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Objectives: Antimicrobial drugs are frequently administered in veal calves, but investigations on associations 
with antimicrobial susceptibility of bacteria are scarce and convey partly contradictory findings. The aim of 
this study was to investigate associations of antimicrobial use (AMU) during the fattening period with antimicro-
bial susceptibility shortly before slaughter. 

Methods: Detailed treatment data of 1905 veal calves from 38 farms were collected prospectively during 
monthly farm visits for 1 year (n = 1864 treatments, n = 535 visits); 1582 Escherichia coli, 1059 Pasteurella mul-
tocida and 315 Mannheimia haemolytica were isolated from rectal and nasopharyngeal swabs collected before 
slaughter and subjected to antimicrobial susceptibility testing by microdilution. Associations of antimicrobial 
treatments with resistant isolates were investigated at the calf level. 

Results: Associations of AMU with antimicrobial resistance were observed using generalized linear models. For 
E. coli, the odds of being resistant were increased with increased AMU (OR 1.36 when number of treatments >1, 
P = 0.066). Use of tetracyclines was associated with resistance to tetracycline (OR 1.86, P < 0.001) and use of pe-
nicillins was associated with resistance to ampicillin (OR 1.66, P = 0.014). No significant associations were ob-
served for P. multocida (use of aminoglycosides: OR 3.66 for resistance to spectinomycin, P = 0.074). For M. 
haemolytica, the odds of being resistant were increased with increased AMU (OR 4.63, P < 0.001), and use of tet-
racyclines was associated with resistance to tetracycline (OR 6.49, P < 0.001). 

Conclusions: Occurrence of resistant bacteria shortly before slaughter was associated with AMU in veal calves. 
Prudent and appropriate use may contribute to limit the selection of resistant bacteria on veal farms.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https:// 
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the 
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Introduction
The administration of antimicrobials has been extensively re-
ported to lead to selection of resistant bacteria.1 Veal calf produc-
tion is known for high metaphylactic and therapeutic 
antimicrobial use (AMU).2–4 High antimicrobial resistance (AMR) 
has also been reported in this sector,5,6 thus the development 
of AMR may be a result of this selection process. However, in in-
vestigations at the farm level and in nationwide investigations in 
European countries, associations of AMU with AMR have been de-
tected by some authors, but not by others.5,7–11 Therefore, fur-
ther research is needed for a deeper understanding of the 
interplay of antimicrobial treatments and AMR in veal production 

in order to adapt treatment strategies, improve biosecurity con-
cepts, and eventually reduce AMU and AMR in veal calf farms.

In the present study, we investigated potential associations 
between AMU and AMR in a comprehensive dataset at the indi-
vidual veal calf level. The three main aims of the study were: 
(i) to analyse whether an increasing number of antimicrobial 
treatments is associated with AMR at the end of the fattening 
period; (ii) whether treatments with antimicrobials of a specific 
antimicrobial class are associated with resistance to this class 
(homologous resistance) or other classes (heterologous resist-
ance); and (iii) whether susceptibility patterns of indicator bac-
teria Escherichia coli, Pasteurella multocida and Mannheimia 
haemolytica isolated shortly before slaughter allow for 
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retrospective assumptions on antimicrobial treatment intensity 
during the fattening period.

Materials and methods
Data were obtained in the frame of a previous study where veal calves 
were closely followed from birth or purchase until slaughter.3 Briefly, 
1905 calves were enrolled in 38 veal farms in Switzerland. Farms were vis-
ited once a month for a minimum of 12 consecutive months. On each vis-
it, calves for which slaughter was imminent were swabbed as described 
below. Data regarding antimicrobial treatments, production parameters, 
animal welfare and economics were collected during the visits.3,12,13 The 
calves were fattened according to improved welfare standards 
(IP-SUISSE) alongside milk production in all farms.14 Farmers worked ac-
cording to one of two management concepts: the ‘outdoor veal calf’ or 
‘conventional’ (19 farms each), as described previously.3 All components 
and procedures of the study were approved by the competent authority 
under authorization number BE 71/16.

Treatment records
Antimicrobial treatments were recorded by the farmers or their herd ve-
terinarians at the time of treatment, and the records were checked for 
clarity and completeness during the farm visits. Treatments were re-
corded for each calf from the beginning until the end of the fattening per-
iod. The beginning was defined as the day of purchase (if the calf was 
purchased) or the mean age of purchased calves upon arrival at the re-
spective farm (if the calf was born on-farm). The end was defined as 
the day of slaughter. A total of 535 farm visits was conducted. 
Treatments were recorded on each farm according to the statutory re-
quirements (identification number of the treated calf, first and last ad-
ministration date, name of therapeutic product, dosage, indication for 
treatment, administration route and withdrawal period) using a custo-
mized booklet. In addition, information on administration type (individual 
or group treatment), signs of disease and treatment outcome were re-
corded. Only treatments with therapeutic products containing antimicro-
bials were recorded. The study team was not involved in the choice of 
treatment modalities, which were designed and applied by the farm 
veterinarians.

Nasopharyngeal and rectal swab sample collection
The sampling procedure included rectal and nasopharyngeal swabbing of 
each calf and was performed regardless of the presence or absence of 
clinical signs of disease during the last farm visit before the calves were 
brought to slaughter. The calves were restrained manually or in a head-
lock for sampling. For practical reasons, such as sudden death, unfore-
seen early slaughter without notification of the study team and 
euthanasia, not all calves enrolled in the study were sampled shortly be-
fore leaving for slaughter. Of the 1905 calves enrolled in the study, rectal 
swabs were not taken from 236 calves and nasopharyngeal swabs 
were not taken from 235 calves. Correspondingly, rectal samples of 
1669 calves and nasopharyngeal samples of 1670 calves were available. 
For E. coli isolation, a sterile swab (BD BBL CultureSwab, Becton Dickinson 
AG, Basel, Switzerland) was taken from the rectum and immediately 
placed into transportation medium for Enterobacteriaceae (DeltaSwab 
Cary Blair, deltalab, Barcelona, Spain). For isolation of P. multocida and 
M. haemolytica, one nostril was first disinfected using gauze swabs 
(Provet AG/Henry Schein Animal Health, Lyssach, Switzerland) soaked in 
70% propyl alcohol (F25-A Feinsprit 2% MEK, Alcosuisse AG, Bern, 
Switzerland). Sterile swabs (COPAN Italia SpA, Brescia, Italy) were inserted 
through the ventral nasal meatus to swab the nasopharyngeal epithe-
lium, and the samples were then placed in liquid Amies transportation 
medium (Axonlab SwabAX, Axon Lab AG, Baden, Switzerland).5,15 The 
samples were transported to the laboratory at room temperature on 

the day of collection and processed within 24 h after overnight conserva-
tion at 4°C if necessary.

Isolation and identification of E. coli and Pasteurellaceae
For E. coli isolation, rectal swabs were spread onto selective agar BROLAC 
(Thermo Fisher Scientific, Waltham, MA, USA). For Pasteurellaceae isola-
tion, nasopharyngeal swabs were spread onto Pasteurella selective 
agar (Thermo Scientific Oxoid, Reinach, Switzerland). The plates were 
incubated at 37°C for 24 h, and one single colony was picked for 
species identification with MALDI-TOF (Microflex LT, Bruker Daltonics 
GmbH, Bremen, Germany). Colonies identified as E. coli, P. multocida 
and M. haemolytica were purified on trypticase soy agar plates 
containing 5% sheep blood (TSA-SB; Becton, Dickinson and Company, 
Franklin Lakes, NJ, USA) and incubated at 37°C for 24 h, followed 
by reconfirmation of species identification using MALDI-TOF. Isolates 
were then cryopreserved until further analyses in 30% glycerol stocks 
at –80°C.

Antimicrobial susceptibility testing
If isolation of the target bacterial species from a given sample had been 
successful, one single isolate was tested for antimicrobial susceptibility. 

Table 1. Antimicrobial treatment incidence (TI) of 1864 treatments in 
defined daily doses (DDDs) per treated calf and year (TIDDD)a grouped by 
antimicrobial classes according to the method of the EMA

Antimicrobial class n
Total 
TIDDD

Calf level TIDDD per year

25th 
percentile median

75th 
percentile

Tetracyclines 593 19846.1 13.0 29.7 38.7
Penicillins 292 7481.3 17.1 25.0 32.1
Macrolides 372 5659.3 3.0 6.5 18.1
Sulphonamides 343 4947.3 8.2 12.8 17.8
Diaminopyrimidines 60 2462.6 29.8 38.9 45.3
Phenicols 111 1659.9 6.7 11.3 17.9
Fluoroquinolones 51 1181.7 3.7 13.2 26.4
Aminoglycosides 32 466.9 7.3 10.2 20.6
Cephalosporins of 

third generation
7 223.5 27.0 34.8 38.4

Cephalosporins of 
fourth generation

2 48.7 17.8 24.3 30.9

Lincosamides 1 3.8 – – –

For each antimicrobial class, the total number of treatments applied dur-
ing the study period in the 38 study farms is presented (n), as well as the 
total TI of all treatments with a drug of the respective class (in decreasing 
order of total TIDDD). 
Treatment incidences for individual calf treatments with antimicrobials of 
the respective class are provided including their 25th percentile, median 
and 75th percentile. 
aDDDs and standard weight extracted from: ‘Defined daily doses for ani-
mals (DDDvet) and defined course doses for animals (DCDvet): European 
Surveillance of Veterinary Antimicrobial Consumption (ESVAC), and 
Revised ESVAC reflection paper on collecting data on consumption of 
antimicrobial agents per animal species, on technical units of measure-
ment and indicators for reporting consumption of antimicrobial agents 
in animals’ (www.ema.europa.eu).
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For E. coli, antimicrobial susceptibility was tested by determination of 
MICs of antimicrobials in CAMHB using EUVSEC Sensititre® plates 
(Thermo Fisher Scientific). For Pasteurellaceae, MIC was determined in 
CAMHB supplemented with 5% of laked horse blood and using BOPOF6 
Sensititre® plates, according to the manufacturer’s instructions 
(Thermo Fisher Scientific). Clinical breakpoints (EUCAST, 2018) were 
used as an indicator to classify E. coli isolates as ‘resistant’.16 Isolates 
of P. multocida and M. haemolytica were classified as ‘resistant’ based 
on clinical breakpoints published by the CLSI.17 In this study, the term 
‘AMR’ refers to resistant isolates. All antimicrobials used for testing and 
corresponding breakpoints are listed in Tables S1–S3 (available as 
Supplementary data at JAC Online).

Statistical analyses
For each calf, the class- or drug-specific treatment incidence was calcu-
lated in defined daily doses (TIDDD) from enrolment until swabbing, ac-
cording to the method of the EMA.18,19 The following formula was used 
to calculate the TIDDD at the calf level for each antimicrobial treatment 

before summarizing treatments belonging to the same antimicrobial 
class or drug:

TIDDD=
total amount of drug used for treatment (mg)

DDD
mg
kg

 

× standard weight (kg) × observation period (days)
× 365

(1) 

The total amount of drug used was extracted from the treatment 
journals. The DDD values and the standard weight were used as indicated 
by the EMA. Multiplication times 365 provides corrected TIDDD values for a 
year’s period (with the unit ‘number of days under treatment per calf- 
year’).20–22 AMU of treated calves is reported as number of treatments 
administered with the respective antimicrobial class or drug, the total 
TI of all treatments and the median TI of treatments of the respective 
class or drug (including 25th/75th quantiles).

Associations between susceptibility status of the isolates (resistant or 
not) and the administered antimicrobial treatments were investigated. 
This was done separately for E. coli, P. multocida and M. haemolytica. 
Calf-level susceptibility data and calf-level treatment data were used to 

Table 2. Antimicrobial treatment incidence (TI) for 1864 treatments in defined daily doses (DDDs) per treated calf and year (TIDDD)a grouped by 
antimicrobial drug according to the method of the EMA

Antimicrobial drug n Total TIDDD

Calf level TIDDD per year

25th percentile median 75th percentile

Chlortetracycline 309 12327.6 29.7 35.2 43.7
Amoxicillin 223 5992.3 19.0 27.1 32.6
Doxycycline 77 4138.1 25.0 30.4 75.7
Sulfadimidine 278 3626.0 7.8 11.9 16.1
Oxytetracycline 207 3380.4 6.7 9.3 20.8
Trimethoprim 60 2462.6 29.8 38.9 45.3
Tulathromycin 46 2215.9 25.1 27.2 33.0
Spiramycin 91 2014.4 15.6 17.0 20.3
Florfenicol 111 1659.9 6.7 11.3 17.9
Procaine benzylpenicillin 64 1392.1 12.0 17.9 28.7
Tylosin 222 1331.4 2.4 3.3 5.2
Phthalylsulfathiazole 56 1152.8 14.3 19.3 21.7
Danofloxacin 19 741.9 11.9 23.2 35.4
Dehydrostreptomycin 30 460.8 8.0 10.3 21.2
Marbofloxacin 31 424.7 1.9 7.4 20.3
Ceftiofur 7 223.5 27.0 34.8 38.4
Tilmicosin 13 97.6 6.2 7.4 8.6
Sulfaguanidine 3 81.2 0.5 0.5 40.4
Amoxicillin + clavulanic acid 3 79.9 7.9 8.9 36.5
Cefquinome 2 48.7 17.8 24.3 30.9
Sulfadiazine 3 40.2 4.1 5.0 18.4
Sulfadoxine 2 37.2 12.5 18.6 24.7
Benzathine benzylpenicillin 2 16.9 7.1 8.5 9.8
Enrofloxacin 1 15.1 – – –
Sulfamethoxypyridazin 1 9.9 – – –
Lincomycin 1 3.8 – – –
Spectinomycin 1 3.5 – – –
Neomycin 1 2.6 – – –

For each antimicrobial drug, the total number of treatments applied during the study period in the 38 study farms is presented (n), as well as the total 
TI of all treatments with a respective drug (in decreasing order of total TIDDD). 
Treatment incidences for individual calf treatments with the respective drug are provided including their 25th percentile, median and 75th percentile. 
aSee Table 1 for footnotes.

2861

http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkac246#supplementary-data
http://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkac246#supplementary-data


Becker et al.

build generalized linear models with a logit link function using ‘R’ Version 
3.5.1 (R Core Team, Vienna, Austria; package lme4). The dependent vari-
able was specified as the result of susceptibility testing (resistant to any of 
the tested antimicrobial drugs or not). The independent variable was spe-
cified as number of antimicrobial treatments applied (categorized into 
‘untreated’, ‘one treatment’, ‘≥one treatment’). The category ‘untreated’ 
was used as the reference category. In each model, farm was included as 
a random effect.

In addition, for each bacterial species, separate generalized linear 
models with a logit link function were built for the most frequently 
used antimicrobial drugs and the drugs to which bacteria were most 

frequently resistant to. This was done in order to investigate homologous 
(i.e. if resistance to antimicrobial class A is associated with use of class A 
at the calf level) and heterologous association (i.e. if resistance to anti-
microbial class A is associated with use of classes ≠A at the calf level). 
To avoid type I error due to multiple comparison, a limited number of 
models were built. Farm was included as a random effect in these 
models.

Additionally, a machine learning approach was used to test for the 
predictability of treatment modalities on the presence/absence of resist-
ant bacteria (‘R’ packages lme4, lmerTest, bestNormalize, caret). Three 
different machine learning algorithms (random forest/elastic net/support 

Figure 1. AMU in 38 veal-fattening operations, calculated as treatment incidence in defined daily doses (TIDDD) according to the method of the EMAa. 
Treatments were grouped by week of the fattening period, for antimicrobial classesb and overall use. aSee Table 1 for footnotes. bClasses with <10 
treatments are not shown separately but appear in total TI. ◊Beginning of the fattening period (Week 1). Age of the calves was 4.6 (3.7/5.4) weeks 
(median, 25th/75th quantiles). *Timepoint of treatment: calves were treated at Week 4.4 (3.3/5.4) of the fattening period. ‡Timepoint of swabbing: 
calves were swabbed at Week 14.3 (12.3/16.9) of the fattening period. §Duration of the fattening period: 17.0 (15.0/19.0) weeks.
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vector machine) were trained on 75% of the data to predict whether an 
animal had been treated in any way (all drugs combined) prior to swab-
bing, based on the presence/absence of each resistance. The predictive 
accuracy of the trained models was then tested against the remaining 
25% of the observations. For each model, the achieved predictive accur-
acy was statistically compared with the no-information rate, to 
indicate whether the constructed model achieved higher predictive 
power than random chance. Given the low prevalence of P. multocida 
and M. haemolytica, this analysis was conducted for E. coli isolates 
only. Clustering of farms was taken into account. The level of significance 
was set at α = 0.05.

Results
The age of the calves at the beginning of the fattening period (be-
ginning of Week 1) was 4.6 (3.7/5.4) weeks (median, 25th/75th 
quantiles). In the case of antimicrobial treatment, calves were 
treated in Week 4.4 (3.3/5.4) of the fattening period. Calves 
were swabbed in Week 14.3 (12.3/16.9). The duration of the fat-
tening period was 17.0 (15.0/19.0) weeks. Of 1905 calves enrolled 
at the beginning of the study, 731 calves received antimicrobial 
treatment during the fattening period (38.4%), through applica-
tion of a total of 1864 treatments. The TIDDD of each antimicrobial 
class and antimicrobial drug used are sorted in decreasing order 
and listed in Tables 1 and 2, respectively. Additionally, the median 
and 25th/75th quantiles of TIDDD are shown for treatments of the 
mentioned class or drug. Figure 1 shows overall AMU and AMU 
grouped per week of the fattening period for the different anti-
microbial classes.

A total of 1582 E. coli, 1059 P. multocida and 315 M. haemoly-
tica were isolated. The most frequent drugs bacteria were resist-
ant to were tetracycline (51.4%), sulfamethoxazole (50.5%) and 
ampicillin (38.9%) for E. coli; oxytetracycline (74.2%) and spec-
tinomycin (58.1%) for P. multocida; and tilmicosin (16.7%), spec-
tinomycin (3.5%) and danofloxacin (2.9%) for M. haemolytica. 
Detailed information on clinical breakpoints and susceptibility 
testing results are listed in Tables S1–S3. Proportions of resistant 
isolates plotted against the number of antimicrobial treatments 
are given in Table 3.

Associations of AMU with AMR were observed for E. coli, 
P. multocida and M. haemolytica. For E. coli at the level of the in-
dividual calf, the odds of being resistant were increased, albeit 
not significantly so, with increased use of antimicrobials (as num-
ber of treatments >1, OR 1.36, P = 0.066; Table 4). Use of 

tetracyclines was associated with resistance to tetracycline (OR 
1.86, P < 0.001) and use of penicillins was associated with 
resistance to ampicillin (OR 1.66, P = 0.014; Table 5). For 
P. multocida, use of aminoglycosides was non-significantly asso-
ciated with resistance to spectinomycin (OR 3.66, P = 0.074). For 
M. haemolytica, as for E. coli, the odds of being resistant were 

Table 3. Proportion of isolates exhibiting a minimum of one resistance to 
an antimicrobial drug (=resistant isolate) plotted against the number of 
antimicrobial treatments for E. coli isolated from rectal swabs, as well as 
P. multocida and M. haemolytica isolated from nasopharyngeal swabs

Number of antimicrobial 
treatments

Proportion of resistant isolates (%)

E. coli P. multocida M. haemolytica

0 57.7 69.6 11.8
1 62.1 77.0 18.9
>1 71.7 84.9 35.6

Number of antimicrobial treatments were categorized as none, one, or 
more than one antimicrobial treatment.

Table 4. Results of the generalized linear models with a logit link function 
on individual isolates of E. coli isolated from rectal swabs and M. haemolytica 
isolated from nasopharyngeal swabs exhibiting at least one resistance to an 
antimicrobial in Swiss veal calves on 38 farms

Predictors OR CI P

E. coli
(Intercept) 1.41 1.04–1.93 0.029
Number of treatments = 1 1.24 0.88–1.77 0.223
Number of treatments >1 1.36 0.98–1.90 0.066

P. multocida
(Intercept) 4.91 2.12–11.36 <0.001
Number of treatments = 1 1.15 0.62–2.13 0.647
Number of treatments >1 1.12 0.62–2.00 0.713

M. haemolytica
(Intercept) 0.12 0.07–0.22 <0.001
Number of treatments = 1 1.82 0.70–4.69 0.217
Number of treatments >1 4.63 2.40–8.91 <0.001

Number of antimicrobial treatments of calves carrying the respective iso-
late were categorized as no treatment (reference), one, or more than one 
antimicrobial treatment.

Table 5. Results of the generalized linear models with a logit link function 
on E. coli isolated from rectal swabs and P. multocida isolated from naso- 
pharyngeal swabs exhibiting resistance to a given antimicrobial drug 
when treated with a drug from the same antimicrobial class 
(homologous treatment) or not (heterologous treatment)

Predictors OR CI P

E. coli resistance to tetracycline
(Intercept) 0.81 0.58–1.15 0.236
Treatment(s) not containing 
tetracyclines

1.05 0.74–1.48 0.803

Treatment(s) containing tetracyclines 1.86 1.34–2.58 <0.001
E. coli resistance to ampicillin

(Intercept) 0.46 0.31–0.66 <0.001
Treatment(s) not containing penicillins 1.14 0.83–1.57 0.420
Treatment(s) containing penicillins 1.66 1.11–2.48 0.014

P. multocida resistance to spectinomycin
(Intercept) 0.81 0.35–1.86 0.614
Treatment(s) not containing 
aminoglycosides

0.91 0.59–1.39 0.663

Treatment(s) containing 
aminoglycosides

3.66 0.88–15.21 0.074

Bacteria were isolated and treatments were recorded at the calf level on 
38 Swiss veal calf farms. 
Reference: ‘untreated’.
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increased with increased use of antimicrobials (as number of 
treatments >1, OR 4.63, P < 0.001; Table 4). Animals treated 
with tetracyclines had a significantly higher odds of carrying re-
sistant isolates of M. haemolytica (OR = 6.49, P < 0.001), but it 
was not possible to estimate an effect for heterologous treat-
ment, because none of the animals that had received heterol-
ogous treatment carried isolates resistant to tetracycline.

None of the machine learning models resulted in a 
high predictability whether an animal had been treated 
or not, based on the resistance pattern at swabbing 
(No-Information-Rate = 0.616; AccuracyRandomForest = 0.626, 
P value = 0.360; AccuracyElasticNet = 0.608, P value = 0.643; 
AccuracySupportVectorMachine = 0.623, P value = 0.399). In addition, 
the variable ‘group’ (i.e. management system) was not significantly 
associated with the outcome.

Discussion
In the present study, AMU and AMR data from 38 farms and 
2956 bacterial isolates, respectively, were analysed using an in-
novative approach for associations at the individual animal level. 
Bacterial resistance in the commensal flora of veal calves has 
only been assessed in a few studies, at the level of the farm or 
the country.5,8–10 Two further studies where associations of 
AMU with AMR were investigated were conducted in dairy calves 
and fattening steers.23,24 In contrast to the latter studies, a modi-
fied approach was chosen in the present study. Here, antimicro-
bial treatment modalities were not defined by an experimental 
protocol, but treatment decisions were at the farm veterinarian’s 
discretion. In this regard, the experimental setting was unregu-
lated and antimicrobial treatments were administered in real 
life, independently of the study. This methodological difference 
is of importance for the discussion of our results. Robust homolo-
gous associations of AMU and AMR at the animal level were de-
tected in dairy calves and fattening steers when treatment 
regimens were restricted to a single drug or antimicrobial class 
(31 calves and 370 steers, respectively).23,24 In the present 
study, swabbing was performed at the end of the fattening per-
iod to investigate the prevalence of resistant bacteria before 
the calves entered the downstream food supply chain, where 
such bacteria may represent a threat to public health. Most 
calves, however, received treatment considerably earlier in 
the fattening period than before slaughter. Presence of resist-
ant bacteria is known to be transient in many cases and best 
detectable a few days to weeks post-treatment.24 As the calves 
were swabbed after approximatively 10 weeks post-treatment, 
the selection pressure may already have decreased and the 
bacterial community almost re-established pre-treatment 
equilibrium at that time.

In one of the studies mentioned above,23 dairy calves had 
been randomly assigned to milk containing penicillin G or to a 
negative control, and a highly significantly reduced susceptibility 
was observed during treatment in commensal gut bacteria of the 
treated calves. Similarly, steers having received florfenicol sub-
cutaneously carried more faecal E. coli with resistance to chlor-
amphenicol than controls for several weeks post-treatment.24

In contrast, in a study at the animal level in steers, no associa-
tions were detected between AMU and AMR when using a treat-
ment protocol including long-acting oxytetracycline or tilmicosin 

(depending on the body temperature at arrival at the feedlot), 
and ceftiofur in case of disease during the fattening process.25

Nonetheless, the authors still suspected an association of AMU 
with AMR but hold the study design responsible for the fact 
that no such effect could be detected, as the total TI, not TI at 
the antimicrobial class or drug level, was used as a predictor vari-
able. In the present study, TI was recorded in more detail, namely 
at the level of the individual calf. Contradictory findings, i.e. pres-
ence or absence of associations between AMU and AMR, have 
been reported in studies at the farm and national levels in veal 
calves.8–10,26 This underlines the importance of further research 
in veal calf farms.

Between 185 and 979 samples were included in previous 
studies,6,8,9,15,23,27,28 whereas considerably higher numbers of 
antimicrobial-susceptible and -resistant isolates from treated 
and non-treated calves were available in the present study 
(1582 E. coli isolates, 1059 P. multocida and 315 M. haemolytica). 
Approximatively 12% of the enrolled calves were not sampled 
due to practical constraints. Calves that died suddenly could 
have died due to an infection with resistant bacteria and there-
fore differ systematically from the rest of the population. 
However, others described pneumonia to be responsible for 
less than a third of deaths.29 Also, calves that were not swabbed 
due to sudden death were present on most farms (34 out of 
39 farms).

Our findings suggest that different selection mechanisms 
were present in the veal fattening operations under study. This 
is in line with the results of analyses of another dataset from 
the same veal calves, where associations of age and manage-
ment factors with AMR were investigated at the herd level; a low-
er AMR prevalence was observed in farms where the effects of 
risk factors for high AMR were mitigated through thorough 
changes in management procedures.30 In the present study, in-
vestigating associations in logistic regression models allowed for 
detection of several significant associations between AMU and 
AMR, as well as for associations close to the significance level 
at the individual calf level. Interdependency of the calves belong-
ing to the same farm was corrected for by adding a random farm 
effect to the models. A small to substantial intraclass correlation 
coefficient of 0.05–0.65 was observed in the models. Likely, be-
sides varying treatment modalities, direct transfer of bacteria be-
tween calves and ingestion from the inanimate environment also 
occurred to varying degrees on the different farms. Models where 
farm was not added as a random effect showed more significant 
association for homologous association of AMU–AMR in E. coli (for 
sulphonamides, OR 2.63, P < 0.001; for diaminopyrimidines, OR 
0.05, P < 0.001, data not shown). Similarly, in P. multocida, mod-
els without random farm effect showed significant association of 
AMR with the number of antimicrobial treatments (1 treatment, 
OR 1.46, P = 0.09; >1 treatment, OR 2.45; P < 0.001, reference is 
‘untreated’). Homologous association was significant for tetracy-
clines (OR 2.90, P < 0.001). Negative associations of AMU and AMR 
have been described in humans and different animal species, 
where a complex interplay of resistance determinants has been 
suspected.31–33

Retrospective estimation of treatment intensity through 
swabbing and bacterial susceptibility testing at the end of the 
fattening period would have been an easy way to monitor AMU 
and AMR in veal farms, which made this hypothesis worth testing. 
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None of the tested machine learning methods was able to pro-
vide a reliable prediction for whether an animal had been trea-
ted or not based on the pattern of resistances at the end of the 
fattening period. The most likely cause for this result lies with 
the fact that the time interval from treatment to sampling 
was too long and, as mentioned above, selection pressure 
had already abated by the time of swabbing. Unfortunately, 
despite the relatively large sample size in comparison with 
other studies, the chosen machine learning approaches were 
ineffective. The data were also checked for evidence of cluster-
ing of resistant bacteria within farms, but this was not the case 
(data not shown).

In studies where associations of AMU with AMR in E. coli are in-
vestigated, different techniques for species identification can be 
used. In the past, the most commonly used procedures were 
based on biochemical tests.6,8,15,23,27,28,34 Species identification 
by MALDI-TOF including a second MALDI-TOF for species confirm-
ation after purification as performed in the present study led to 
reliable identification of the bacteria under study. Also, suscepti-
bility test procedures were frequently conducted using disc diffu-
sion in the past.8,23,28,35 In the present study, microdilution was 
chosen to obtain more precise results. Detailed data on AMU 
were collected prospectively in a labour-intensive observational 
setting, in contrast to other studies where AMU data were re-
trieved through an interviewed person.6,9,10 Analysing data at 
national level may allow for including more farms; however, 
the quality of the data may be lower, especially regarding attribu-
tion of single treatments to single animals. In the present study, 
farm visits were performed in a considerably higher frequency 
than in other veal calf studies, which may have resulted in higher 
data quality.11,36,37

In conclusion, these results show that associations of AMU 
and AMR can be detected on veal calf farms at the level of 
the individual animal using AMU and AMR data at the animal 
level. The presence of resistant bacteria at the end of the fat-
tening period is associated with AMU during that period. 
Implications deriving from selection of antimicrobial-resistant 
bacteria must be considered whenever antimicrobial treatment 
is applied to animals. These selection processes underline the 
importance of alternative strategies to improve management 
practices in veal farms, in order to reinforce animal health, de-
crease disease incidence and thereby reduce the need for anti-
microbial treatments, as it may allow for reducing the selection 
of resistant bacteria.
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