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INTRODUCTION 
 

Numerous studies have demonstrated that aging can be 

modulated by evolutionarily conserved signaling 

pathways, among which the nutrient-regulated 

insulin/insulin-like signaling (IIS) and target of rapamycin 

(TOR) pathway have been shown to play a conserved role 

in aging in many species [1–3]. Mutations in daf-2, which 

encodes the IGF-1 receptor ortholog in C. elegans, more 

than double the adult lifespan [4, 5]. This significant 

lifespan extension is dependent on the downstream DAF-

16/FOXO transcription factor [6, 7], which is completely 

or partially required for the anti-aging effect of many 

genetic or environmental manipulations. Inhibition of 

LET-363/TOR or its co-factor DAF-15/Raptor also 

significantly extends lifespan [8, 9]. The underlying 

mechanisms involve the ribosomal S6 kinase (S6K)-

mediated regulation of mRNA translation, autophagy, 

lipid metabolism and so on [10–13]. Simultaneous 

inhibition of IIS and TOR pathway has a synergistic effect 

on longevity, suggesting these pathways actively interact 

with each other [14, 15].  

 

Two genome-wide RNAi screens for increased 

longevity have been performed to systematically 

identify key modulators of aging in C. elegans [16, 17]. 
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ABSTRACT 
 

The antagonistic pleiotropy theory of aging suggests that genes essential for growth and development are likely to 
modulate aging later in life. Previous studies in C. elegans demonstrate that inhibition of certain developmentally 
essential genes during adulthood leads to significant lifespan extension. PAR-1, a highly conserved 
serine/threonine kinase, functions as a key cellular polarity regulator during the embryonic development. 
However, the role of PAR-1 during adulthood remains unknown. Here we show that inhibition of par-1 either by a 
temperature-sensitive mutant or by RNAi knockdown only during adulthood is sufficient to extend lifespan in C. 
elegans. Inhibition of par-1 also improves healthspan, as indicated by increased stress resistance, enhanced 
proteotoxicity resistance, as well as reduced muscular function decline over time. Additionally, tissue-enriched 
RNAi knockdown analysis reveals that PAR-1 mainly functions in the epidermis to regulate lifespan. Further genetic 
epistatic and molecular studies demonstrate that the effect of par-1 on lifespan requires the AMP-activated protein 
kinase (AMPK), and RNAi knockdown of par-1 results in age-dependent AMPK activation and reduced lipid 
accumulation in the metabolic tissue. Taken together, our findings reveal a previously undescribed function of PAR-
1 in adulthood, which will help to understand the molecular links between development and aging. 
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From more than 10,000 RNAi clones tested in each 

study, 89 and 23 genes were identified as negative 

regulators of longevity, respectively. However, there 

was only one gene identified in common from both 

studies, suggesting the screens are far from reaching 

saturation. During these screens, animals were treated 

with various RNAi throughout the whole life. Thus, 

essential genes, RNAi knockdown of which causes 

larval arrest, were unlikely to be tested for their effects 

on longevity. Later studies on essential genes by RNAi 

knockdown only during adulthood helped to identify 

more negative regulators of longevity [18, 19]. These 

essential genes tend to be evolutionarily conserved and 

are involved in basic biological processes, such as 

mRNA translation, mitochondrial functions, signal 

transduction and so on. Therefore, characterization of 

developmentally essential genes for their roles in 

lifespan and healthspan should shed light on the 

molecular link between development and aging. 

 

Establishment of body axis polarization plays a critical 

role during the embryonic development. Six par genes 

(par-1 thought par-6) regulate the anterior-posterior 

asymmetries during the first two embryonic cell divisions 

in C. elegans [20, 21]. PAR-1/MARK, a conserved 

serine-threonine kinase, plays a key role in establishing 

the cellular polarity [22]. During the first cell division, 

PAR-1 protein shows asymmetric distribution, which 

controls cytoplasmic and cytoskeletal asymmetries along 

the polarity axis. It was reported that PAR-1 also regulates 

vulval morphogenesis during larval development [23]. 

However, little is known about the biological functions of 

PAR-1 in adulthood. 

 

In order to characterize the roles of PAR-1 in adult 

animals, we performed lifespan and healthspan assays 

and found that inhibition of par-1 significantly delays 

aging. Spatiotemporal analyses reveal that par-1 mainly 

functions in the epidermis during adulthood to regulate 

lifespan. Moreover, genetic epistasis studies 

demonstrate that the effect of par-1 on longevity is 

independent of the insulin-like signaling. Instead, par-1 

functions through the nutrient-responsive S6K and 

AMPK to regulate lifespan. Inhibition of par-1 results 

in age-dependent AMPK activation and reduced lipid 

accumulation in the metabolic tissue. Taken together, 

these results reveal previously undescribed roles of 

PAR-1 in aging and metabolism.  

 

RESULTS 
 

Inhibition of par-1 during adulthood significantly 

extends lifespan  
 

To characterize the functions of PAR-1 during 

adulthood, we took advantage of the par-1(zu310) 

temperature sensitive (ts) mutant [24] and examined the 

lifespan phenotype. Animals were cultured at the 

permissive temperature (20° C) during development and 

then shifted to the restrictive temperature (25° C) during 

adulthood. The par-1 ts mutant shows significant 

lifespan extension compared to the wild-type N2 

(Figure 1A and Supplementary Table 1). We further 

examined the temporal requirement of par-1 in lifespan 

determination by RNAi knockdown at different stages. 

par-1 RNAi knockdown only during development 

(Dev) was achieved by initiating the RNAi treatment 

upon embryonic hatching, and par-1 RNAi was then 

shut down on Day 1 of adulthood by shifting animals to 

dcr-1 RNAi, which abrogates the RNAi machinery [25]. 

Other animals were treated with the par-1 RNAi either 

during adulthood only (AD) or throughout the whole 

life (Dev + AD). Compared to the control RNAi 

treatment, knockdown of par-1 during development has 

no effect on lifespan, whereas par-1 RNAi during 

adulthood or the whole life results in significantly 

prolonged longevity (Figure 1B and Supplementary 

Table 1). Therefore, adulthood inhibition of par-1 is 

sufficient to extend lifespan. 

 

To facilitate lifespan assays, low dose (20 μg / ml) of 

the DNA synthesis inhibitor 5-fluoro-2-deoxyuridine 

(FUdR) was supplemented to the worm culture to 

prevent progeny from hatching. It has been reported that 

FUdR, especially at high dose such as 100 μg / ml, has 

profound effects on C. elegans physiology and aging 

[26]. To examine whether the effect of par-1 on lifespan 

is dependent on FUdR, we performed lifespan assays 

using the conditional infertility strain PX627, which 

shows auxin-inducible sterility and normal lifespan [27, 

28]. Adult stage RNAi knockdown of par-1 

significantly extends lifespan in PX627 without the 

FUdR treatment (Supplementary Figure 1A). To test 

whether the par-1 deficiency-induced lifespan extension 

is temperature-dependent, we performed lifespan assays 

at 20° C. par-1 RNAi treated animals at this condition 

show significantly prolonged longevity similar to those 

at 25° C (Supplementary Figure 1B). Therefore, par-1 is 

a bona fide regulator of lifespan.  

 

Inhibition of par-1 significantly improves healthspan 

 

Lifespan is one of the measurements of aging. 

Significantly prolonged longevity does not necessarily 

ensure the delay of aging. Healthspan assays, which 

include various stress resistance, human disease models 

and other age-related physiological studies, have been 

used to quantitatively assess the rate of aging. To 

further characterize the role of PAR-1 in aging, we 

treated animals with the control or par-1 RNAi starting 

from the adulthood for two days, and then collected 

them for various healthspan measurements. 
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Previous studies have demonstrated that many long-lived 

mutants show intrinsic thermotolerance, and the 

increased ability to deal with stress often leads to lifespan 

extension [29–31]. We found RNAi knockdown of par-1 

significantly enhances thermotolerance (Figure 2A and 

Supplementary Table 2) and extends survival upon  

UV exposure (Figure 2B and Supplementary Table 3), 

suggesting par-1 loss-of-function induced lifespan 

extension might be due to better somatic maintenance.  

 

Proteotoxicity has been connected with many human 

degenerative diseases, such as Alzheimer’s, Parkinson’s, 

Huntington’s diseases and so on. Previously, researchers 

have constructed transgenic animals that express either 

polyQ (Q35) or human A1-42 in C. elegans body wall 

muscles [32, 33]. These transgenic animals show age-

dependent protein aggregations in muscle cells, which 

lead to proteotoxicity and eventually paralysis. Inhibition 

of par-1 significantly delays age-associated, muscular 

proteotoxicity-induced paralysis in both the polyQ and 

A models (Figure 2C, 2D and Supplementary Table 4). 

 

Previous studies on the pathology of aging indicate that 

progressive muscular function decline serves as a 

reliable biomarker of aging in C. elegans [34]. Worm 

muscular function can be quantitatively measured by 

counting the numbers of body bends when animals are 

transferred into liquid. Animals with the par-1 RNAi 

treatment show significantly enhanced mobility during 

aging compared to those treated with the control RNAi 

(Figure 2E and Supplementary Table 5).  

 

To validate the role of par-1 in healthspan, we tested 

the par-1(zu310) ts mutant for the thermotolerance, 

survival upon UV exposure and age-dependent muscular 

function decline two days after shifting to the restrictive 

temperature (25° C) since the late L4 stage. Compared to 

the wild-type N2, the par-1(zu310) ts mutant shows 

significantly increased thermotolerance (Supplementary 

Figure 2A), extended survival upon UV exposure 

(Supplementary Figure 2B), and better mobility during 

aging (Supplementary Figure 2C). Taken together, these 

results demonstrate that inhibition of par-1 during 

adulthood significantly improves healthspan. 

 

PAR-1 mainly functions in the epidermis to regulate 

lifespan 

 

In response to genetic and environmental influences, 

different tissues coordinately modulate physiology to 

affect aging at the whole organism level. To better 

understand the spatial requirement of PAR-1 in lifespan 

determination, we carried out tissue-enriched par-1 RNAi 

knockdown and examined the effects on lifespan. RDE-1 

is an Argonaute protein that is essential for the RNAi 

machinery as well as systemic RNAi [35]. Therefore, 

spatially restricted RNAi knockdown can be achieved by 

tissue-specific promoters driving rde-1 transgenic rescue 

of rde-1 loss-of-function mutations [36–39]. Mutations in 

rrf-1, which encodes an RNA-directed RNA polymerase, 

allow RNAi to be functional in both the germline and 

intestine [40, 41]. In contrast to the global par-1 RNAi 

treatment (Figure 3A and Supplementary Table 1), tissue-

enriched RNAi knockdown of par-1 in the germline plus 

intestine, intestine or muscles does not affect lifespan 

(Figure 3B–3D and Supplementary Table 1), whereas the 

epidermis-enriched par-1 RNAi treatment significantly 

extends lifespan (Figure 3E and Supplementary Table 1). 

 

 
 

Figure 1. Inhibition of par-1 during adulthood is sufficient to significantly extend lifespan. (A) Survival curves of the wild-type N2 

and par-1(zu310) temperature sensitive mutant (p < 0.0001, log-rank test). (B) Survival curves of the wild-type N2 treated with either the 
control RNAi or par-1 RNAi at different stages. Dev, par-1 RNAi treatment during development (p = 0.5368, log-rank test). AD, par-1 RNAi 
treatment during adulthood (p < 0.0001, log-rank test). Dev + AD, par-1 RNAi treatment during the whole life (p < 0.0001, log-rank test). 
Detailed quantitative data and statistical analyses are included in Supplementary Table 1.  
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Figure 2. RNAi knockdown of par-1 significantly improves healthspan. (A) Survival curves of wild-type animals treated with either 

the control or par-1 RNAi at 35° C (p < 0.0001, log-rank test). (B) Survival curves of wild-type animals treated with either the control or par-1 
RNAi upon UV (2,000 J/m

2
) exposure (p = 0.0003, log-rank test). (C, D) Age-associated paralysis induced by body wall muscle expression of 

either Q35 (C) or Aβ (D) in animals treated with the control or par-1 RNAi (p < 0.0001, log-rank tests). (E) Body bending rates of day 2, 4, 6, 8, 
and 10 adults treated with either the control or par-1 RNAi (****, p < 0.0001, **, p = 0.0029, two-way ANOVA with Sidak's multiple 
comparison tests). Detailed quantitative data and statistical analyses are included in Supplementary Tables 2–5. 

 

 
 

Figure 3. par-1 mainly functions in the epidermis to regulate lifespan. (A) Survival curves of animals treated with the global control 

or par-1 RNAi (p < 0.0001, log-rank test). (B) Survival curves of animals treated with the germline plus intestine-enriched control or par-1 
RNAi (p = 0.1756, log-rank test). (C) Survival curves of animals treated with the intestine-enriched control or par-1 RNAi (p = 0.6433, log-rank 
test). (D) Survival curves of animals treated with the muscle-enriched control or par-1 RNAi (p = 0.7955, log-rank test). (E) Survival curves of 
animals treated with the epidermis-enriched control or par-1 RNAi (p < 0.0001, log-rank test). In all cases, animals were treated with the 
control or par-1 RNAi during the adulthood. Detailed quantitative data and statistical analyses are included in Supplementary Table 1.  
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Therefore, the epidermis is the main tissue in which 

PAR-1 functions to regulate lifespan.  

 

PAR-1 functions through the nutrient-responsive 

S6K-AMPK pathway to regulate lifespan 

 

In order to characterize the mechanisms of lifespan 

extension by par-1 deficiency, we performed epistasis 

experiments to examine the genetic interactions between 

par-1 and known longevity pathways. Mutations in DAF-

2, the C. elegans ortholog of the insulin/IGF-1 receptor, 

more than double the adult lifespan that is dependent  

on the downstream DAF-16/FOXO transcription factor 

[4, 6, 7]. We found that par-1 RNAi knockdown 

significantly extends lifespan of a daf-16 null mutant 

(Figure 4A and Supplementary Table 1). Consistently, 

daf-2 mutant animals treated with par-1 RNAi show 

further lifespan extension compared to those treated with 

the control RNAi (Figure 4B and Supplementary Table 

1). These results suggest that the mechanisms by which 

par-1 functions to regulate lifespan are different from 

those by reduced insulin-like signaling. 

 

Previous studies have demonstrated that germline-less 

animals produced by either laser ablation of the 

germline precursor cells or the glp-1(e4144) ts mutant 

show significantly prolonged longevity, and the 

underlying mechanisms involve cell non-autonomous 

activation of DAF-16 in the metabolic tissue [42, 43]. 

We found that par-1 RNAi knockdown can further 

extend lifespan of the glp-1(e4144) ts mutant (Figure 

4C and Supplementary Table 1). This result further 

supports that the par-1 deficiency-induced lifespan 

extension is independent of DAF-16. 

 

Dietary restriction (DR) is one of the most robust 

environmental manipulations that significantly delay 

aging. The eat-2 mutant, which has impaired food 

intaking thus serves as a genetic mimic of DR, shows 

significant lifespan extension [44]. RNAi knockdown of 

par-1 in the eat-2 mutant background does not further 

extend lifespan (Figure 4D and Supplementary Table 1), 

suggesting overlapping mechanisms in the regulation of 

longevity. The nutrients-regulated TOR pathway also 

plays a key role in aging [12]. Inhibition of TOR or its 

downstream effector, the ribosomal S6 kinase, which is 

encoded by rsks-1 in C. elegans, significantly extends 

lifespan [8, 9, 13]. Similar to the situation in the eat-2 

mutant background, inhibition of par-1 does not affect 

lifespan of the long-lived rsks-1 mutant (Figure 4E and 

Supplementary Table 1). It has been shown that the 

prolonged longevity of the rsks-1 mutant requires AAK-

2, the catalytic subunit of the key energy homeostasis 

regulator AMPK [45]. The par-1 deficiency induced 

longevity can be completely suppressed by the aak-2 

null mutant (Figure 4F and Supplementary Table 1). 

Therefore, par-1 functions through nutrients-responsive 

mechanisms to regulate lifespan. 

 

Knockdown of par-1 activates AMPK and reduces 

lipid accumulation in the metabolic tissue  

 

AMPK serves as a key energy homeostasis regulator to 

promote catabolism under starved conditions. It contains 

three subunits, and phosphorylation of a highly 

conserved threonine (T172) on the α subunit is required 

for its kinase activity [46]. The rsks-1 mutant shows 

increased levels of phospho-AAK-2 [45]. To access 

whether par-1 RNAi can activate AAK-2 especially in 

the metabolic tissue, we performed immuno-blots to 

determine age-associated changes in phospho-AAK-2 

levels using micro-dissected intestine, which is the major 

metabolic tissue in C. elegans. par-1 RNAi knockdown 

leads to increased phospho-AAK-2 levels in Day 6 adult 

animals compared to the control RNAi treatment (Figure 

5A, 5B). The age-dependent activation of AMPK by 

par-1 loss-of-function was also confirmed in the par-

1(zu310) ts mutant (Supplementary Figure 3A, 3B).  

 

One important function of AMPK is to promote lipid 

breakdown for more energy production. In order to 

determine whether par-1 RNAi-induced AMPK 

activation has any physiological consequence, we 

performed Oil Red O straining and quantification to 

estimate triglyceride levels in the intestine of control or 

par-1 RNAi treated animals at different ages. The 

control RNAi treated animals show age-associated 

increase in triglycerides, whereas this change is 

abrogated by par-1 RNAi knockdown (Figure 5C, 5D). 

This age-dependent increase in lipid droplets can also 

be suppressed by the par-1(zu310) ts mutant 

(Supplementary Figure 3C, 3D). Therefore, inhibition 

of par-1 during adulthood leads to age-dependent 

AMPK activation and improved lipid homeostasis.  

 

DISCUSSION 
 

Aging can be significantly affected by genetic or 

environmental factors. Many key modulators of aging, 

such as the IGF-1 receptor and TOR, also play important 

roles in cellular energy homeostasis, growth and 

reproduction [2]. Knock-out mutants of these genes show 

lethality, whereas inhibition of them via hypomorphic 

mutations or RNAi knockdown significantly extends 

lifespan. Studies on wild-derived C. elegans showed  

that there is a negative correlation between longevity  

and developmental rates [47]. Taken together, these 

findings suggest that there are potential links between 

development and aging. 

 

Genome-wide RNAi screens have been performed to 

identify lifespan determinants in C. elegans [16, 17]. 
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Animals were subject to various RNAi treatments during 

the whole life. Thus, essential genes were likely to be 

excluded from the screens due to the lethality caused by 

RNAi knockdown during development. Subsequent 

studies on essential genes via RNAi knockdown only 

during adulthood demonstrate that these genes are 

enriched with negative modulators of aging [18, 19]. 

This is consistent with the antagonistic pleiotropy theory 

of aging, which suggests that genes essential for growth 

and development are likely to modulate aging later in 

life [48]. In this study, we focused on par-1, a conserved 

kinase gene that serves as a key cellular polarity 

regulator during the embryonic development [22, 23], 

for its roles in adulthood. Using a conditional loss-of-

function mutant and RNAi knockdown, we found that 

inhibition of par-1 during adulthood is sufficient to 

delay aging, as indicated by not only significantly 

prolonged longevity, but also significantly improved 

healthspan. These results further support the notion that 

developmentally essential genes are likely to function as 

key modulators of aging later in life.  

 

It has been well documented that different tissues 

function coordinately to modulate aging in multicellular 

organisms. Many key regulators of lifespan, such as the 

DAF-16/FOXO transcription factor, functions in the 

intestine to affect longevity and aging-related phenotypes 

[49–51]. Using tissue-enriched RNAi strains, we find that 

inhibition of par-1 in the epidermis, but not other tissues, 

leads to significantly prolonged longevity. The epidermal 

tissue contains several cell types that are involved in 

protection, innate immunity, metabolism, proteostasis 

and so on [52]. A previous study demonstrates that 

reduced insulin-like signaling delays aging via the SKN-

1 transcription factor-mediated activation of collagens 

and other extracellular matrix genes, and the delay of 

age-associated collagens expression decline is a general 

protective mechanism for other anti-aging interventions 

[53]. It has been shown that PAR-1 functions in epithelial 

cells to regulate the morphogenesis of vulva during larval 

development. Although PAR-1 shows asymmetric 

distribution, there were no detectable changes in various 

epithelial polarity markers in this process [23]. Therefore, 

it will be interesting to determine in which epidermal cell 

types PAR-1 functions to regulate lifespan and whether 

PAR-1 affects aging by regulating cellular polarity in 

these cells in future studies. 

 

AMPK serves as the key regulator of energy 

homeostasis. When the nutrient levels are low, a highly 

conserved threonine residue (T172) on the AMPK 

catalytic α subunit will be phosphorylated by upstream

 

 
 

Figure 4. Epistatic analysis of par-1 for its effects on lifespan. (A) Survival curves of the daf-16 mutant treated with the control or par-

1 RNAi (p < 0.0001, log-rank test). (B) Survival curves of the daf-2 mutant treated with the control or par-1 RNAi (p < 0.0001, log-rank test). (C) 
Survival curves of the glp-1 mutant treated with the control or par-1 RNAi (p < 0.0001, log-rank test). (D) Survival curves of the eat-2 mutant 
treated with the control or par-1 RNAi (p = 0.1489, log-rank test). (E) Survival curves of the rsks-1 mutant treated with the control or par-1 
RNAi (p = 0.7661, log-rank test). (F) Survival curves of the aak-2 mutant treated with the control or par-1 RNAi (p = 0.4647, log-rank test). In 
all cases, animals were treated with the control or par-1 RNAi during the adulthood. Detailed quantitative data and statistical analyses are 
included in Supplementary Table 1.  
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kinases such as PAR-4/LKB1 [45, 54] and VRK-1 [55] 

to ensure the activation of its kinase activity. AMPK 

helps to restore cellular energy homeostasis by 

activating catabolism and inhibiting energy costly 

biological processes [46]. AMPK has been shown to be 

responsible for the prolonged longevity by mutations in 

daf-2, rsks-1, perturbation of mitochondria and certain 

forms of dietary restriction [45, 56–58]. A recent study 

showed that simultaneous inhibition of the IGF-1 and 

TOR pathways reduces cytochrome c production in the 

germline, which leads to cell non-autonomous 

activation of the mitochondrial stress response and 

AMPK in the intestine to ensure lifespan extension [15]. 

In this study, we find AMPK is required for par-1 

RNAi knockdown induced lifespan extension, and 

inhibition of par-1 causes age-dependent activation of 

AMPK in the intestine. These findings highlight the 

important role of AMPK in the metabolic tissue in 

aging. Serving as a S/T protein kinase, PAR-1 is 

unlikely to be a direct upstream regulator of AMPK 

since inhibition of par-1 leads to increased AMPKα 

phosphorylation. Similar phenotype was also reported 

in the knockout mutant of RSKS-1/ribosomal S6 kinase 

[14, 45]. Further characterization of the underlying 

mechanisms will help to better understand the network 

of aging modulators. 

 

Lipid metabolism plays important but complicated roles 

in health and aging. Obesity has been connected with 

multiple pathologies. Intriguingly, many long-lived C. 

elegans mutants, such as daf-2 (IGF-1 receptor), rsks-1 

(ribosomal S6 kinase), germline-less glp-1 (Notch), show 

significantly increased lipid accumulation [5, 59, 60]. 

Further studies demonstrate that there is no simple 

correlation between lipid levels and aging, whereas effects 

of lipid metabolism on aging involve more specific 

mechanisms [61]. The long-lived germline-less glp-1 

mutant has increased expression of the lysosomal lipase 

LIPL-4, which promotes the production of certain lipid 

species such as oleoylthanolamide to activate nuclear 

hormone receptors NHR-49 and NHR-80 for prolonged 

longevity [62, 63]. A H3K4me3 methyltransferase mutant 

shows intestinal up-regulation of Δ-9 fatty acid 

desaturases to promote mono-unsaturated fatty acids

 

 
 

Figure 5. Inhibition of par-1 activates AMPK and decreases lipid levels in the metabolic tissue. (A, B) Immunoblots (A) and 

quantification (B) of phospho-AAK-2 (AMPKα) and tubulin using proteins extracted from dissected intestinal tissues of day 2 and day 6 adult 
animals treated with the control or par-1 RNAi. Ratio of the phospho-AAK-2 band intensity to that of tubulin was normalized to the control 

RNAi treated samples. Data are represented as mean  SD based on three independent biological replicates. (C, D) Representative Oil Red O 
staining images (C) and quantification (D) of the staining signal in day 2 and day 6 adult animals treated with the control or par-1 RNAi. Data 

are represented as mean  SD. ns, not significant, ****, p < 0.0001 (n = 40, two-way ANOVA with Sidak's multiple comparisons tests). Scale 

bar, 50 m. 
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production and lifespan extension [10]. Here we find 

that worms show age-dependent increase in neutral  

lipid accumulation in the intestine, whereas inhibition  

of par-1 suppresses this phenotype. Since par-1 RNAi 

treatment also activates AMPK in a similar 

spatiotemporal manner, and AMPK promotes lipids 

breakdown, we speculate that par-1 knockdown-induced 

AMPK activation is responsible for the anti-aging effect 

via modulating lipid homeostasis. Studies on fatty acid 

profiles among strains of different lifespan showed that 

fatty acid chain length and the susceptibility to oxidation 

negatively correlate with longevity [64]. Therefore, it 

will be interesting to characterize the changes in lipid 

profile upon par-1 inhibition, and to determine whether 

these changes contribute to the anti-aging effect in future 

studies.  

 

In summary, we identify PAR-1 as a novel modulator of 

aging in a spatiotemporal specific manner. Genetic and 

molecular analyses reveal that PAR-1 functions in the 

nutrient-responsive S6K-AMPK pathway to determine 

lifespan via regulating age-dependent AMPK activation 

and lipid metabolism. Further studies on PAR-1 for its 

molecular role in lifespan and healthspan will help to 

better understand the intrinsic links among development, 

metabolism and aging. 

 

MATERIALS AND METHODS 
 

C. elegans strains and maintenance 

 

Worms were cultured on the NGM (nematode growth 

media) agar plates seeded with E. coli OP50 at 20° C 

unless otherwise stated. The following C. elegans strains 

were obtained from the Caenorhabditis Genome Center: 

Bristol N2 as the wild-type strain, AM140 

rmIs132[P(unc-54) Q35::YFP] I, CB1370 daf-2(e1370) 
III, CF1038 daf-16(mu86) I, CB4037 glp-1(e2144) III, 

CL2006 dvIs2[pCL12(unc54/human Abeta peptide 1-42 

minigene) + pRF4], DA465 eat-2(ad465) II, KK822 par-
1(zu310) V, MAH23 rrf-1(pk1417) I, NR222 rde-

1(ne219) V; kzIs9[pKK1260(lin-26p::nls::GFP) + 
pKK1253(lin-26p::rde-1) + pRF6(rol-6(su1006)], PX627 

fxIs1 [pie-1p::TIR1::mRuby] I; spe-44(fx110 [spe-

44::degron]) IV, RB1206 rsks-1(ok1255) III, RB754 aak-
2(ok524) X, VP303 rde-1(ne219) V; kbIs7[Pnhx-2::rde-1 

+ rol-6], WM118 rde-1(ne300) V; neIs9[myo-
3::HA::RDE-1 + pRF4(rol-6(su1006))] X. The following 

strain was generated in Di Chen lab: DCL4 rsks-

1(ok1255) III. The following strain was generated in 

Pankaj Kapahi lab: XA8205 aak-2(ok524) X.  

 

RNAi by feeding 
 

RNAi experiments were performed by feeding worms 

E. coli strain HT115 (DE3) transformed with either the 

empty vector L4440 as the control or gene-targeting 

constructs from the Ahringer RNAi Collection. All 

RNAi clones were verified by DNA sequencing. 

Overnight bacterial culture was seeded onto NGM 

plates supplemented with IPTG (1 mM) and Ampicillin 

(100 g / ml) and incubated at room temperature 

overnight to induce the production of double-stranded 

RNAs. For par-1 RNAi knockdown during 

development, gravid adult worms were allowed to lay 

eggs on par-1 RNAi plates at 20° C for 2 hours before 

removed. The progeny at late L4 stages was transferred 

onto dcr-1 RNAi plates with 20 g / ml (+)-5-

fluorodeoxyuridine (FUdR) and incubated at 25° C for 

two days before moved onto control RNAi plates. For 

par-1 RNAi knockdown during adulthood, late L4 

larvae were transferred onto par-1 RNAi plates with 

FUdR (20 g / ml) and incubated at 25° C for various 

assays. 

 

Lifespan assays 

 

Worms at the late L4 stages were transferred to fresh 

NGM or RNAi plates and incubated at 25° C or 20° C 

for survival assays. FUdR (20 g / ml) was used during 

day 1 to day 7 of adulthood to prevent progeny 

production. Animals were scored as alive, dead (no 

response to gentle touch) or lost (death from non-ageing 

causes such as sticking to the plate walls, internal 

hatching or bursting in the vulval region) every other 

day. Survival curves were plotted with the GraphPad 

Prism software and statistical analyses were performed 

using the log-rank method. 

 

Thermotolerance assays 
 

Synchronized L4 larvae were transferred onto the 

control or par-1 RNAi plates and incubated at 25° C for 

two days. Adult animals were then incubated at 35° C 

for survival assays. Animals were scored as alive or 

dead every other hour.  

 

UV stress assays 
 

Synchronized L4 larvae were transferred onto the 

control or par-1 RNAi plates and incubated at 25° C for 

two days. Adult animals were transferred to empty 

NGM plates and exposed to UV radiation (2,000 J / m
2
). 

50 μl of the OP50 bacterial culture was then added to 

each plate and animals were monitored for survival 

daily.  

 

Proteotoxicity-induced paralysis assays 
 

Synchronized AM140 (Poly Q) or CL2006 (Aβ) L4 

larvae were transferred onto the control or par-1 RNAi 

plates and incubated at 25° C. Animals were monitored 
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for paralysis, which is defined as no forward movement 

upon gentle touch with the platinum wire, every other 

day. Paralysis curves were plotted with the GraphPad 

Prism software and statistical analyses were performed 

using the log-rank method. 

 

Age-dependent muscular function decline assays 
 

Adult animals that have been treated with either the 

control or par-1 RNAi since the late L4 larval stage were 

individually transferred into the S buffer (100 mM NaCl 

and 50 mM potassium phosphate [pH 6.0]) and let to rest 

for 1 minute before the numbers of body bending per 30 

seconds were counted. Scatter graphs were plotted with 

the GraphPad Prism software and evaluated using two-

way ANOVA with Sidak's multiple comparison tests. 

 

Worm intestine micro-dissection 

 

Day 2 or day 6 adult animals treated with either the 

control or par-1 RNAi since the late L4 stage were 

transferred into the S buffer on a glass slide. Heads of 

animals were cut off near the pharynx using syringe 

needles to collect the intestinal tissue. At least 100 

intestine tissues were collected in the protein extraction 

buffer (150 mM NaCl, 1 mM EDTA, 0.25% SDS, 1.0% 

NP-40, 50 mM Tris-HCl [pH7.4], Roche complete 

protease inhibitors and phosSTOP phosphatase 

inhibitors) for each sample. 

 

Western blots and antibodies 

 

Approximately equal amount of dissected intestinal 

tissues was collected into the protein extraction buffer 

supplemented with the 4  SDS loading buffer. Samples 

were boiled for 10 minutes before resolving on precast 

SDS-PAGE gels (GenScript). Antibodies used in Western 

blots include anti-Phospho-AMPKα (CST, 2535S) and 

monoclonal anti-Tubulin Alpha (Sigma, T6074). 

 

Lipid staining by Oil Red O 

 

Day 2 or day 6 adult animals treated with either the 

control or par-1 RNAi since the late L4 stage were 

collected and fixed in 1% formaldehyde and frozen at -

80° C. The samples were subject to three cycles of 

freezing and thawing with dry ice / ethanol bath and a 

stream of warm water, respectively. After washed twice 

with the S buffer, animals were incubated in the Oil red 

O (3 mg / ml) solution for 30 minutes at the room 

temperature. Animals were then washed with the S buffer 

and incubated on ice for 15 min. Images were taken using 

a Nikon Eclipse Ni-U microscope equipped with a DS-

Fi2 color CCD. Mean intensity of Oil Red O signal in the 

second pair of intestinal cells was quantified using the 

Image J software. 

Statistical analysis 

 

Survival curves and scatter graphs were plotted with the 

GraphPad Prism software. Survival curves were 

evaluated with log-rank tests. Data in scatter graphs 

were plotted as means  SD and evaluated using two-

way ANOVA or t -tests. p < 0.05 was considered 

significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Lifespan extension induced by par-1 RNAi knockdown is not dependent on FUdR or temperature. 
(A) Survival curves of the auxin-inducible infertility strain PX627 treated with either the control or par-1 RNAi during adulthood at 25º C. The 
par-1 RNAi treatment significantly extends lifespan by 21% (p < 0.0001, log-rank test). (B) Survival curves of the wild-type N2 treated with 
either the control or par-1 RNAi during adulthood at 20º C. The par-1 RNAi treatment significantly extends lifespan by 23% (p < 0.0001, log-
rank test). 
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Supplementary Figure 2. The par-1(zu310) mutant shows significantly improved healthspan. (A) Survival curves of the wild-type 

N2 and par-1(zu310) animals at 35C (p = 0.0007, log-rank test). (B) Survival curves of the wild-type N2 and par-1(zu310) animals upon UV 
(2,000 J/m

2
) exposure (p = 0.0001, log-rank test). (C) Body bending rates of N2 and par-1(zu310) on day 2, 4, 6, 8, and 10 of adulthood (****, 

p < 0.0001, two-way ANOVA with Sidak's multiple comparison tests). 
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Supplementary Figure 3. The par-1(zu310) mutant shows AMPK activation and decreased lipid levels in the metabolic tissue. 
(A, B) Immunoblots (A) and quantification (B) of phospho-AAK-2 and tubulin using proteins extracted from dissected intestinal tissues of the 
wild-type N2 and par-1(zu310) mutant animals. Ratio of the phospho-AAK-2 band intensity to that of tubulin was normalized to the wild-type 

N2 animals. Data are represented as mean  SD based on two independent biological replicates. ns, not significant, *, p = 0.0443 (unpaired t - 
tests). (C, D) Representative Oil Red O staining images (C) and quantification (D) of the staining signal in the wild-type N2 and par-1(zu310) 

mutant day 2 and day 6 adult animals. Data are represented as mean  SD. ns, not significant, ****, p < 0.0001 (n = 40, two-way ANOVA with 

Sidak's multiple comparisons tests). Scale bar, 50 m. 
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Supplementary Tables 
 

 

Supplementary Table 1. Statistical analyses of lifespan assays. 

Genotype RNAi Tissue 
a
 

Lifespan (days) Percent of the 

control 
b
 

n 
c
 p 

d
 

Mean Max 

Effect of the par-1(zu310) mutant on lifespan (Figure 1A) 

N2 / / 13.66, 11.71 19, 17 / 79, 56 / 

par-1(zu310) / / 16.39, 14.53 25, 19 120%, 124% 49, 68 <0.0001, <0.0001 

        

Temporal requirement of par-1 in lifespan regulation (Figure 1B) 

N2 

control 

global 

13.93, 13.14 19, 17 / 84, 58 / 

par-1 (Dev) 14.23, 12.88 19, 17 102%, 98% 60, 50 0.5368, 0.3680 

par-1 (AD) 17.18, 14.69 23, 19 123%, 112% 80, 71 <0.0001, <0.0001 

par-1 (Dev+AD) 17.73, 14.74 25, 21 127%, 112% 74, 69 <0.0001, <0.0001 

        

Spatio requirement of par-1 in lifespan regulation (Figure 3) 

N2 
control 

global 
14.03, 13.63 19, 17 / 70, 63 / 

par-1 16.28, 15.79 23, 21 116%, 116% 69, 66 <0.0001, <0.0001 

rrf-1 
control germline + 

intestine 

13.32, 13.51 17, 17 / 63, 55 / 

par-1 13.94, 13.76 19, 17 105%, 102% 68, 58 0.1756, 0.2838 

rde-1; kbIs7 
control 

intestine 
12.36, 12.05 17, 15 / 50, 59 / 

par-1 12.15, 11.97 17, 15 98%, 99% 54, 60 0.6433, 0.6665 

rde-1; neIs9 
control 

muscle 
13.67, 13.16 19, 17 / 63, 61 / 

par-1 13.67, 13.44 19, 17 100%, 102% 60, 64 0.7955, 0.6097 

rde-1; kzIs9 
control 

epidermis 
13.63, 13.44 19, 17 / 63, 63 / 

par-1 15.43, 16.21 23, 21 113%, 121% 69, 63 <0.0001, <0.0001 

        

Epistatic analysis of par-1 for its effect on lifespan (Figure 4) 

daf-16 
control 

global 
9.61, 11.40 13, 17 / 62, 177 / 

par-1 11.24, 13.06 17, 21 117%, 115% 67, 174 <0.0001, <0.0001 

daf-2 
control 

global 
28.82, 29.99 49, 39 / 101, 75 / 

par-1 33.46, 33.64 53, 41 116%, 112% 109, 84 <0.0001, <0.0001 

glp-1 
control 

global 
15.24, 17.14 27, 23 / 139, 58 / 

par-1 20.30, 18.97 27, 25 133%, 111% 123, 61 <0.0001, 0.0089 

eat-2 
control 

global 
16.77, 15.75 25, 21 / 192, 69 / 

par-1 17.20, 17.36 25, 21 103%, 110% 131, 67 0.1489, 0.0053 

rsks-1 
control 

global 
15.53, 14.94 21, 21 / 60, 62 / 

par-1 15.39, 14.78 21, 21 99%, 99% 61, 64 0.7661, 0.7359 

aak-2 
control 

global 
12.05, 12.30 15, 17 / 61, 60 / 

par-1 11.87, 12.51 15, 17 99%, 102% 60, 61 0.4647, 0.6463 

a
, tissues in which RNAi is mainly effective. 

b
, changes in mean lifespan compared to the control. 

c
, numbers of animals scored. 

d
, log-rank tests. 
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Supplementary Table 2. Statistical analyses of thermotolerance assays. 

Genotype RNAi Survival (hours) Percent of the 
control 

a n 
b p 

c 
Mean Max 

N2 control 15.31, 12.81 20, 18 / 61, 47 / 
par-1 18.11, 15.70 22, 20 118%, 123% 57, 54 <0.0001, <0.0001 

a
, changes in the mean survival compared to the control. 

b
, numbers of animals scored. 

c
, log-rank tests. 

 

Supplementary Table 3. Statistical analyses of UV stress assays. 

Genotype RNAi 
Survival (days) 

Percent of the control 
a n 

b p 
c 

Mean Max 

N2 
control 2.63, 2.90 4, 4 / 54, 154 / 
par-1 3.24, 3.39 5, 6 123%, 117% 59, 160 0.0003, <0.0001 

a
, changes in the mean survival compared to the control. 

b
, numbers of animals scored. 

c
, log-rank tests. 

 

Supplementary Table 4. Statistical analyses of proteotoxicity assays. 

Genotype RNAi 
Paralysis (days) Percent of the 

control 
a 

n 
b p 

c 
Mean Max 

polyQ-induced paralysis 

rmIs132(unc-54p::Q35::YFP) 
control 9.48, 10.82 13, 15 / 42, 113 / 
par-1 11.52, 12.40 15, 17 122%, 115% 42, 100 <0.0001, <0.0001 

Aβ-induced paralysis 

dvIs2(unc-54p::Aβ1-42 + pRF4) 
control 8.93, 10.52 14, 13 / 69, 63 / 

par-1 11.24, 11.92 16, 15 126%, 113% 68, 61 <0.0001, <0.0001 

a
, changes in the mean paralysis time compared to the control. 

b
, numbers of animals scored. 

c
, log-rank tests. 

 

Supplementary Table 5. Statistical analyses of muscular function assays. 

Age RNAi Number of body bends / 30" Average STD n 
a p 

b 

day 2 control 39, 35, 38, 42, 40, 41, 42, 40, 42, 45 40.4 2.72 10 / 

par-1 54, 52, 60, 50, 54, 50, 51, 52, 54, 60 53.7 3.65 10 <0.0001 
day 4 control 39, 35, 32, 33, 35, 33, 34, 35, 40, 35 35.1 2.56 10 / 

par-1 44, 45, 51, 45, 43, 46, 42, 43, 45, 43 44.7 2.54 10 <0.0001 
day 6 control 31, 26, 25, 26, 27, 32, 28, 30, 24, 30 27.9 2.73 10 / 

par-1 39, 40, 45, 35, 41, 36, 39, 35, 36, 46 39.2 3.94 10 <0.0001 
day 8 control 12, 20, 19, 14, 10, 16, 13, 18, 19, 18 15.9 3.45 10 / 

par-1 26, 27, 25, 25, 30, 26, 33, 28, 38, 26 20.6 4.20 10 <0.0001 
day 10 control 5, 1, 11, 0, 8, 11, 11, 2, 13, 6 6.9 4.61 10 / 

par-1 22, 26, 17, 20, 23, 23, 22, 20, 14, 19 20.6 3.41 10 0.0029 

a
, numbers of animals scored. 

b
, two-way ANOVA with Sidak's multiple comparison tests. 

 


