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Danhong injection (DHI) has been widely used in China for cardiocerebrovascular diseases treatments. And in this study, we
demonstrated the therapeutic effect of DHI on experimental diabetic neuropathy for the first time.Methods. Streptozotocin- (STZ-)
induced SD rats were used. In experiment 1, 4-week treatment with DHI or saline started 4 weeks after STZ injection; mechanical
allodynia was measured before and every 2 weeks after STZ injection. In experiment 2, chronic intrathecal infusion of U0126 was
conducted during the 8th week of diabetes. Phosphorylated and total ERK1/2 in spinal cord were analyzed by western blot. BDNF
level in sciatic nerve was evaluated by ELISA. Results. DHI treatment significantly alleviated mechanical allodynia at the end of
the study and downregulated the expression of phosphorylated ERK1/2 in spinal cord. In addition, DHI treatment also elevated
brain-derived neurotrophic factor (BDNF) level in sciatic nerve of DPN rat. In experiment 2, inhibition of ERK1/2 activation
was confirmed to result in the alleviation of mechanical allodynia. Conclusions. We demonstrated that DHI was able to alleviate
mechanical allodynia in diabetic neuropathy rat through inhibiting the activation of ERK1/2. The reduction of BDNF content in
sciatic nerve was also partially reversed by DHI treatment.

1. Introduction

Diabetic peripheral neuropathy (DPN) is a major compli-
cation of diabetes mellitus (DM) [1]. A third of patients
with DPN develop painful symptoms [2]. Painful DPN
dramatically impact patients’ quality of life (QoL) com-
pared with painless DPN [3]. However, the current phar-
macological treatments are not entirely satisfactory and the
side effects are relatively frequent [4]. The pathogenesis
of diabetic neuropathic pain is still not clear. Previous
studies demonstrated that mitogen-activated protein kinases
(MAPKs) including extracellular signal-regulated protein
kinase 1/2 (ERK1/2), p38-MAPK (p38), and c-JunN-terminal
kinase (JNK) are correlated with diabetic hyperalgesia in
three-week-old diabetic, hyperalgesic rats [5]. Therefore,
they may be potential target for diabetic neuropathic pain
treatment.

Decreased neurotrophic support is believed to be one
of the important mechanisms in the development of DPN
[1]. Brain-derived neurotrophic factor (BDNF) is a member
of the neurotrophin family and is critical for the survival
and regeneration of neurons in peripheral nervous system.
Several studies have reported that the level of BDNF in
sciatic nerves decreased significantly in experimental DPN
models [6, 7]. Study showed that exogenous BDNF was able
to alleviate the impairment of sciatic nerve in youngDPN rats
[8].

Danhong injection (DHI) is a Chinese Materia Medica
standardized product approved by State Food and Drug
administration of China (Permission number Z20026866)
[9]. The effective constituents are extracted from Radix
Salviae miltiorrhizae and Flos Carthami tinctorii [10, 11].
Although it has been widely used in Chinese hospitals and
clinics with proven efficacy and safety for the treatment and
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prophylaxis of various cardiocerebrovascular diseases [12–
14], its therapeutic indications andmechanisms of effects still
need to be further discovered.

Recent study has demonstrated that DHI was able
to inhibit the development of diabetic retinopathy and
nephropathy [15]. In the present study, we tested the effect
of DHI on pain syndrome in a rat model of DPN and try to
find out the underlining pathways involved in the effect. The
effect of DHI on the level of BDNF in sciatic nerve was also
evaluated.

2. Materials and Methods

2.1. Animal Experiments. This study was approved by the
Committee on the Ethics of Animal Experiments at China-
Japan Friendship Hospital. All procedures strictly complied
with the Principles of Laboratory Animal Care and the Guide
for the Care and Use of Laboratory Animals. Male Sprague-
Dawley rats (180–200 g) were purchased from the Beijing
HFK Bioscience Co. Ltd. The animals were kept two per
cage under a 12-hour light/dark cycle and fed on standard
laboratory diet and tap water ad libitum in a temperature-
and humidity-controlled room. Rats were acclimated for 1
week before diabetes was induced by a single injection of STZ
(60mg/kg body weight) intraperitoneally after an overnight
fast. Control rat received the same volume of citric acid
buffer. 72 hours later, blood was taken from the tail vein
for glucose concentrationmeasurement. Ratswith nonfasting
blood glucose concentrations > 16.7mmol/l were included in
the following experiments.

In experiment 1, to evaluate the effect of DHI onmechan-
ical allodynia in rats caused by diabetes, diabetic rats were
randomly divided into DPN group and DHI treated group.
Each group contained 9 rats. Diabetic rats were injected
with saline (5ml/kg body weight, DPN + saline group)
or DHI (5ml/kg body weight, DPN + DHI group) daily
intraperitoneally. The 4-week treatment started 4 weeks after
induction of diabetes. Age- and sex-matched nondiabetic-
control rats received the same amount of saline. The blood
glucose concentration and body weight were measured at
the end of the experiment and mechanical allodynia was
measured every two weeks.

In experiment 2, the role that ERK1/2 plays in the
mechanical allodynia was evaluated. 18 rats with 7-week
STZ-induced diabetes were used. Mitogen-activated pro-
tein kinase (MAPK) kinase 1/2 inhibitor U0126 was deliv-
ered intrathecally with a sustained rate of 0.5 𝜇g⋅𝜇l−1⋅hr−1
during the 8th week of diabetes. 10% DMSO in artificial
CSF (126.6mM NaCl, 10.0mM NaHCO3, 2.5mM KCl, and
2.0mM MgCl2) was used as vehicle control. The blood glu-
cose concentration, body weight, and mechanical allodynia
were measured at the end of the experiment.

2.2. Behavior Study. Rats were placed on stainless steel mesh
floor and were acclimatized in individual plexiglass boxes for
30 minutes. The von Frey filaments (range 1.4–26 g, North
Coast Medical Inc., CA) were applied perpendicularly to
the plantar surface of the hind paw and were bended with
a sustained force for 6 s. The presence of brisk withdrawal

or paw flinching was regarded as positive response. Every
stimulus was applied with an interval of 15 seconds. A total of
3 trials were conducted on every rat with 20 minutes interval.
An up and down method was used to calculate 50% paw
withdraw threshold [16, 17].

2.3. Intrathecal Infusion. Rats were anaesthetized with sodi-
um pentobarbital (50mg/kg, i.p.) and immobilized with a
stereotactic device. Intrathecal catheters were inserted into
subarachnoid spaces through atlantooccipital membrane; the
tips were carefully advanced 8 cm caudally to the position of
lumbar enlargement. Infusion pumps (Model 1007D, ALZET,
flow rate of 1 𝜇l⋅hr−1) filled with U0126 or vehicle were
attached to the end of the catheter and fixed subcutaneously.
Incisions were sealed with silk suture. Rats without any
neurological deficit were included.

2.4. Tissue Collection. After 8 weeks of diabetes, rats were
anaesthetized with sodium pentobarbital and decapitated.
Dorsal parts of the lumbar enlargements of the spinal cords
and sciatic nerves were collected and snap frozen in liquid
nitrogen. Tissues were stored at −80∘C before use.

2.5. Western Blot. Lumbar enlargements of the spinal cords
(L4–L6) were homogenized with glass homogenizers on
ice in lysis buffer (50mM Tris-HCl, pH = 7.4, 150mM
NaCl, 1% NP-40, 5mM EDTA) supplemented with protease
and phosphatase inhibitor cocktail (Thermo Scientific) and
PMSF (Beyotime). The homogenates were then centrifuged
at 12000 rpm for 5 minutes at 4∘C. The supernatants were
collected and protein concentration was determined by BCA
assay kit (Beyotime). 20 𝜇g protein was separated by 10%
SDS-PAGE and transferred to polyvinylidene fluoride mem-
brane (ThermoScientific).Themembraneswere blockedwith
blocking buffer (Beyotime) and then incubated with rabbit
monoclonal antiphosphorylated ERK1/2 antibody (dilution
1 : 2000, Cell Signaling Technology) overnight at 4∘C with
shaking. Horseradish peroxidase-conjugated goat anti-rabbit
polyclonal antibody (dilution 1 : 1000, Beyotime) was applied
at room temperature for 1 hour.The blots were visualizedwith
enhanced chemiluminescence substrate (Thermo Scientific)
in a gel imager (Bio-Rad). For total ERK1/2 detection, mem-
branes were incubated again with rabbit monoclonal anti-
ERK1/2 antibody (dilution 1 : 1000, Cell Signaling Technol-
ogy) after stripping and blocking. Band density wasmeasured
with ImageJ software. Expression of phosphorylated ERK1/2
was corrected for by total ERK1/2 expression from the same
sample. Quantitation of the expression of phosphorylated
ERK1/2 was represented as fold change compared with
control group or vehicle group.

2.6. Real-Time PCR. Total RNA were extracted from spinal
cords (L4–L6) using TRIzol reagent (Invitrogen) according to
manufacturer’s protocol. FastQuant RT Kit (TIANGEN) was
used for cDNA synthetization. Quantitative PCR reactions
were done on Applied Biosystems 7500 with SuperReal Color
PreMix reagent (TIANGEN) according to manufacturer’s
instructions. ΔCT was calculated using the following for-
mula: ΔCT = CTERK1/2 − CT𝛽-actin. Results were expressed
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Figure 1: Effect of DHI on 50% paw withdraws threshold and ERK1/2 activation in spinal cord after STZ-induced diabetes. DHI or saline
treatment was started after 4 weeks of diabetes. (a) Alterations in 50% paw withdraw threshold. (b) Representative western blot result of
phosphorylated and total ERK1/2. (c) Phosphorylated ERK1/2 level was first corrected for by total ERK1/2 level and expressed as % control.
∗𝑝 < 0.05 and ∗∗𝑝 < 0.01 versus control group; #𝑝 < 0.05 and ##𝑝 < 0.01 versus control group; Δ𝑝 < 0.05 and 𝑝 < 0.01 versus DPN + saline
group. 𝑛 = 8∼9.

as fold changes related to control group. Primers for ERK1,
ERK2, and 𝛽-actin used in the study were as follows:

ERK1; 5-GGACCTGAAGCCCTCCAATC-3
3-GGGCAAGGCCAAAATCACAG-5

ERK2; 5-AATGTTCTGCACCGTGACCT-3
3-TGGTCTGGATCTGCAACACG-5

𝛽-actin; 5-TACCCCATTGAACACGGCAT-3
3-GGACAACACAGCCTGGATGG-5

2.7. BDNF Assay. Total protein was prepared from sciatic
nerves in the way similar with that mentioned in the western

blot part. BDNF level was measured by BDNF ELISA kit
(Emax Immunoassay System; Promega) according to manu-
facturer’s instruction and was normalized to protein content
that was loaded. Result was expressed as mean percentage
of BDNF level found in control rats, which was denoted as
100%.

2.8. Statistical Analysis. All data are presented as mean ±
SE. Data analysis was done with SPSS (Version 20.0; IBM
Corp, Armonk, NY) software. Normality of data was assessed
by 1-sample Kolmogorov-Smirnov test. Data were compared
among groups with one-way ANOVA followed by post hoc
Bonferroni correction in experiment 1. In experiment 2, data
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Table 1: Baseline and final body weights and final blood glucose levels in different groups.

Body weight (g) Blood glucose (mmol/l)
Baseline Final Baseline Final

Experiment 1
Control 256.25 ± 2.53 523.63 ± 5.64 6.68 ± 0.13 6.73 ± 0.16
DPN + saline 257.22 ± 1.71 334.11 ± 7.57∗∗ 6.72 ± 0.09 31.12 ± 1.03∗∗

DPN + DHI 258.11 ± 2.02 339.90 ± 6.52∗∗ 6.72 ± 0.14 30.06 ± 1.00∗∗

Experiment 2
DPN + vehicle 258.25 ± 2.26 329.75 ± 5.81 6.60 ± 0.13 29.75 ± 0.84
DPN + U0126 257.75 ± 1.75 320.63 ± 6.32 6.48 ± 0.16 29.94 ± 0.89
∗∗𝑝 < 0.01 versus control.

were compared with Student’s t-test between the two groups.
A 𝑝 value < 0.05 was considered statistical significant.

3. Results

Table 1 shows the baseline and final body weights and blood
glucose levels. In experiment 1, final body weights were
significantly higher in control group than in DPN group (𝑝 <
0.01) and DHI treated group (𝑝 < 0.01); final blood glucose
levels were around four times higher in DPN group (𝑝 <
0.01) andDHI treated group (𝑝 < 0.01) than in control group;
no significant difference was found in final body weights and
blood glucose levels between DPN group and DHI treated
group. In experiment 2, no significant difference was found
betweenDPN+U0126 rats andDPN+vehicle rats in baseline
and final body weights and blood glucose levels.

The 50% withdraw thresholds reduced significantly since
the 2nd week after STZ injection (𝑝 < 0.05). After 4 weeks
of DHI treatment, reduction in 50% withdraw threshold
was partially reversed (Figure 1(a)). In order to demonstrate
possible pathway involved in the effect of DHI treatment
on mechanical allodynia in DPN rat, level of total ERK1/2,
phosphorylated ERK1/2 in spinal cord was examined. West-
ern blot showed that level of phosphorylated ERK1/2 in
spinal cord was increased in DPN rat and DHI treatment
was able to reverse the increased level of phosphorylated
ERK1/2 (Figures 1(b) and 1(c)). ERK1/2 mRNA levels were
also evaluated. Real-time PCR demonstrated that ERK1/2
mRNA levels were not significantly different between groups
(Figure 2).

To confirm that the increased phosphorylated ERK1/2
in spinal cord contributes to mechanical allodynia in DPN
rat, sustained intrathecal infusion with U0126 was performed
to inhibit the phosphorylation process of ERK1/2. After 1
week of U0126 infusion, the level of phosphorylated ERK1/2
in spinal cord of DPN rat was significantly reduced. The
mechanical allodynia was also alleviated in DPN + U0126
group significantly compared with DPN + vehicle group (𝑝 <
0.01) (Figure 3).

The BDNF level in sciatic nerve in each group was
expressed as fold change related to control group. BDNF
decreased significantly in DPN group compared with control
group (𝑝 < 0.01), and DHI treatment elevated BDNF level
significantly compared with saline (𝑝 < 0.01) (Figure 4).
Additionally, there was no significant difference between
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Figure 2:The results of ERK1/2mRNA levels in control group, DPN
+ saline, and DPN + DHI group.There was no significant difference
between these groups. 𝑛 = 8∼9.

U0126 treated group and DPN + vehicle group in experiment
2 (data not shown).

4. Discussions

DHI was initially developed to treat various cardiocere-
brovascular diseases according to traditional Chinese medi-
cal theory [18–20]. In present study, we proved that DHI alle-
viatedmechanical allodynia through inhibiting the activation
of ERK1/2 pathway in spinal cord and elevated the level of
BDNF in sciatic nerves in DPN rats.

Mechanical allodynia is a common neuropathic pain
syndrome of DPN patients. In this STZ-induced DPN rat
model, mechanical allodynia was observed 2 weeks after STZ
injection as previously described [21]. ERK1/2 is a member
of mitogen-activated protein kinase (MAPK) family and
is activated by phosphorylation. Activation of ERK1/2 in
spinal cord was thought to play a role in the generation
of neuropathic pain in DPN rats [21, 22]. Meanwhile some
others argued that diabetes-induced activation of ERK1/2
is a protective reaction of stressed nerve cells [23, 24]. In
this study, we found 2 weeks of DHI treatment ameliorated
the mechanical allodynia and the effect was accompanied
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Figure 3: Effect of intrathecalU0126 infusion onmechanical allodynia caused byDPNand confirmation of the inhibition of ERK1/2 activation
in spinal cord by intrathecalU0126 injection. (a) 50%pawwithdraw thresholds in vehicle andU0126 treated groups. (b) Representativewestern
blot result of p-ERK1/2 and t-ERK1/2. (c) Phosphorylated ERK1/2 level was first corrected for by total ERK1/2 level and expressed as % DPN
+ vehicle. ∗∗𝑝 < 0.01 versus DPN + vehicle group. 𝑛 = 8.

by reduced activation of ERK 1/2 in spinal cord. We further
confirmed that reduced activation of ERK1/2 resulted in the
alleviation of mechanical allodynia by continuous intrathecal
injection of specific ERK1/2 inhibitor. Therefore, treatment
effect of DHI on mechanical allodynia could be or, at least
in part, attributed to the inhibitory property on ERK1/2
activation.

Loss of neurotrophic support is believed to involve in
the pathogenesis of DPN. Several clinical trials have tried
to supply DPN patients with recombinant human NGF or
BDNF to study their effects on neuropathic deficits caused

by DPN. But they both failed to achieve positive effects [25,
26]. It is believed that systemic administration of NGF or
BDNF might not achieve its local, sufficient, and sustained
effects [7, 27]. Additionally high rate of the presence of
hyperalgesia at injection site is also a troublesome issue [25].
Thus, medications which could raise the level of endogenous
neurotrophic factors may be ideal therapies [7, 27]. In the
present study, we proved that DHI increased BDNF level
in sciatic nerve of DPN rats. Further studies may be con-
ducted to evaluate the role of DHI as an endogenous BDNF
stimulator.
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Figure 4: Effect of DHI on BDNF level in sciatic nerve of DPN rat.
∗∗𝑝 < 0.01 versus control group. ΔΔ𝑝 < 0.01 versus DPN + saline
group. 𝑛 = 8∼9.

To our knowledge, previous researches on mechanisms
involved in the reduction of neurotrophic factors were almost
all in vitro studies. In most of these studies, Schwann cells
were exposed to high glucose culture medium to achieve an
experimental DPN model. However, heterogeneous results,
decreased, unchanged, and increased expression of neu-
rotrophic factors by Schwann cells exposed to high glucose
condition, were reported [28–31]. Therefore, high glucose
treated Schwann cells may not be an appropriatemodel mim-
icking the real disease conditions in vivo. Future in vivo stud-
ies may be preferred to elucidate the mechanisms of DPN-
induced reduction of neurotrophic factors in sciatic nerve.
Sustained delivery of various inhibitors through intrathecal
catheters may be a suitable method to find out possible
pathways involved. In the present study, intrathecal injection
of ERK1/2 inhibitor was found unable to influence the level of
BDNF in sciatic nerves of DPN rats. Other inhibitors may be
examined.

5. Conclusions

ERK1/2 activation in spinal cord contributes to mechani-
cal allodynia in STZ-induced DPN rat. DHI alleviates the
mechanical allodynia by the inhibition of ERK1/2 activation.
In addition, DHI treatment reverses the reduction of BDNF
in sciatic nerve in DPN rat. This study extends the potential
indication for DHI which has been conventionally used for
cardiocerebrovascular diseases.
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