of its workspace, providing barrier-free access and connectivity 
for robots to travel for their tasks. Activity aims to provide for the efficient integration of workspaces between 
people, goods and robots. The Observability principle works towards improving the spatial environment for 
robot visibility and perception of its surroundings for navigation and carrying out tasks. Finally, Manipulability 
strives to enhance the robot’s ability, if any, to move or rearrange objects in the robot’s given environment with 
more precision and success using its end effectors. These principles would provide an advisory structure for 
improving spatial environments and work zones to allow for effective robotic deployment.

The proposed RIFMEA approach helps to provide an evaluative framework to assess the safety of the built 
environment in the application of robots by identifying and analysing safety hazards. Fig. 2A illustrates the 
workflow of the proposed RIFMEA approach, highlighting our additions and changes to the common FMEA 
method. Typically, the common FMEA approach for robot safety only considers the determination, classification 
and analysis of the failure modes found in the robot’s components. The RIFMEA method considers building 
component related hazards that are associated with the failure of the robot operation. Other than humans, both 
the safety of the robot and the building are considered in the risk and failure identification stage in the applica-
tion of the RIFMEA method. Building components that resulted in robot operation failures are recorded and 
categorised under the five robot-inclusive design principles to provide clarity to the cause of the failure.

One of the crucial steps of applying RIFMEA method is breaking down the building system to individual 
building components. Having gained understanding of some existing frameworks to categorise the different sys-
tems and components that make up a building through referencing works from Bachman54, Rush55 and Brand56, 
we have proposed a categorisation structure for the RIFMEA framework. Fig. 2B illustrates this structure through 
a building system diagram.

The building is analysed in zones with their respective programs and activities. In each zone, the building 
components are broken down into five sub-categories as shown in Fig. 2B. These building components can be 
further subdivided into its various building elements. For example, the architecture interior building component 
can be further broken down into its constituent building elements such as walls, doors, furniture, floors and 
ceilings. Finally, the building components can be analysed by their physical parameters. The building system 
diagram shows how the different parts of the system interact with one another to gain better understanding of 
its correlation to the failures occurred.

Effects and causes.  When evaluating the failures, the cause of the failure can be traced back to the components 
of the robot and the physical parameters of the building components. Robot components can be categorised 
into locomotion mechanism, body frame, sensors, and the manipulators or end-effectors. Similarly, the physi-
cal parameters of the building component can be categorised into different aspects such as its form or shape, 
dimensions, material or finishing. Understanding the cause of the failure can help to propose more targeted 
recommended actions to either reduce the severity and occurrence, or improve the ability in detecting the fail-
ure. For our scope, we are mainly interested in looking into causes of failures that relate directly to the building 
components and elements. When failures are tagged to building components, the physical parameters of the 
building components or the lack of, are often the cause of failures. Adjustment and alterations to these physical 
parameters serve as actions that can be taken to alleviate the failures.

After carrying out a thorough analysis listing of causes and effects, Risk Priority Numbers (RPNs) of each 
failure were calculated after allocating rating scales for severity, occurrence and detection. High priority failures 
that were detected and analysed based on the degree of mismatch of building components, its building elements 
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and physical parameters to the safety of the robot’s operation. Following this, specific building design suggestions 
by considering changes that can be made to the physical parameters such as changes to the material and finish-
ing or form are proposed to reduce or prevent such robot-related accidents. These design suggestions should 
take into consideration the existing building codes, guidelines and regulations which account for human safety 
and ergonomics.

Modified S,O,D rating system.  Individual S,O,D rating systems were developed to make it applicable for the 
context of deploying service robots in an environment, examining the building components as the subject of 
interest. A clear establishment of the scales would help towards impartiality when assigning scores to the respec-
tive ratings33. RIFMEA also adapts its rating system from the military standard MIL-STD-1629A drafted by 
The United States Department of Defense57. FMEA was first applied by the U.S. Army, to which it provides a 
reliable foundation based on its application in complex military systems. Furthermore, its generic applicability 
allows it to be adapted and employed in multiple industries such as automotive, aeronautical, nuclear and electro 
technical58. Various FMEA studies on robot safety59,60 as well as robot-human interaction61,62 have also adopted 
the MIL-STD-1629A standard to conduct the FMEA. The adapted S, O and D rating system for RIFMEA can 
be seen in Table 2 below. All the three scales were modified to incorporate a 1-5 scale instead of the existing 1-4 
scale for the provision of a neutral grade63.

The modified Severity scale seen in Table 2A considers three different entities—robots, humans and objects 
in the robot’s working environment were considered when assessing the severity of failure modes. In this case, 
humans were given utmost priority, followed by robots and building components. This is because the design of 
the built environment is first considered for humans before robots. The five categories of severity for human inju-
ries are developed based on existing works in machinery risk assessment64 and the area of workplace safety65–67.

The modified Occurrence scale in Table 2B considers the extent of likelihood a failure will occur given that 
the robot is run under similar environmental settings. The probability of the failure happening is given a score 
ranging between 0 to 1, and is calculated as a fraction of the number of times a particular failure occurs over the 
number of times the robot interacted with the building element of interest, as illustrated in the Eq. (1) below. 
This probability score will correspond to an evenly distributed Occurrence rating scale of 1 to 5 whereby a high 
probability score of more than 0.875 would be equivalent to a Occurrence rating of 5, while a very low probability 
score of below 0.125 will be equivalent to an Occurrence rating of 1.

The Detection rating accounts for the likelihood of detecting the failure before it can occur. The rating is depend-
ent on the level of autonomy of the robot, whether it be teleoperated, semi-autonomous or fully autonomous. 
Semi-autonomous robots have to consider both the detectability by the human operator of the robot as well as 
the autonomous detection capabilities of the robot. The scoring is shown in Table 2C.

With the resultant RPN scores and corresponding location tag for all failure modes, hazard maps can be 
created for the robot to plan better robot task routes to avoid hazardous locations. Actions can also be taken to 
restructure a particular location if the RPN score is high to make it more robot-friendly. Priority should thus be 
given to address failures with higher RPN values which correspond to those of higher risk.

Level of spatial adaptability.  For spaces shared by both human and users, making alterations or changes 
to the environment to help improve robot safety would inevitably affect how humans use or experience the 
space. While robots are proposed as new stakeholders in the built environment, priority should still be given to 
human safety and humans’ usage of the space, where applicable. It should support the common forms of HRI, 
namely coexistence, cooperation or collaboration26,68,69. Alterations to a space to make it robot-inclusive should 
not render it impractical or unusable for human users.

When it comes to restructuring a space, we acknowledge that the different building components have varying 
levels of spatial adaptability. Adaptability in buildings refers to the building’s capacity to accommodate change70. 
For example, altering the design or relocating the columns (Structure) would be much more cumbersome than 
simply changing the furniture layout (Plan) of a space. At the same time, there can be different solutions of vary-
ing levels of adaptability to address a single problem, albeit with varying effectiveness. For instance, to rectify 
the hazard of having disorganised, loose cables on the floor, one could consider rewiring the electrical cables 
into the flooring or adopting cable management means such as installing cable trunking to reorganise the wires. 
The former would likely involve more cost and effort than the latter, but may be more effective in eliminating 
the hazard altogether. Understanding the ease of adaptability would thus affect the planning towards achieving 
robot-inclusive spaces.

Methods
RIFMEA worksheet.  Based on the work33, the FMEA worksheet was adapted to develop our own RIFMEA 
worksheet. A sample of a completed worksheet can be found in the supplementary materials. Observations of 
failure modes were recorded on the proposed RIFMEA worksheet, along with the intended actions the robot 
was meant to execute, the causes of failures and their effects. Some of the key components of the robot such as 
the locomotion mechanism and sensors installed are included in the worksheet. The different failures are catego-
rised accordingly into their building components and the respective elements, depending on what the robot was 
interacting with at the time of failure. Moreover, the corresponding robot-inclusive design principle that applies 
to the failure is noted down. This gives a better clarity in what way the building component has failed in terms 

(1)χ =

Number of times failure occurred

Number of interactions with the building element
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A

B

Figure 2.   RIFMEA framework relating robot-centric and buiding-centric principles. (A) Workflow diagram of 
proposed RIFMEA method. (B) Building system diagram.
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of the robot-inclusive principles, examples being issues limiting the robot’s access (Accessibility), or the robot’s 
perception of the space (Observability). This would help to better relate the failures to their causes and in turn 
provide insights on design improvements to be made to the environment or the future iterations of the robot, 
or both. The individual failures were analysed to determine their S,O,D scores and the eventual RPN. Finally, 
recommended actions dependent on the failure types would also be noted down.

As shown in the workflow diagram in Fig. 2, we identify two main approaches in carrying out the RIFMEA 
framework: inductive and deductive. The inductive approach refers to analysing failure modes and risks through 
carrying out actual test studies by deploying service robots physically in an environment, observing and recording 
all the various faults during the test runs. The deductive approach, as the name suggests, deduces and identifies 
potential threats based on the analysis of the building drawings or blueprints as well as that of the robot, keep-
ing in mind the robot’s mode of locomotion, physical dimensions, degree of autonomy, sensors equipped and 
manipulators if any. A familiar understanding of the properties of both the building and robots of interest would 
greatly help in the deduction of potential hazards and failures.

Regardless of the approach adopted, it is important to have a comprehensive understanding of target opera-
tional requirements of the robot, be it maximising area coverage, or travelling smoothly across designated way-
points in the case of our case study. This would better help deduce the potential failures that hamper the robots’ 
productivity or efficiency based on the operational requirements.

While the inductive approach can only be applied and tested on existing robots and buildings, the deductive 
approach can be implemented to study robot applications that may not be yet realised, be it either the develop-
ment of the robot or the construction of the building of interest. Prior findings from robot experiments in existing 
buildings under the inductive approach would help to deduce and assign those values during the building design 
phase. As this paper takes a first attempt at applying the RIFMEA, we would only be looking at the inductive 
approach. With subsequent studies using the inductive approach, we can then attain a better understanding and 
knowledge of robot safety in buildings to carry out the deductive approach on future developments, identifying 
hazards without carrying out actual test runs, economising on both time and resources.

Contextualisation and scope.  The robot: Double 3.  As an application of this proposed RIFMEA frame-
work, the commercial Double 3 telepresence robot was deployed in various settings within the Singapore Uni-

Table 2.   S,O,D rating scales for Robot-Inclusive FMEA. (A) Severity rating scale. (B) Occurrence rating scale. 
(C) Detection rating scale.

A

Severity rating Human Robot Environment Additional remarks

1 No injury Robot has to reorientate itself, robot 
endures moderate performance drop No damage Robot is able to complete its task

2 Minor injuries: burns, temporary 
scarring

Robot has to reorientate itself, robot 
endures high performance drop Minor damage/scratches Robot is able to complete its task

3 Non-incapacitating injuries Robot continue operations, but opera-
tions become limited Major damage to building component Robot is able to complete its task

4 Incapicitating injuries Robot has to cease operations and has 
decent damage

Severe damage to building component/
Parts have to be rebuilt or replaced Robot cannot carry out its task

5 Fatality and permanent serious injury Robot has to cease operations and suf-
fers serious damage

Severe damage to surrounding building 
components and building compo-
nent does not comply with building 
regulations

Robot cannot carry out its task

B

Occurrence rating Probability score (x) Occurrence

1 x< 0.125 Very low

2 0.125 < x < 0.375 Moderately low

3 0.375 < x < 0.625 Average

4 0.625 < x < 0.875 Above Average

5 0.875 < x ≤ 1.0 Very high

C

Detection rating Human operation Autonomous operation Detectability

1 Users will always detect and prevent 
the failure

Robot will always detect and prevent 
the failure Very high

2 Good likelihood that users will detect 
and prevent the failure

Good likelihood that robot will detect 
and prevent the failure High

3 Moderate likelihood that users will 
detect the failure

Moderate likelihood that robot will 
detect the failure Moderate

4 Low likelihood that users will detect 
the failure

Low likelihood that robot will detect 
the failure Low

5 Very low (or zero) likelihood that users 
will detect the failure

Very low likelihood that robot will 
detect the failure Very low
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versity of Technology and Design (SUTD) campus. Telepresence robots allows users from another location to 
participate in activities through the robot remotely. The Double 3 robot is a commercially available mobile 
telepresence robot that is utilised in many research studies71–73. It is a reliable, simple-to-use technology that can 
be easily implemented in various settings. According to their website, this commercial product has also been 
deployed in multiple universities in the United States (US) as well as businesses and healthcare environments. 
The form factor of the Double 3 robot is shown in Fig. 3.

The Double 3 robot has two, 13-megapixel pan-tilt-zoom cameras (wide-angle and super zoom), 6 beamform-
ing microphones and a speaker. It has an adjustable neck with a maximum head height of about 150 cm, weighs 
about 7.3 kg and runs on two wheels on a self-balancing base. Attached to its head are five ultrasonic distance 
sensors and a pair of Intel RealSense D430 depth sensors on its head to sense obstacles on the floor and ahead 
of it. The depth sensors also help to generate a 1280 × 720 depth data with a range of between 0.2 and 10 meters 
away74. With the depth data, an augmented reality screen showing what the robot senses and sees is provided for 
teleoperators and an overlay of a grid of dots denote the areas accessible for the robot. To navigate, the teleopera-
tor designates a goal point on the accessible areas shown on the interface screen in real time as the teleoperator 
views the scene through the cameras on the robot. The robot itself then performs obstacle avoidance and path 
planning to navigate towards the given goal. Alternatively, the robot operator can also move the Double robot 
using the arrow keys on the computer keyboard.

Although the Double 3 robot was used only as an application for the proposed framework, the methodology 
of the framework shown in Fig. 2 can be extended to assess the safety of other robotic deployments in other 
environments as well. At the current stage, it is difficult or almost impossible to generalise the safety of all robots 
using the deployment of a single robot as there exists a wide range of robots carrying different sets of sensors 
with varying capabilities and physical dimensions. In other words, what is safe for one robot may not be neces-
sarily so for another. Yet, it would also be impractical to perform assessments for all permutation of robots to test 
their safety for each of them. Instead, the outcomes of the study would be valid for other robots that use similar 
sensing technologies as the Double 3 robot.

Test locations within university campus.  Several test locations were identified within our campus site: a class-
room (also known as a Cohort Classroom), a research lab, the main plaza (also known as the university’s Campus 
Centre), and a transitional space which included common corridors and lobbies. These locations were chosen 
for being common places where the telepresence robots could be used and deployed for different use scenarios, 
such as to attend or conduct a class, view objects of interest, or engage in team discussions and consultations. The 
floor plans for these areas are seen in Fig. 4.

The classroom is the common learning environment for students and teachers. We identified that lessons are 
usually conducted in two general ways: one whereby lessons are conducted in a more top-down approach where 
a teacher stands in front of the class and conducts a lesson, and the other in which learning takes on a project-
based approach with teachers or facilitators moving from one student or student group to another, engaging in 
consultation sessions while making references to physical prototypes or models within the classroom. In addition 
to common walkways or corridors, the campus centre is also identified as a key test location, being an extension 
of the transitional space, capable of accommodating larger groups of users, gatherings and holding of events such 
as exhibitions or fairs. Finally, the research lab provides opportunities in the use of the robot in a non-optimised 
arrangement of interior fittings, where the environment is slightly more confined and even cluttered at times. 
Prototypes are being worked on through different stages of design within the lab, allowing for the use of robots 
to allow users to engage in discussions or monitor processes and workflows remotely. These locations would help 
provide a variety of spatial environments within the campus to test the application of the RIFMEA approach in 
evaluating building safety for robots.

Testing procedure.  Next, a procedure was developed on how the test runs would be conducted in each 
location. In the paper27, Dogramadzi et al. defined the concept of mission tasks and non-mission tasks. Mission 
tasks referred to the jobs that would contribute to fulfilling its intended function. Observing hazards relating to 
mission tasks would allow one to “handle the expected interactions of the robot with its environment”. On the 
other hand, non-mission tasks were defined as tasks apart from mission tasks that would be necessary for the 
robot to remain ready for operation and deployment whenever the robot is not necessarily performing a specific 
task. Consideration of hazards relating to non-mission tasks would allow one to “handle the unexpected interac-
tions”. Adapting this thought process into our paper, the testing procedures were drafted out and conducted to 
help us consider both expected interactions and unexpected interactions by running the robots diagnostically 
as well as in a task-based setting.

In conducting a diagnostic test, the robot was made to navigate comprehensively throughout the site, cover-
ing all parts of the site as much as possible by moving along the inner perimeter and outwards in a spiral pattern 
towards towards the outer perimeter of the site, or from one end of the room to the other in a zigzag pattern. 
Observations of failures relating to the five robot-inclusive design principles were recorded as the robot moved 
around the site. In addition, the intended and actual paths taken by the robot were also recorded.

To consider hazards relating to mission tasks, we adopted the use of Hierarchical Task Analysis (HTA) 
approach to consider the various actions the robot would be required to carry out at each stage to achieve its 
main objectives. These interaction-related tasks were identified based on typical uses of the telepresence robot, 
which are also defined for our tests. For example, in the scenario where the telepresence robot is used to hold a 
discussion between two parties, the main sequence of tasks involves: a)logging into the robot, b) moving to its 
required location, c) viewing the object of interest and communicating with the other party, and d) returning to 
its docking station. Each of these tasks can be further broken into sub-tasks such as identifying traversible areas, 



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3408  | https://doi.org/10.1038/s41598-022-06902-4

www.nature.com/scientificreports/

carry out path planning and detecting and avoiding obstacles to move to its target location. Carrying out this 
step-by-step analysis of the task sequence will help to identify and spot failures when running the task-based tests. 
In the various tests conducted, the starting conditions of the robots were noted. They were either pre-positioned 
in place for immediate operation in its desired location, or the robots began their operation starting from their 
respective docking stations at designated locations. The locations of the docking station were also noted. Simi-
larly, the spatial conditions of terminal locations were also studied; in most scenarios, the robot was tasked to 
return back to the docking station through its auto-docking mechanism. In this way, the start and end points of 
the robots are thus clearly defined to ensure that the whole deployment process and path are taken into account.

As transitional spaces such as the corridor and the Campus Centre are more open-ended in their program 
whereby the use and route of the telepresence robot is often undefined, we have decided to run diagnostic tests 
in these areas. This would provide a more comprehensive overview of possible hazards the robot could encounter 
in these environments, especially from users that are using the robot to navigate in an unknown space with the 
telepresence robot for the first time.

For the classroom and research lab, the telepresence robot was utilised in an activity-specific manner within 
a more confined environment. Here, we ran a task-based run with the robot. For a task-based run, the robot was 
made to execute a list of specific tasks. The paths which the robot took were not pre-planned but left completely 
to the teleoperator’s decision to direct the robot within the various spatial settings.

Documentation of the applied RIFMEA.  Besides the RIFMEA worksheet, a plan drawing of the test site 
as shown in Fig. 4 is required to denote the location of hazards that occur during the test. In this manner, the 
actual path taken by the robot is also recorded using the plan. As an illustration of the procedure and documen-
tation process of the RIFMEA approach, the method and findings of test runs conducted at the research lab is 
presented in this section.

The intended path of the robots were first determined prior to conducting the test. Both diagnostic and task-
based test runs were conducted in the research lab. For the diagnostic test, due to the rectilinear layout of the 
lab, the test was split into two parts: vertical-diagnostic and horizontal-diagnostic. The robot would start at one 
corner of the room before covering the majority of the space in a zig-zag manner. In the task-based test, a series 
of tasks which the robot was to perform in order was determined alongside its start and end point. The user 
was free to decide on the route to take to perform the set of tasks. As an illustration, the intended path for the 
vertical-diagnostic test, and the sequence of required tasks for the task-based test are shown in Fig. 5.

Next, the actual path taken by the robot as well as the hazards that occurred during the test was recorded 
spatially on the plan. The results of the vertical-diagnostic test and the task-based test are illustrated in Fig. 6A, B. 
The failures are numbered and tagged in relation to the position of the building element of interest in the context 
of the lab. Each failure and the corresponding number is recorded onto the RIFMEA worksheet, together with 
the analysis of the failures’ cause, effect, S,O,D ratings and the recommended action.

Research limitations and future work
An assumption made during the test runs was that participants operating the robots already had some level of 
acclimation with the controls and interface of the telepresence robots prior to the test. Moreover, participants 
were briefed beforehand regarding the capabilities and functionalities of the robots. For this research, our interest 
was constrained only to limitations imposed by the design of the environment as opposed to limitations caused 
by the robot’s design. Our findings did not encompass users that did not have experience with the telepresence 
systems to minimise errors caused by the teleoperator’s lack of understanding of the robot or its interface. The 
study was conducted in typical use environments during the daytime. Future work would consider differing 
lighting conditions and how it might affect the performance of the robot’s sensors.

Having different stakeholders performing the RIFMEA would be ideal to generate a more comprehensive 
RIFMEA record, since each stakeholder group would have different perspectives and requirements for the robot 
deployment and operation to suit their respective needs33. This would allow the RIFMEA to be comprehensive 
and satisfy conditions set by each stakeholder group as much as possible. As an initial study, a limitation of the 

Figure 3.   Double 3 robot description and components.
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C D

Figure 4.   Plans of test sites and test type breakdown. (A) Campus Centre. (B) Transitional space. (C) Cohort 
Classroom. (D) Research lab.
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research work was that the RIFMEA tests were conducted solely by researchers and without other domain experts 
such as facility or operation management staff, which is a recommended practice in industry for conducting 
FMEA. For subsequent tests, more expertise from various relevant fields should be called to observe and analyse 
the failures for comprehensive studies.

Another limitation of this study is that it did not implement the use of simulations. Physics-based simulations 
allow for identifying hazards that can be easily picked up by learned or pre-programmed models. Employing 
the use of simulations could reduce the time and manpower needed, especially when compared to conducting 
actual tests over large areas that have very similar spatial conditions. It could also act as a preliminary hazard 
identification method if it is impossible to carry out actual tests such as in early design phases of a construction. 
The use of simulations might also be more effective and practical when implementing simultaneous deployment 
of multiple robots where the robots are dynamically interacting with one another and with the environment75.

As a first attempt of the RIFMEA application, the method was utilised only over a few locations within a 
university campus with one type of service robot—a semi-autonomous telepresence robot. By conducting more 
test runs conducted across more spaces using different types of service robots, we would then be able to further 
develop a framework to evaluate and rate the building’s safety for service robots in a more holistic and objective 
manner. A larger data set would provide more opportunities and comparison across different spaces to draw 
any insights, new findings or more concrete conclusions, such as when comparing the average RPN values in 
different locations. Another potential area of study is to determine there might be any correlations between the 
building program or spatial quality and the safety for robots. This includes the occupancy level, programmatic 
function, user demographics and other factors. In addition to robot safety, further studies on robot performance 
metrics such as area coverage or time taken can also be conducted to draw relationships between spatial condi-
tions to robot efficiency.

Moreover, the RIFMEA method is to be applied with other types of service robots; cleaning robots, inspection 
robots and other forms of maintenance and mobile service robots. The process of defining the site context and 
robot application, categorising the failures into the corresponding building components, and analysing causes 
with respect to both the robot and building, are extensible and applicable to assessing other robot deployments. 
These aspects of the methodology are also the main contributions of this research. Each robot varies in terms 
of its mechanisms and software, which include but are not limited to, its installed sensors, size, end effectors 
and locomotion mode. As such, how each robot perceives and interacts with the same given environment may 
differ. The hazard types as well as their corresponding Severity, Occurrence and Detection rating would likely 
also differ across each type of robot. With knowledge of the average RPN score across different built environ-
ments, the robot-inclusiveness of one environment for the deployment of service robots can then be compared 
to that of another.

Developing a comprehensive set of design guidelines and spatial improvements would be a next step to 
improve the robot inclusivity of buildings. While the paper presents some recommended actions to take in 
response to the various failure modes discovered, they are still quite generic and tend to be prescriptive instead of 
being a tool that would be useful for building designers to adopt. A more robust set of guidelines corresponding to 

BA

Figure 5.   Intended circulation routes for the research lab. (A) Vertical diagnostic route. (B) Task-based route.



16

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3408  | https://doi.org/10.1038/s41598-022-06902-4

www.nature.com/scientificreports/

A

B

Figure 6.   Result documentation for the research lab. (A) Vertical diagnostic test. (B) Task-based test.
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the five robot-inclusive design principles should be developed to help improve the safety of robotic deployments 
in future buildings. This also includes the design of robot-inclusive furniture to help increase the accessibility, 
observability and overall safety of the robot.

Conclusion
This paper has laid out the integration of robot-inclusive principles for generating an adapted robot-inclusive 
FMEA (RIFMEA) framework to assess building hazards for the deployment of service robots. Here, the robots 
are seen as a new stakeholder with regards to robot safety. This framework would aid the documentation and 
analysis of hazards for the service robots to be deployed, paying special attention to the different components of 
a buildings. Recommended actions can be taken based on the list of hazards, to prevent or reduce the impact of 
damage done to the robots during their operation. This would be a step towards improving the safety of the built 
environment for robots and allow for greater efficiency for the application of robots in buildings. The proposed 
RIFMEA is applied and tested using a commercially available Double 3 telepresence robot within various settings 
within a university campus. From the results of the RIFMEA performed with the Double 3 robot at the various 
areas, the failures were analysed and discussed upon, including some outlier cases.
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