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Abstract: The wild-type protein p53 plays a key role in preventing the formation of neoplasms by
controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense
mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length
protein with the substitution of a single amino acid, resulting in structural and functional changes
and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms
is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant
functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing
its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and
functional changes following post-translational modifications of redox-sensitive cysteine residues,
which are also responsible for interacting with zinc ions for proper structural folding. We will also
discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying
the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for
patients possessing the mutation in the TP53 gene.
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1. Introduction

Oxidative damage to proteins has a critical role in promoting several disorders such
as degenerative diseases and cancer [1,2]. Under oxidative stress conditions, several key
redox sensitive amino acids can be modified by reactive oxygen and nitrogen species
(ROS and RNS), affecting the structure, activity or ligand binding capacity of targeted
proteins [3]. Cysteine residues of proteins have both structural and regulatory roles and are
particularly susceptible to oxidation [4]. This reactivity leads the cysteine residues to act
as redox-sensitive molecular sensors or switches with catalytic activity and metal binding
capacity that are oxidative status-dependent [4,5]. Thus, cysteine redox modifications have
an important role in allowing proteins to respond to ROS, controlling redox homeostasis
and the ROS-mediated cellular pathway [5].

Several proteins like the transcription factor p53 are regulated via redox mecha-
nisms [6]. The TP53 tumor suppressor gene encodes a DNA-binding protein that regulates
numerous cellular processes like cell growth and cell death [7]. The p53 DNA-binding
ability is dependent on wild-type conformation of the protein and is regulated by post-
translational modifications [8]. A wide variety of human cancers carry TP53 mutations,
most commonly missense mutations [9]. Mutant p53 proteins generally lose DNA binding
capability of the tumor suppressor wild-type p53, acquiring additional oncogenic activities
called gain-of-function activities (GOFs) [10]. Several studies reported that, in contrast with
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the wild-type protein, mutant p53 isoforms counteract antioxidant activity and enhance in-
tracellular ROS, influencing the cellular redox balance and promoting cancer survival [11].
The DNA-binding core domain of wild-type p53 has key cysteine residues, crucial for
the protein structure and function. From a therapeutic perspective, p53 cysteine residues
are important targets of novel compounds that refold missense mutant p53 binding to
specific p53 cysteine residues [6]. In this review, we summarize the redox-sensitive cysteine
residues of wild-type and mutant p53, describing cysteine oxidative post-translational
modifications to highlight their importance as target therapy for promoting p53 correct
folding and activity and regulating mutant p53 oxidative responses.

2. Structure and Function of Wild-Type p53 and of Its Mutant Counterpart

The oncosuppressor p53 protein acts as a transcription factor and contains differ-
ent functional domains: (i) N-terminal transactivation domain (TAD) which interacts
with the transcriptional machinery; (ii) proline rich-region (PRD), which is required for
p53 stabilization; (iii) DNA binding domain (DBD), in which the responsive element
binds proteins such as MDM2 and 53BP1 that, respectively, positively or negatively affect
p53 activity; (iv) oligomerization domain (TET) which is essential for tetramer forma-
tion and represents the active form of p53 and (v) C-terminal regulatory domain (REG),
containing post-translationally modified residues involved in modulation of protein stabil-
ity [12]. Specifically, the DNA-binding core domain of the p53 protein has 10 cysteine (Cys)
residues [13], three of them, Cys 176, Cys 238, and Cys 242, together with His179, hold
a divalent zinc atom that is crucial for the correct folding of p53 and the stabilization of
loop/helical structure of the core domain in the wild-type conformation (Figure 1) [13,14].
The p53 tetramer coordinates a single Zn2+ in each one of its four equal subunits. Zinc
chelation disrupts this architecture due to oxidation of several cysteines and formation of
disulfide-bound protein aggregates [15]. The intracellular concentration of free zinc ions
modulates p53 activity and stability but the excess or loss of zinc alter the p53 protein
structure and compromise DNA binding and transcriptional activity [15,16]. Upon activa-
tion, p53 directly regulates the transcription of around 500 genes and indirectly regulates
several additional genes and thereby controls diverse cellular processes [17]. On the basis
of the cell type and the type of cellular stress, downstream targets are transcribed. p53, as a
tumor suppressor, transcriptionally regulates a lot of target genes that are implicated in
various biological processes including DNA damage repair (i.e., GADD45α, PCNA), cell
cycle arrest (i.e., CDKN1A), senescence, and apoptosis (i.e., Puma, Noxa, Bax, Bid, Casp1,
6 and 10) [18]. p53 is also able to influence cell metabolism decreasing both glycolytic
rate (i.e., TIGAR, GLUT1) and protein synthesis (i.e., SESN1, SESN2, SESN3) lowering
ROS at the same time [19,20]. Moreover, a number of transcriptional targets of p53 are
directly or indirectly involved with redox homeostasis. Among the redox controlling genes,
specifically upregulated are glutathione peroxidase (GPX), p53 induced genes (PIGs), and
glutaredoxin 3 (Grx3) [21].

Another important aspect is that oxidation of p53 or chelation of Zn2+ turned wild-
type p53 into a form functionally similar to mutant p53 as described in the His 175 mutant
where the mutation disrupts normal zinc/redox dependent folding [22,23].

Under the non-stressed condition, wild-type p53 protein is maintained at a low level
in cells by the proteasome degradation pathway [17]. In response to a wide variety of
stress signals, the p53 protein is stabilized through post-translational modifications and
it becomes able to promote the coordinated expression of many target genes through the
binding to specific DNA sequence in the regulatory regions of its target genes [24]. In
this way, p53 regulates a wide range of cellular biological processes to maintain genomic
integrity and prevent tumor formation, including antioxidant defenses as described in the
next paragraph.
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Figure 1. Domain structure of p53. Human p53 is composed of 393 amino acid residues and has an
N-terminal transactivation domain (TAD), proline-rich domain (PRD), DNA-binding domain (DBD),
tetramerization domain (TET), C-terminal regulatory domain (REG). The magnification shows the
residues involved in the coordination of a zinc ion.

2.1. Wild-Type p53 Regulates Redox Balance

Several types of stress cause ROS accumulation and p53 protects the oxidation of the
genome by ROS that are the major cause of genetic instability [25,26]. The regulation of ox-
idative stress by p53 is complex, exerting both pro-oxidative and anti-oxidative effects [27].
The result of p53 activation is dependent on severity and duration of the stress [26]. Under
severe stress conditions, p53 induces cell death or cell cycle arrest [28]. There are several
p53-inducible proteins that are activated during apoptotic responses and promote ROS
generation such as p53-induced gene 3 (PIG3) [28], BAX, PUMA to support pro-apoptotic
activity of p53 in response to severe stress [29]. Furthermore, to enhance this effect, p53
can also modulate the expression of genes such as superoxide dismutase 2 (SOD2) [30] and
glutathione peroxidase 1 (GPX1) [31] inhibiting them from increasing oxidative stress and
support the pro-apoptotic activity of p53 [28]. On the contrary, under low-stress conditions
p53 does not induce cell death and suppresses ROS production [32]. Regarding antioxidant
roles, wild-type p53 regulates several signaling pathways to exert antioxidant activities [24].
For instance, some studies reported that wild-type p53 suppresses the expression of NOX4,
a catalytic subunit of the NADPH oxidase complex that catalyzes the molecular oxygen
reduction to different types of ROS, inhibiting ROS production [33]. Another important
p53-activated antioxidant genes include the enzymes specifically involved in ROS degrada-
tion such as GPX1 [34] or catalase [35]. Sestrins are p53-target genes involved in antioxidant
response and their inactivation by p53 mutation or other mechanisms has a critical role in
carcinogenesis [36]. Furthermore, p53 can exert its anti-oxidant roles preventing the inflam-
matory events through the inhibition of the NF-κB activity, that is a transcription factor and
crucial regulator of the expression of chemokines [37]. P53 can also inhibit ROS production
by metabolic changes as the activation of p53-induced glycolysis and apoptotic regulator
TIGAR that inhibit glycolysis and decrease ROS levels [19]. The importance of p53 induced
antioxidant function is supported in p53-deficient cells that result in excessive oxidation of
DNA and increased mutation rate [32]. Intriguingly, these wild-type p53-induced responses
are in line with its tumor suppressor role, while its p53 mutant counterpart generally exerts
an opposite response to sustain its oncogenic role in cancers, such as the pro-oxidant effect
or reprogramming of energy metabolism and chemoresistance, which are briefly discussed
in the following sections.
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2.2. Mutant p53 Gain-of-Function Structure and Roles in Cancer

Mutations in the TP53 gene are among the most common gene-specific alterations
in human cancers [9]. The frequency of TP53 gene mutations can vary widely among
cancer types, reaching over 70% in ovarian and pancreatic cancers [38]. The majority
of p53 mutations in human cancers are missense mutations, which usually result in the
expression of full-length mutant p53 proteins [39]. The majority of mutations occurs in
the p53 DNA-binding domain, resulting in the loss of DNA-binding activity of mutant
p53 [39]. In addition to a loss of canonical p53 role, the most common mutants acquire new
different functions (Gain-Of-Functions, GOF) that fuel tumor progression [39,40]. Most
p53 missense mutations occur at six ‘mutational hot-spots’ in the DNA-binding domain
of p53, including R175, G245, R248, R249, R273 and R282 residues, and correlate with
poor cancer-free survival [41,42]. Two main types of mutant “hotspot” sites are named
contact mutants, that include mutations in residues directly involved in DNA binding,
and conformational mutants, such as mutations that cause local or global conformational
distortions [40]. As part of its GOF, mutant p53 interacts with different proteins to enhance
or inhibit their activities [43]. While wild-type p53 protein is kept at a low level in cells by
the proteasome degradation pathway under non-stressed conditions, mutant p53 protein
usually accumulates to a high level in tumors [41].

A number of studies report that GOF p53 promotes tumor progression by regulating
several diversified pathways involved in reprogramming of metabolism in responses to
cancer-related stressing conditions, in sustaining oncogenic oxidant intracellular envi-
ronment and promoting chemotherapy [11,44,45]. Indeed, in contrast to the antioxidant
role of wild-type p53, mutant p53 proteins can sustain ROS production through several
mechanisms that are further described in the following paragraph.

2.3. Mutant p53-Induced Oncogenic Mechanisms to Promote ROS Production

Several studies summarized that wild-type p53 and its mutant counterpart regulate
oxidative stress in opposite ways [11]. As described in the previous section, under low
stressing conditions, wild-type p53 prevents ROS production by inducing the expression of
many antioxidant enzymes [32]. On the contrary, mutant p53 sustains an increase in intra-
cellular ROS by alteration of several molecular pathways to favor genomic instability and
sustain tumor progression [11]. Regarding the metabolic changes, mutant p53, in contrast
to its wild-type form, stimulates aerobic glycolysis for energy production, a phenomenon
known as the Warburg effect, through several responses: (i) promoting the translocation
of GLUT1 (glucose transporter 1) to plasma membrane [46]; (ii) inhibiting AMPK that
negatively regulates the Warburg effect by the repression of the hypoxia-induced factor 1
(HIF1) pathway [47,48]; (iii) maintaining the glycolytic enzyme GAPDH in the cytosol
which has a critical impact on the anti-apoptotic and anti-autophagic effects driven by
mutant p53 and stimulates glycolysis, lactate secretion and chemoresistance (Figure 2) [49].
Furthermore, mutant p53 proteins repress the transcription of sestrines’ antioxidant protein
family, and consequently AMPK/PGC-1α/UCP2 blockage stimulating mitochondrial O2

−

production and contributing to the pro-oxidant and oncogenic effects of mutant p53 [36].
The importance of SESNs and AMPK proteins in the maintenance of metabolic and redox
homeostasis in cells is revealed by their alteration that leads to increased oxidative stress
and tumor progression [36,49,50]. In addition, through alteration of the SESN/AMPK axis,
mutp53 promotes autophagy defects in cancer cells [45]. Furthermore, the overexpression
of various tumor-associated p53 mutants can render cancer cells more resistant to the
effect of chemotherapeutic drugs [41,42], whereas knockdown of endogenous mutant p53
sensitizes cancer cells to killing by such molecules [51]. Interestingly, Torrens-Mas et al.
revealed that mutant p53-induced oxidative stress is tightly regulated to keep the ROS
increase moderate to promote cancer cell survival [52].
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Figure 2. Role of wild-type and mutant p53 in the tumor microenvironment. The p53 tumor suppressor maintains a
long-term anti-cancer environment in normal cells by tuning cell metabolism and ROS levels, maintaining the genomic
stability and microenvironment. Wild-type p53, via its target genes, regulates cellular metabolism mainly by enhancing
DNA repair, suppressing glycolysis, decreasing HIFα expression, and modulating ROS levels. In contrast, mutant p53
enhances tumor initiation, progression, and invasiveness by suppressing DNA repair, inhibiting apoptosis, inducing
Warburg Effect and ROS production.

The interference with pivotal signaling pathways are important mechanisms through
which p53 mutants exert their oncogenic functions and each of these diversified path-
ways regulated by mutant p53 might provide new therapeutic opportunities in order to
counteract chemoresistance in cancer patients bearing mutant TP53 gene.

3. Oxidative Post-Translational Modifications of Proteins Cysteines

Evidence in the literature describes that ROS/RNS may function as signaling molecules
in many cellular processes through the covalent modification of redox-sensitive pro-
teins [53,54]. Depending on types, amounts and cellular localization of oxidants, proteins
undergo different reversible or irreversible oxidative post-translational modifications that
affect protein secondary and tertiary structure and ultimately their functions [55,56].

Due to the redox chemical properties related to the thiol group, Cys is one of the most
redox sensitive residues in proteins and the oxidative post-translational modifications of
Cys have emerged as regulatory elements of the physiology and pathophysiology of cells.
Cys is an amino acid with a unique chemistry and the knowledge of sulfur chemistry
account for the observation that Cys residues are preferentially oxidized in cells. First, a
sulfur atom may exist in different redox states, and this is certainly useful in redox biology
regulation. Then, the thiol group can be deprotonated to a thiolate anion acquiring more
nucleophilic characters and higher redox sensitivity. The ionization acid constant (pKa)
of SH group determines the equilibrium between thiol and thiolate forms and its value is
influenced by protein microenvironment. Usually, the SH group in most of proteins Cys
residues is higher than eight so that, in the reducing environment of cells, it remains almost
completely protonated and is not able to react with ROS/RNS. However, the neighboring
positively charged amino acid residues (i.e., Arginine, Histidine, and Lysine) may perturb
the pKa values of Cys and influence their reactivity. In this environment, reactive cysteines
have a lower pKa and exist predominantly in the thiolate form which is more subjected to
oxidation [56–58].
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Moreover, redox sensitive Cys residues are closest to the amino acid as serine, thre-
onine and tyrosine, which promote H bond formation and stabilize the thiolate anion.
Finally, the thiols of redox active Cys are exposed within the three-dimensional structure
of the protein (Figure 3). These Cys residues or redox active cysteines are “redox sensors”
that turn between thiols and thiolates in response to modified redox microenvironment
and react with ROS/RNS to form reversible or irreversible post-translational modifications
and this may determine the fate of the protein and in some cases of the whole cell.
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Figure 3. Reactivity of cysteines. The pKa value of most of proteins Cys residues have a pKa
value higher than 8 but some redox sensitive cysteine residues are localized in specific protein
environment that contributes to decrease their pKa. Specifically, neighboring amino acids stabilized
protein thiolates via hydrogen bonds and electrostatic effects and render them sensitive to oxidative
post-translational modifications.

Under oxidative stress, the thiolate anion of redox sensitive Cys may be reversibly
oxidized to sulfenic acid (PS-OH) or may react with vicinal thiol to form intra- or inter-
molecular disulfide (PS-SP or PS-SP’) or mixed disulfide when react with low mass thiol
(PS-SX). Importantly, when this low mass thiol is glutathione (GSH), protein is glutathiony-
lated (PS-SG) [59,60]. The sulfenic acid is very unstable and can represent the first step
to protein disulfide bond formation or, under strong oxidant stress can be irreversible
oxidized. Reactive nitrogen species such as NO may nitrosylate Cys and form nitrosyl Cys
that is unstable and in the presence of GSH may evolve into the S-glutathionylated protein.
These disulphide bonds can alter protein structure and function, but they can be reduced
back to free thiol by the thiol disulfide exchange reaction catalyzed by oxidoreductase, such
as thioredoxin or glutaredoxin.

Under strong oxidative conditions, protein thiols evolve in the formation of irreversible
post-translational modifications. These PTMs are associated with protein misfolding
and aggregation. These covalent aggregates are not reduced back even when the redox
conditions are restored so that these irreversible PTMs are associated with oxidative
damages. A summary of the various oxidative post-translational modifications of Cys
associated with their formation is presented in Figure 4.

Oxidative Post-Translational Modifications of p53

p53 is regulated by several PTMs both during normal homeostasis and in stress-
induced responses. p53 lies at the center of a network of complex redox interactions and
the direct redox regulation of the protein is emerging as a means to control the induction of
transcriptionally active wild-type p53 by a variety of stress-related signals (DNA damaging
agents, hypoxia, heat shock, etc.). Human p53 contains 10 Cys residues located in the
central DNA-binding core domain, nine of which are highly conserved (all but Cys 229) [61]
and three of which are involved in the coordination of zinc ions (Cys 176, 238, and 242,
along with His 179) [62] and are important to maintain the p53 structure.
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Zinc binding has been shown to be crucial for p53 activity and its removal by chelating
reagents or oxidative stress results in rapid unfolding of the protein and loss of DNA-
binding activity [22,63]. Recent studies demonstrated that a strong reducing microenvi-
ronment is required for p53 binding to DNA in vitro and single point-mutation of any
of the three zinc-binding Cys or their modification induced by oxidative stress results in
conformational changes and loss of p53 DNA-binding abilities [64]. However, the specific
Cys residues modified during p53 oxidation and the redox-specific mechanisms involved
are poorly understood. Cho et al. [62] analyzed the crystal structure of residues 94-289 of
p53 bound to DNA in order to identify which of the 10 Cys residues in this domain may be
exposed to the solvent and more easily redox regulated, revealing that Cys 124, Cys 176,
Cys 182, Cys 229, Cys 242 and Cys 277 can theoretically react with small molecules on the
surface of p53 and are likely more prone to oxidation hampering DNA binding. Moreover,
either Cys 176 and Cys 242 can virtually form a disulfide bond with Cys 238 after zinc
removal (Figure 1). Scotcher et al. used mass spectrometry and top-down fragmentation
to study the oxidation pathways in the p53 core domain demonstrating that the zinc co-
ordination site is the initial target for ROS-induced oxidation and that an intramolecular
disulfide bond between Cys 182 and any of the three zinc-coordinating Cys (Cys 176, 238
and 242) is accompanied by the release of zinc and the breakdown of the regular structure
of the protein [65]. Cys 182 was confirmed by Held et al. to be the most susceptible residue
to diamide oxidation also within the cells [66].

Other evidence that p53 is also sensitive to redox regulation in vivo has been provided
since the hydroxyl radical produced by copper is able to oxidize p53 Cys thiol groups [67]
and cells exposed to hydrogen peroxide results in decreased transactivation by p53 of a
target reporter gene construct in vivo [68]. Interestingly, the result of p53 regulation by
direct alteration of p53 Cys residue oxidation is complex and multifaceted as changes in Cys
277 redox state results in a differential regulation of GADD45 allowing p53 to discriminate
among individual response elements (REs), according to their sequence, representing
another mechanism to control p53 sequence specific DNA binding [69].

Several lines of evidence show that p53 is subjected to glutathionylation in vitro and
mass spectrometry of GSH-modified p53 protein identified the Cys 124, 141 and 182 as the
sites of glutathionylation, with Cys 141 being probably the most reactive (Figure 1). In human
tumor cells (HCT116 colon cancer cells) glutathionylated p53 protein was detected among
the proteins precipitated by anti-GSH antibodies and the modified p53 has significantly
reduced ability to bind its consensus DNA sequence [70]. Additionally, Cys 277, highly
reactive to N-ethylmaleimide (NEM) and surface exposed, was demonstrated to be likely
a site of oxidative glutathionylation contributing to the negative regulation of p53 [71].
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Inactivation of p53 DNA binding was associated also with modification by RNS that can
result in S-nitrosylation of Cys [72] or tyrosine nitration (Figure 5) [73]. In the human
glioblastoma multiform, concentrations of peroxynitrite consistent with those found in a
hypoxic inflammatory microenvironment, are able to inactivate p53-specific DNA binding
of cells in culture due to tyrosine nitration of wild-type p53 protein [74]. Otherwise,
nitration of Tyr 327 stimulates the oligomerization and nuclear retention of p53 [75].
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Figure 5. Oxidative post-translational modifications of p53. In p53, the reduced cysteine residues located in the DNA-
binding domain are important to maintain the p53 tetrameric structure. p53 activity is known to be affected by several
post-translational modifications induced by oxidative stress that impair the DNA binding. Cysteine residues can be easily
oxidized, and their oxidation is mostly reversible resulting in intermolecular/intramolecular disulfide bond formation,
S-glutathionylation and nitrosylation.

To the best of our knowledge, the function of most PTMs for mutant p53 proteins is
less clear and likely their roles are similar to PTMs in wild-type p53, but this remains to be
determined. Recent studies indicate contributions for phosphorylation of Ser 6, Ser 9, and
Thr 81 toward a GOF for at least some mutants. For most other modifications, the current
literature still cannot precisely understand their effects.

4. Targeting Cysteines as a Strategy to Reactivate Mutant p53

Therapeutic targeting of p53 in cancer is a promising strategy with a significant
implication on cancer therapy in the future. There are three kinds of strategies aiming to
develop drugs to hit mutants p53 expressed at high levels in tumor cells: to reactivate the
wild-type function by promoting proper folding and stabilization of mutants, to promote
its degradation, and immunotherapies based on mutant p53 neoantigen recognition.

In this section, we focus on compounds that target the strongest nucleophiles Cys
in mutant p53 in order to stabilize p53 native conformation and restore DNA binding,
rescuing “wild-type like transcriptional functions” and leading to cell death and tumor
suppression (Figure 6).
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Figure 6. Therapeutic strategy to restore wild-type activity to mutant p53. Several small molecules have been developed to
restore wild-type conformation and function to mutant p53 proteins through covalently binding to cysteines.

The core domain of p53 contains 10 Cys that are not equally reactive. As described
above, thiol reactivity is affected by the local microenvironment, accessibility to solvent
and steric factors [76]. Cys 277 and Cys 182 are placed on the protein surface and are
suitable for electrophilic attack, while Cys 135, Cys 141, Cys 176 and Cys 275 are in an area
with less availability to solvent [77]. Moreover, Cys 176, Cys 238, and Cys 242 play a major
role in maintaining the correct protein folding since they coordinate the binding of a zinc
atom [62,78,79]. Interesting, mutations that perturb the folding and structure of p53 can
expose Cys residues that are normally buried in the wild-type. Since it is known that the
redox status of Cys in p53 is relevant for its function, p53 mutants are more susceptible
to oxidation that results in the formation of inter- and intramolecular disulfide bridges
producing large inactive aggregates with the loss of active conformation [22,80].Hence, the
idea that alkylation of thiol groups may play a role in mutant p53 rescue. In this regard, a
large group of molecules able to bind the reactive Cys have been drawn: these compounds
are soft electrophiles with thiol binding properties [81] due to their ability to participate
in the reaction of nucleophilic addition called the Michael addition [82]. Several mutant
p53-reactivating compounds are listed in Table 1 and among these APR-246 (PRIMA-1MET)
has entered clinical trials (Phase III trials; NCT03745716) [83–85].
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Table 1. Summary of p53-reactivating compounds discussed in the text.

Reactivators—p53
Cys-Targeting Mutations in p53 Mechanism of Action Ref.

APR-246
(PRIMA-1MET)
Quinuclidinone

R175H; R273H;
D259Y/K286E;

K286E; S241F; R273C; P223L/V274F
Michael Addition [84,86–94]

CP-31398
Styrylquinazoline

V173A; S241F;
R249S; R273H Michael Addition [95–98]

HO-3867
Diarylidenyl piperidone

curcumin analogue

Y163H; R175H; H193R; L194F; Y205F;
P223L/V274F; C238Y; N239D; S241F;

G245S; G245V; M246I; R248Q; R248W;
R249S; R273H; C277F; R280K; E285K

Michael Addition [99,100]

KSS-9
Piperlongumine derivative R175H Michael Addition [101]

MIRA-1
Maleimide

R175H; P176Y/R248W; R248Q; R248W;
R273H; R273H/P309S; R280K; R282W Michael Addition [102]

PK11007
Sulfonylpyrimidine Y220; V143A Nucleophilic aromatic

substitution [103]

STIMA-1
2-vinylquinazolin-4-(3H)-one R175H; R273H Michael Addition [95]

Zanche et al. [95] described the molecular mechanism of CP-31398 and STIMA-1 (a
compound structurally related to CP-31398) in reactivation of mutant p53. They found that
both molecules have similar chemical activity as a traditional Michael acceptor and that
STIMA-1 is more potent than CP-31398 in suppressing growth of mutant p53-expressing
tumor cells. A novel compound structurally different from CP-31398 but with similar
capacity to restore the p53 wild-type conformation and function to mutant p53, is MIRA-1.
MIRA-1 was identified in a cellular screening of a chemical library, and was shown to react
covalently with thiol groups in protein [102,104].

Furthermore Madan et al. demonstrated the effects of a curcumin analogue, HO-3867,
on p53 activity in cancer cells and tumor xenografts [99]. Mechanistically, HO-3867 alkylates
thiol groups in mutant p53 and restores its wild-type conformation, transcriptional activity,
and anticancer function in tumor models.

Another small molecule with the ability to reactivate the mutant p53 protein is KSS-9.
This compound is a piperlongumine derivative with an aryl-group inserted at the C-7
position and owns highly electrophilic double bonds that react with nucleophiles, such as
cysteine sulfhydryl groups, in Michael addition. Although the mechanism whereby KSS-9
bind to mutant p53 is known, the targets Cys residue remain unclear [101].

Bauer et al. [103] found that small 2-sulfonylpyrimidine molecules, named PK11000,
stabilize mutant p53 protein by covalent modification of two cysteines, without compro-
mising DNA binding. These compounds were both mild and selective alkylating agents. In
particular, the authors demonstrated that PK11007 exerts strong anticancer activity toward
p53-compromised cells, involving up-regulation of p53 target genes and a strong increase
in cellular ROS levels [103,105,106].

Lambert et al. discovered that APR-246 is not stable under physiological conditions
but it is converted into methylene quinuclidone (MQ) featuring a reactive double bond
that can participate in Michael addition reactions [86]. Although it is not known which
Cys residues are targeted by APR-246, some molecular modelling studies suggest that Cys
124 and Cys 277 are potential target for MQ [84]. In addition, MQ induces inhibition of
cellular thiol-dependent redox systems binding, on one hand, the selenocysteine-containing
enzyme TrxR1 and Grx [107,108] and, on the other, GSH with depletion of its level [109,110].
Furthermore, MQ induces tumor cells death through caspase-2 and upregulation of pro-
apoptotic p53 target genes, such as BAX, PUMA and NOXA [111].
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Based on the capacity of APR-246 to restore the wild-type activity by mutant p53
modification, the research of alternative new molecules is becoming a great challenge.
Further studies by NMR and X-ray crystallography are required to identify structural
movement of Cys in p53 by compounds such as MQ in order to shed light on how the
local structural changes are able to recover the wild-type function. This will provide the
background for a rational design of more efficient and selective anticancer drugs able to
restore mutant p53.

5. Concluding Remarks

The presence of several Cys residues that may respond to the redox state of the cell
render this protein particularly susceptible to redox changes in the cellular microenvi-
ronment. Cysteine residues can undergo oxidative post-translational changes that may
also compromise their interaction with zinc ions, altering the conformational structure of
the protein and in some cases even its functionality. Remarkably, this redox regulation
of p53 fits into a context in which the wild-type tumor suppressor p53 protein possesses
an antioxidant defense capacity by upregulating the expression of several genes with free
radical scavenger activity. In contrast, mutated p53 GOF isoforms, in addition to losing
interaction with DNA and its regulatory elements, acquire the ability to directly interact
with transcription factors or transcriptional repressors by regulating a set of different genes
with oncogenic and pro-oxidant functionality. The typical overexpression of mutated
forms of p53 in cancer may thus favor a more aggressive phenotype not only due to its
oncogenic functionality but also to its ability to further modify its protein structure through
oxidative post-translational modifications in redox-sensitive cysteine residues. The use of
small molecules capable of restoring the wild-type like conformation in mutated forms
of p53 may be a valid approach to block this vicious cycle by limiting the formation of
an oxidative microenvironment and restoring the tumor suppressor functionality of p53.
A better understanding of these mechanisms may finally reveal new opportunities for
currently incurable aggressive cancers.
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