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Abstract
Model-informed drug discovery is endorsed by the US Food and Drug 
Administration (FDA) to improve the flow of medicines from bench to bedside. 
In the case of monoclonal antibodies, this necessitates taking into account not 
only the pharmacokinetic (PK) properties of the drug, but also the tissue distribu-
tion, concentration, and turnover of the target to guide dose and affinity selection, 
as well as serve as a link to downstream pharmacology. Relevant information 
(e.g., tissue proteomic data from quantitative mass spectrometry), is increasingly 
available from public domain data repositories, although not necessarily in the 
form that is directly usable for the purpose of quantitative, predictive, and mecha-
nistic PK/pharmacodynamic (PD) modeling based on molarity or similar frame-
works instead. Using secreted plasma protein concentrations measured both by 
immunochemical methods and mass spectrometry, we addressed this gap and de-
rived an optimized nonlinear empirical function that establishes the correlation 
between the two data sets and validated the approach taken using a wider data set 
of all proteins found in plasma. In addition, we present a semimechanistic frame-
work for the plasma half-life of soluble proteins where clearance is expressed as 
a nonlinear function of the molecular weight of the protein. Finally, we apply the 
approach to two established therapeutic antibody targets: complement factor C5 
and PCSK9 to demonstrate how the described framework can be applied to pre-
dictive PK/PD modeling.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Model-informed drug development paradigm is increasingly being applied from 
the earliest stages of the development of novel monoclonal antibodies in order to 
improve the success rate in the clinic but this can be limited by the availability of 
relevant biochemical information.
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INTRODUCTION

Monoclonal antibodies (mAbs) are widely used in 
the clinic for the treatment of diseases ranging from 
immuno-inflammation to oncology.1,2 Despite the need 
and necessity, the discovery and development of novel 
drugs, including mAbs, remains time-consuming, ex-
pensive,3 and prone to attrition.4 Model-informed drug 
development (MIDD) paradigm has been endorsed by 
the US Food and Drug Administration (FDA) to en-
courage the application of quantitative modeling and 
simulation from the earliest stages of drug discovery in 
order to improve the success rate of new medicines later 
in the clinic.5 This is especially relevant in the case of 
mAbs, where target-related interactions can drastically 
affect the elimination of the drug with consequences 
for downstream pharmacology. Quantitative analysis of 
these processes requires taking into account the concen-
trations and turnover of the target, as well as the affinity 
and dosing of the drug itself. Although often available 
from biochemical studies, recent advances in quantita-
tive mass spectrometry have extended significantly the 
data available to cover most of the proteome, including 
parts of it that are less amenable to earlier methods. 
Whereas potentially highly valuable, the mass spectro-
metric data do not necessarily come in the form that can 
be directly incorporated into pharmacokinetic/pharma-
codynamic (PK/PD) modeling where molar concentra-
tions are of critical importance as the pillars of mass 
action kinetics.

We demonstrate that this difficulty can be overcome 
by establishing an empirical quantitative correlation be-
tween the “parts per million” (ppm) mass spectrometric 
plasma protein abundance information from the PaxDb 
database6 and biochemically measured respective molar 
concentration values. For target turnover of plasma pro-
teins, we suggest incorporating information from stable 

isotope labelling with amino acids in cell culture studies 
of protein turnover and hydrodynamic radius-dependent 
renal clearance.

We used complement C5 and proprotein convertase 
subtilisin/kexin type 9 (PCSK9) as paradigm targets to il-
lustrate how this framework, within a single-compartment 
drug-ligand binding model,7 can be used to support real-
istic decision making for mAbs at the early stages of drug 
discovery. We suggest that this approach can be useful 
whenever target abundance and turnover are likely to 
have a significant effect on the PK/PD profile of the drug 
as well as the target.

METHODS

Source of protein levels in human plasma

Human plasma protein concentrations were downloaded 
from public databases8–11 and converted to nM using 
predicted molecular weight from UniProt,12 except for 
Wiśniewski et al.,11 which were already in nM. In addi-
tion, we classified each protein according to their pre-
dicted location (intracellular, membrane, and/or secreted) 
as reported by the Human Protein Atlas database (version 
21.0).13 Plasma protein mass spectrometric abundance 
values were downloaded from the PaxDb database created 
by Wang et al.6

Inclusion/exclusion criteria for the  
prediction of protein levels in human  
plasma

Only secreted plasma protein “integrated” data were used 
to establish the correlation between ppm and molarity, as 
these represent the consensus estimates. Plasma proteins 

WHAT QUESTION DID THIS STUDY ADDRESS?
We looked at the alternative ways for estimating target concentrations and turno-
ver when there are little to no biochemical data available and related that to the 
dose and affinity of the mAb.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We demonstrate that it is feasible to derive target concentrations and estimate 
plasma protein turnover from quantitative protein mass spectrometric data and 
molecular weight-based semimechanistic renal clearance modeling, respectively.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
This approach allows the evaluation of target druggability as well as setting the 
criteria for the desired monoclonal antibody affinity and efficacious human dose 
at the earliest stage of drug discovery.
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with missing or duplicated concentrations were removed, 
as well as proteins for which the molecular weight was 
not available from UniProt. Validation of the predictive 
performance of the model was subsequently performed 
using the other proteins from the above data set, except 
for intracellular proteins.

Software

Modeling and statistical analysis was performed using 
a nonlinear mixed effect approach as implemented in 
NONMEM version 7.5.14 Pre and postprocessing of data, 
as well as simulations were performed in R version 4.1.1.15 
Literature data were digitized using WebPlotDigitizer.16

Prediction of protein levels in human  
plasma

Mass spectrometric ppm concentration values vary by 
about 7.5 orders of magnitude in the data set used, while 
for the biochemical molar concentration values the range 
is almost nine. Both a linear regression (Equation  1) 
and sigmoidal-shape model (Equation  2) were tested 
to describe the relationship between ppm and molar 
concentrations:

whereby Int represents the intercept of the linear re-
gression model, Base and MaxDV the minimum and 
maximum predicted protein concentrations (in nM), re-
spectively, and ppm50 the ppm value whereby predicted 
concentrations are 50% of MaxDV. Additive residual error 
(on the log10 transformed protein concentrations) was 
used (Equation 3):

whereby PRED represents the population predicted con-
centration (in log10 nM) and ε the estimated residual error 
which is assumed to follow a normal distribution with mean 
zero and variance σ2.

The goodness of fit was evaluated visually, by pa-
rameter precision (relative standard error) and Akaike 
Information Criterion (AIC),17 which was calculated 
using Equation 4:

where OFV represents the minimum objective function 
value and P the number of model parameters.18 The model 
with the lowest AIC was considered the superior model. The 
relative likelihood (RL) of the models was subsequently de-
rived from AIC using Equation 5.

Prediction of protein half-life in human  
plasma

Plasma protein half-life was analyzed in terms of protein 
size-dependent elimination by renal filtration and size-
independent default elimination, as previously described 
by Sepp et al.19 Renal elimination was described as a func-
tion of protein size, where ae is its hydrodynamic radius in 
nm, MW denotes molecular weight in kDa, and Θ repre-
sents the glomerular filtration coefficient19:

The protein default elimination rate constant (kelim) was 
calculated from the predicted glomerular filtration coeffi-
cient using human glomerular filtration rate (GFR) value of 
8400 ml/h20 and postulating the volume of distribution (Vss) 
as 6000 ml that is typical for therapeutic antibodies.21 An in-
trinsic elimination rate constant (kelim,0) of 0.00693 1/h was 
added for the equation to yield the half-life of around 100 h 
for proteins with the glomerular filtration coefficient close 
to zero (e.g., what IgG would have in FcRn-saturating con-
ditions), when macropinocytosis, a nonspecific clearance 
pathway, dominates.22–24

The macropinocytosis-predicted half-life should be 
considered as an upper threshold value (i.e., the observed 
protein half-lives may be faster than predicted by the 
model), if proteolytic degradation or receptor-mediated 
clearance are significant. The correlation between pro-
tein half-life and molecular weight by Kontermann25 and 
Strohl26 were used to assess the model performance to pre-
dict human plasma protein half-life from the molecular 
weight. It should be noted that it is the molecular weight 
of the circulating protein, and if information is available 

(1)log10 (nM) = Int + slope ⋅ log10 (ppm)
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for any relevant post-translational modifications like gly-
cosylation or dimerization, that should be factored in.

Example: Application of the modeling 
framework for early human dose 
prediction for a human complement 
C5- and PCSK9 neutralizing mAbs

A quasi-steady-state drug-ligand binding kinetic model7 
was used for the PK/PD simulations (Figure S1). The model 
consists of a system of differential equations to describe the 
change of drug, free target, and complex concentrations 
over time in a two-compartment framework. Disposition 
parameters in humans were assumed to follow published 
typical values21 (Table S1). The complex elimination rate 
(kint) was assumed to be the same as the mAb elimination 
rate (kel).

27 Baseline levels and turnover of C5 and PCSK9 in 
human plasma was predicted by the aforementioned mod-
els and compared with literature values.

The C5 inhibition was analyzed at a range of dos-
ing regimens and intervals typical for therapeutic mAbs 
(every 7, 14, and 28 days as 1 h intravenous [i.v.] infu-
sions). PCSK9 inhibition was analyzed at similar dosing 
regimens and intervals, but administered as subcutane-
ous (s.c.) injections. Absorption parameters were as-
sumed to follow published typical values (Table S1).28 
Sensitivity analysis was performed using the median 
predicted system parameters as well as assuming a 
worst-case scenario of higher than predicted baseline 
levels or faster turnover on the predicted target inhi-
bition. The optimal human dose was selected based on 
the dosing regimen that was deemed to have the best 
likelihood of achieving a target inhibition of ≥95% in 
the clinic.

RESULTS

Correlation between mass spectrometric 
and biochemical estimates for plasma 
protein in humans

In total, there was mass spectrometric data for 4086 plasma 
proteins in the PaxDb database with UniProt ID available, 
whereas biochemical assays provided data for 3651 pro-
teins with 4900 concentration values. After application of 
the exclusion criteria, the combined final human plasma 
proteome dataset contained 2457 mass spectrometric ppm 
values (i.e., 2457 unique proteins) and 3643 biochemical 
measurements (Figure  S2). Of these, 555 plasma con-
centrations from 274 proteins that were classified as se-
creted proteins were used for model training, whereas the 

remaining proteins (except intracellular) were reserved 
for model validation purposes.

Parameter estimates for both the linear and sigmoidal 
models are shown in Table 1. As shown in Figure 1, both 
the linear and sigmoidal models performed well for pro-
teins in the medium concentration range. However, the 
latter captured better the data at extremes (Figure 1). This 
was reflected in the lower AIC value for the sigmoidal 
versus linear model (230.39 vs. 293.36, respectively) and 
in the better goodness of fit plot (Figure S3). The relative 
likelihood of the linear model being better than the sig-
moidal one was calculated as 2.12E-14 (i.e., the sigmoidal 
model provides significantly better overall correlation for 
the two data sets), principally due to the large data set 
and wide dynamic range of the values available. External 
validation of the model using the other proteins found in 
plasma (e.g., the shed extracellular domains of membrane 
proteins and intracellular proteins released on cell lysis), 
demonstrated good predictive performance of the sig-
moidal model (Figure 2). Likewise, the plasma concentra-
tion predictions were also within two-fold (11 out of 17)  
or four-fold (16 out of 17) of reported literature values for 
some of the current therapeutic mAb targets, suggesting 
good performance of the sigmoidal-shaped empirical cor-
relation for clinically relevant targets (Figure 3).

Turnover of plasma proteins in humans

The empirical Equation  8 postulates two independ-
ent pathways of elimination for plasma proteins. First, 

T A B L E  1   Overview of model parameter estimates describing 
the correlation between ppm and plasma concentrations for soluble 
proteins using a linear and sigmoidal model

Parameter
Estimate 
[%RSE]

Linear model

Objective function, OFV 289.36

Intercept, log10 nM 0.948 [6.89]

Slope 1.035 [2.66]

Additive residual error on log10 scale, σ2 0.620 [8.16]

Sigmoidal model

Objective function, OFV 222.39

Base, log10 nM 2.533 [14.0]

Hill 0.275 [15.8]

ppm50 267.55 [64.4]

MaxDV, log10 nM 5.60 [15.0]

Additive residual error on log10 scale, σ2 0.549 [7.75]

Abbreviations: MaxDV, maximum predicted protein concentrations; OFV, 
objective function value; ppm, parts per million; RSE, relative standard error.



1638  |      MULIADITAN and SEPP

there is invariant elimination with the rate constant 
kelim,0 that applies to all proteins and reflects the de-
fault pinocytosis-related clearance. Second, there is a 
protein size-dependent component that reflects renal 
elimination and depends on the hydrodynamic size of 
the protein. This pathway contributes increasingly as 

the molecular weight of the protein decreases below 
~60 kDa renal filtration cutoff value. This approach 
proved to be an adequate prediction of plasma protein 
turnover (Figure 4) except for albumin and IgG, which 
are subject to FcRn mediated half-life extending endo-
somal recycling.

F I G U R E  1   Comparison of the 
predicted correlation (solid lines) 
between ppm and plasma concentrations 
for soluble proteins using a linear and 
sigmoidal model. Circles represent the 
observed data. ppm, parts per million

F I G U R E  2   External validation of the sigmoidal model to describe the relationship between ppm and plasma concentrations. One 
thousand simulations were performed to derive the predicted median plasma concentrations and corresponding 90% prediction interval. 
Secreted proteins were used as the training dataset. ppm, parts per million
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Example 1: Application of the modeling 
framework to early assessment of human 
dose for a complement C5-neutralizing  
mAb

The sigmoidal concentration correlation model predicted 
a C5 plasma baseline level of 153 (90% prediction interval 

[PI]: 9.9–2438) nM, whereas the half-life was assigned 
as 100 h (due to a high molecular weight of 190 kDa). At 
these values, the drug-ligand binding model prediction for 
the human dose for an anti-C5 mAb with KD of 100 pM 
that would be required to achieve >95% reduction in free 
C5 relative to the pre-dosing levels was ≥3 mg/kg q7d or 
≥6 mg/kg q14d or ≥20 mg/kg q28d (Figure 5a). By way of 

F I G U R E  3   Predicted versus observed plasma concentrations of some of the current therapeutic mAb targets. Dotted lines represent a 
two-fold or four-fold deviation from the observed value. C1S, complement C1s subcomponent; CCL2, C-C motif chemokine 2; CCL21, C-C 
motif chemokine 21; CD81, CD81 antigen; CO2, complement C2; CO3, complement C3; CO5, complement C5; CTGF, CCN family member 
2; EGFR, epidermal growth factor receptor; IL18, interleukin-18; IL4RA, interleukin-4 receptor subunit alpha; IL6RA, interleukin-6 receptor 
subunit alpha; OSTP, osteopontin; PCSK9, proprotein convertase subtilisin/kexin type 9; SLAF7, SLAM family member 7; TFPI1, tissue 
factor pathway inhibitor; VGFR2, vascular endothelial growth factor receptor 2

F I G U R E  4   Predicted (solid line) versus observed (circles) correlation between protein half-life and molecular weight in human plasma. 
Observed protein half-lives were digitized from Kontermann25 (a) or Strohl26 (b). GLP, glucagon-like peptide; IGF, insulin-like growth factor; 
PYY, peptide tyrosine tyrosine
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sensitivity analysis, if one allows for the four-fold higher 
plasma concentration (which appears to be a reasonable 
assumption based on Figure 3) than that predicted from 
the model or four-fold shorter half-life, the required dose 
will increase proportionally to ≥12 mg/kg q7d or ≥20 mg/
kg q14d (Figure 5a).

The recommended efficacious human dose was, 
subsequently, compared with the therapeutic dose of 
the approved anti-C5 mAb (eculizumab) from a phase 
III clinical trial in patients with paroxysmal nocturnal 
hemoglobinuria (PNH).29 The clinically efficacious 
maintenance dose of 12–15 mg/kg q14d lies between 
the two model-based scenarios described above. Some 
discrepancy was observed between the predicted and 
observed total C5 following eculizumab administra-
tion (Figure S4). Sensitivity analyses revealed that the 
uncertainty was mainly due to the bias of the base-
line C5 level prediction (although the true value falls 
within the range of simulation scenarios) and the 
kdeg/kint ratio, as the half-life of eculizumab is reduced 
when bound to C5. This insight would not be known 
at the early assessment stage. The predicted half-life 
of C5 was close to the reported clinical value (100 h vs. 
85 h, respectively, due to the large size of the protein 
at 190 kDa molecular weight). If the biochemical assay 
value had been adopted for the plasma concentration 
of C5, the model would have been able to predict the 
PK/PD correlation almost correctly (Figure S4). There 
is no statistically significant difference between plasma 
C5 concentrations in healthy patients and in patients 
with PNH (103 ± 19 vs. 133 ± 38 mg/ml, respectively)30 
and in therapeutic application the plasma concentra-
tion of free C5 is reduced to <5% of the predosing level 
for efficacy.30

Example 2: Application of the modeling 
framework to early assessment of human 
dose for a human PCSK9-neutralizing mAb

The sigmoidal concentration correlation model predicted 
a PCSK9 plasma baseline level of 1.88 (90% PI: 0.11–29.7) 
nM, whereas the half-life was assigned as 97.5 h based on 
its molecular weight (74 kDa). At these values, the drug-
ligand binding model prediction for the human dose for 
an anti-PCSK9 mAb with KD of 100 pM that would be re-
quired to achieve >95% reduction in free PCSK9 relative 
to the predosing levels was ≥0.1 mg/kg q7d or ≥0.3 mg/kg  
q14d or ≥1 mg/kg q28d (Figure 5b). By way of sensitivity 
analysis, if one allows for the four-fold higher plasma con-
centration than that predicted from the model or four-fold 
shorter half-life, the required dose was predicted to in-
crease to ≥0.3 mg/kg q7d or ≥1 mg/kg q14d or ≥2 mg/kg  
q28d (Figure 5b).

The recommended efficacious human dose was, sub-
sequently, compared with the therapeutic dose of an ap-
proved anti-PCSK9 mAb (evolocumab), which is either 
140 mg or 420 mg q28d31 (i.e., equivalent to 2 mg/kg q14d 
or 6 mg/kg q28d for a typical 70 kg subject). The predicted 
PCSK9 plasma baseline level (1.88 nM) was comparable to 
published estimated value in healthy subjects (3.36 nM).32 
Baseline levels in patients with hypercholesterolemia sta-
bly treated with statins (5.27 nM)32 was underpredicted, 
but still fell within the four-fold uncertainty range, that 
was included in the sensitivity analysis. On the other 
hand, the reported half-life of PCSK9 in human (7.8 h)32 
was faster than the predicted half-life (97.5 h), due to 
low-density lipoprotein receptor (LDLR) mediated clear-
ance. Complex elimination rate (kint) was reported to be 
0.0022 1/h,32 which was quite close to the model initial 

F I G U R E  5   Predicted dosing interval versus dose and C5 (a) or PCSK9 (b) inhibition at trough using the proposed modeling framework. 
Target engagement (numbers shown in each cell) was predicted under different scenarios
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assumption (kint  =  kel  =  0.0032 1/h). Nevertheless, de-
spite the discrepancies between the initial assumed and 
published estimated PCSK9 plasma baseline level and 
half-life, it can be concluded that the proposed MIDD ap-
proach still led to predicted human doses that were quite 
close to the current therapeutic doses.

DISCUSSION

Prediction of plasma protein concentration 
and turnover

Target protein abundance and turnover are two key param-
eters required for the analysis of target druggability and, 
in this work, we are proposing an early target druggability 
assessment scheme based on both. Most notably, we find 
there to be good correlation between the concentration val-
ues from biochemical assays and mass spectrometric meas-
urements that span seven orders of magnitude range. Often 
a range of values from different laboratories is available,8–11 
so that the most likely one can be identified. The approach 
described by us is most useful if only mass spectrometric 
values are available and potentially in cases where dynamic 
changes in plasma proteome composition in response to the 
drug is analyzed for PD purposes and converted into bio-
chemically more usable molarity concentrations.

When the target concentration estimate is combined 
with turnover and clearance, the empirical framework 
presented can be used to analyze the likely dosing range 
for an antibody of given affinity. If there are unaccounted 
specific or nonspecific clearance pathways in operation in 
addition to glomerular filtration and macropinocytosis, 
the net result would be shorter than the model-predicted 
half-life and higher than expected accumulation of the 
complex with the mAb. In this case, dose elevation and/or 
affinity maturation of the mAb may need to be considered 
for maintaining the desired threshold level of free target. 
Likewise, if the protein target dimerizes in solution, it is 
the molecular weight of the dimer that is used for glomer-
ular filtration, as well as any other post-translational mod-
ification that affects molecular weight (e.g., glycosylation).

The observed nonlinearity between mass spectromet-
ric ppm and biochemical molarity values is more strongly 
pronounced in the case of low concentration proteins 
present in the plasma in the picomolar range (e.g., cyto-
kines), where the assays are pushed to their sensitivity 
limits. Even with this caveat, the model accurately pre-
dicted the validation data sets where the extended plasma 
proteome was analyzed. A <4-fold deviation for a set of 
therapeutically relevant targets confirms good overall per-
formance of the model.

Second, we propose an empirical function which re-
lates the plasma half-life of proteins to its molecular 
weight. Equation  8 is parameterized to yield a half-life 
of around 100 h for proteins with a molecular weight 
>67 kDa, which are not subject to renal elimination or 
FcRn-mediated recycling, whereas the smaller proteins 
are progressively rapidly removed through the kidneys 
as their size decreases. As a result, the presented model 
can be used to predict plasma protein turnover in cases 
where such information is not available from public of da-
tabases.33,34 It is important to notice that this does not take 
into account more specific clearance pathways which may 
decrease the half-life further still, for example, proteolytic 
degradation or internalization through membrane-bound 
interaction partners, such as PCSK9, for which the re-
ported human half-life was shorter than predicted. In this 
case, the discrepancy could be explained by the fact that 
current approach does not account for PCSK9 internal-
ization through binding with LDLR. This would manifest 
itself through more extensive accumulation of the mAb 
complex than expected from the predicted half-life and 
predosing target level alone, requiring the presence of the 
mAb at higher concentration or better affinity for the de-
sired therapeutic outcome.

Application of the modeling framework

Using complement C5 and PCSK9 as an example, we 
showed that it is possible to closely predict the antici-
pated efficacious human dose by using the quantitative 
modeling approach described here, at the early stages of 
drug discovery already. Despite some discrepancy in the 
predicted and observed total C5, the predicted human 
dose based on a hypothetical 100 pM mAb (based on 
achieving >95% C5 inhibition observed in the clinical 
setting, and supported by similar reduction of C5 con-
vertase turnover in self-amplified in vitro reactions),35–37 
closely correlated with current therapeutic doses of ecu-
lizumab (840 mg q7d for 70 kg subject vs. 600–900 mg 
q7d). Similar results were achieved with PCSK9, where 
predicted human doses were quite close to current thera-
peutic doses of evolocumab. These findings suggest that 
despite the simplicity and assumptions made, including 
constant expression rate of the target, the approach de-
scribed can be informative in the MIDD process from the 
earliest stages even before any lead molecule is gener-
ated and tested, due to the practical limitations of doses 
that can be given in the clinic. Likewise, if the desired 
free target threshold level is known, an assessment can 
be made for the affinity requirement of the mAb for a 
given dose.
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LIMITATIONS

The correlation between mass spectrometric and bio-
chemical protein concentration estimates across the 
entire data set that covered around eight orders of mag-
nitude, is significant but is also associated with statisti-
cal uncertainty. Due to the large variability in the data, 
90% PI across the ppm range covered approximately 
two orders of magnitude on log10 scale (i.e., 100-fold), 
which is a major caveat that needs to be considered dur-
ing modeling. Likewise, tissue distribution and accessi-
bility to mAbs may not be reflected sufficiently in a very 
simple model used herein whereas the overall dose will 
also depend on the threshold level of free target level 
that must be achieved and maintained, as well as the 
affinity of the mAb. The desired free target levels may 
be below predosing normal and/or healthy levels as in 
the C5 and PCSK9 example given but this is ultimately 
determined by the etiology of the disease and independ-
ent mechanistic insight available. In addition, it should 
be noted that baseline levels and turnover are predicted 
using literature data measured in healthy volunteers, 
which may deviate from levels in patients. It is therefore 
important for modelers to always keep the target biol-
ogy, including differences between healthy and disease 
conditions, in mind when performing the human dose 
predictions.

It is important to stress that these are early human 
dose predictions which one would typically perform at 
early lead optimization in which experimental data may 
not be available. To address the expected uncertainties at 
such an early stage, it would be prudent to regularly per-
form human dose predictions at a range of scenarios. In 
this way, the impact of the degree of uncertainty regarding 
target- and drug-specific parameters on the predicted effi-
cacious human dose can be constantly taken into account 
for each decision making stage, whereas the knowledge 
gaps can decrease as more experimental data becomes 
available as the project moves toward the clinical stage. 
Further evaluation of the proposed approach to predict 
human dose at early lead optimization for other targets is 
warranted.

In summary, we have demonstrated how easily accessi-
ble information can be used in the spirit of MIDD to crit-
ically evaluate significant aspects of drug discovery, such 
as the likely dose and affinity of the medicine prior to lead 
optimization, so that effort can be focused on areas where 
the likelihood of success is the highest.
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