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Abstract

Background

Epidemiological studies to date have evaluated the association between genetic variants

and the susceptibility to obstructive sleep apnea (OSA). However, the results of these stud-

ies have been inconclusive. In this current study we performed meta-analysis of genetic

association studies (GAS) to pool OSA-susceptible genes in Chinese population, to perform

a more precise evaluation of the association.

Methods

Various databases (i.e., PubMed, EMBASE, HuGE Navigator, Wanfang and CNKI) were

searched to identify all eligible GAS-related variants associated with susceptibility to OSA.

The generalized odds ratio metric (ORG) and the odds ratio (OR) of the allele contrast were

used to quantify the impact of genetic variants on the risk of OSA. Cumulative and recursive

cumulative meta-analyses (CMA) were also performed to investigate the trend and stability

of effect sizes as evidence was accumulated.

Results

Thirty-two GAS evaluating 13 polymorphisms in 10 genes were included in our meta-analy-

sis. Significant associations were derived for four polymorphisms either for the allele con-

trast or for the ORG. The variants TNF-α-308G/A, 5-HTTLPR, 5-HTTVNTR, and APOE

showed marginal significance for ORG (95% confidence interval [CI]): 2.01(1.31–3.07); 1.31

(1.09–1.58); 1.85(1.16–2.95); 1.79(1.10–2.92); and 1.79(1.10–2.92) respectively. In addi-

tion, the TNF-α-308G/A, 5-HTTLPR, and 5-HTTVNTR variants showed significance for the

allele contrast: 2.15(1.39–3.31); 2.26(1.58–3.24); 1.32(1.12–1.55); and 1.86(1.12–3.08)

respectively. CMA showed a trend towards an association, and recursive CMA indicated

that more evidence was needed to determine whether this was significant.
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Conclusions

TNF-α, 5-HTT, and APOE genes can all be proposed as OSA-susceptibility genes in Chi-

nese population. Genome-wide association studies (GWAS) are therefore urgently needed

to confirm our findings within a larger sample of OSA patients in China.

Introduction
Obstructive sleep apnea (OSA) is one of the most common sleep breathing disorders, affecting
approximately 2% of females and 4% of males in Western countries [1]. In Asia, the prevalence
of OSA has been estimated to be from 3.7% to 97.3% [2]. In comparison with Westerners, Chi-
nese are prone to ignoring the means of prevention, diagnosis and treatment of OSA due to
inadequate medical resources and poverty. Since there has been a consistent growth in the
social and economic burdens caused by OSA, as OSA could bring a range of sequelae (i.e., poor
glycemic control and hypertension)[3–5], the establishment of an approach to reduce the risk
of OSA is urgently needed in the most heavily populated country in the world.

It is generally believed that OSA is a complex disorder involving multiple traits, and incor-
porating a hereditary component [6,7]. Both genetic factors and environmental exposures can
contribute to the development of OSA [7]. Several meta-analyses have explored the relation-
ship between sporadic genetic variants and risk of OSA [8–13]. However, most of the afore-
mentioned meta-analyses lacked the inclusion of a subgroup analysis stratified by race. As is
already known, OSA-susceptible genes may differ among ethnicities, such as, compared with
white Europeans, severely obese south Asians had significantly greater prevalence[14].

To date, host genetic susceptibility to OSA has been investigated extensively within Chinese
population. However, these sporadic, inconsistent, and small-sample-size studies have limited
powers to demonstrate such a relationship. Indeed, some of the results from these studies
appear to be incompatible or contradictory. So far, no systematic review and meta-analysis of
genetic association studies (GAS) covering all tested polymorphisms and focusing on OSA in
Chinese populations has been published. To shed some light on this issue, we reviewed the lit-
erature and conducted the Human Genome Epidemiology (HuGE) meta-analysis, including
cumulative and recursive cumulative meta-analyses (CMA) following the work of Zintzaras
[15,16], to identify all candidate genes associated with susceptibility to OSA in Chinese
population.

Materials and Methods
This meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) Checklist [17] and Meta-analysis on Genetic Association Studies Checklist
(S1 Checklist).

Literature search
We performed a search of the literature to identify all studies that evaluated the association
between genetic variants and the risk of OSA in Chinese population, using the following elec-
tronic databases: PubMed, Excerpta Medica Database (EMBASE), HuGE Navigator, Wanfang
and Chinese National Knowledge Infrastructure (CNKI). The search terms we used were as fol-
lows: “obstructive sleep apnea hypopnea syndrome” or “OSAHS” or “obstructive sleep apnea
syndrome” or “OSAS” or “obstructive sleep apnea” or “OSA” or “sleep apnea”, in combination
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with “polymorphism” or “variant” or “mutation”. In addition, since high-throughput platforms
used for investigating genetic variants have been developed, “genome wide association study”
or “GWAS” was also searched. No language restriction was applied. The references of all stud-
ies included in the search were also checked to yield further eligible studies. If more than one
study reported on a particular population, only the latest or the most complete study was
included. Additionally, when a study reported different subpopulation results, we identified
each subpopulation as a separate study.

Selection criteria
The included studies met the following criteria: 1) they should evaluate the association between
genetic variants and risk of OSA in Chinese population; 2) the gene polymorphism pooled for
meta-analysis should be evaluated in at least two studies; 3) a case-control study design should
be used; 4) there should be enough genotype distribution or sufficient data for estimating the
generalized odds ratio metric (ORG) along with a 95% confidence interval (CI). Alongside this,
the following exclusion criteria were used: 1) references, case-reports, abstracts and reviews; 2)
the study did not provide detailed genotype data; 3) gene polymorphism pooled for meta-anal-
ysis was reviewed in fewer than two studies; 4) a case-control design was not used; and 5) over-
lapping or duplicate publications. Two reviewers (Drs. Sun and Hu) performed the search and
selection process independently of each other.

Data extraction
Two investigators (Drs. Sun and Hu) independently extracted data from each included study
into a standard table. The extracted information included the first author’s surname, year of
publication, age of OSA patients, genotyping method and genotype frequencies. Where dis-
agreements occurred, Drs Xu, Zhong and Tu participated, and divergences of opinion were
then resolved by a group discussion to reach a final consensus. The authors were contacted
through Email if there were queries regarding the studies.

Statistical analysis
For this meta-analysis, all statistical analyses were performed using STATA (ver. 11.0, Stata
Corporation, College Station, TX, USA) and ORGGASMA software (available at http://
biomath.med.uth.gr)[18]. The concrete algorithm of ORG and instructions how to operate the
ORGGASMA software was provided by Zintzaras[18]. A meta-analysis of GAS was performed
on the basis of the allele contrast (risk allele vs. non-risk) [19] and for outcomes reported in>1
study [20]. We used the ORG and 95% CIs through the random effect (RE) model to assess the
association between genetic variants and the risk of OSA. The RE model assumes a genuine
diversity in the results of various studies [15]. The ORG provides a model-free approach for
evaluating the genetic risk in GAS [18]. The Hardy-Weinberg equilibrium (HWE) of genetic
frequency distributions for the controls was calculated using Pearson’s χ2 method [21]. If the
control subjects were not in HWE, an adjusted ORG and 95% CIs was used [22]. Homogeneity
was tested using the Q statistic and I2 statistic. A p-value less than 0.1 indicated the existence of
between-study heterogeneity. Subgroup analysis by ethnicity (China vs. other) was performed
if data permitted. Harbord’s test was performed to examine the existence of the differential
magnitude of effect in large versus small studies in meta-analyses involving at least four studies
[23]. A sensitivity analysis was performed to evaluate the stability of results after correction of
control subjects deviating from HWE [24]. The mode of inheritance in genetic association was
estimated using the degree of dominance index (h index) [25,26]. The h-index is defined as the
ratio of the natural logarithms of the ORs of the two orthogonal contrasts (models); i.e., the co-
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dominant and the additive models [25]. CMA and recursive CMA were carried out to evaluate
the trend of the risk effect (i.e. OR) of the allele contrast over time [15]. The CMA indicates the
trend in the estimated risk effect and the recursive CMA indicates the stability in risk effect. A
p-value of less than 0.05 was deemed to indicate statistical significance, unless otherwise stated.

Results

Selection process and characteristics of OSA-susceptible GAS
After searching the four electronic databases described above, a total of 1598 references were
initially identified. 315 papers were first removed due to duplication. After reading the titles
and abstracts, 1133 articles were further excluded for 1) abstracts or reviews, 2) non-clinical
studies, and 3) non-relevance to genetic variants and OSA risk. The remaining 150 articles
were further screened after reading the full text. Of these, 100 articles were then excluded
because they lacked enough data or did not use a case-control design or were not relevant to
genetic polymorphisms and OSA risk in Chinese population. Amongst the remaining 50 case-
control studies, 19 were further excluded because gene polymorphisms were studied in less
than two case-control articles. Finally, a total of 31 case-control studies evaluating genetic vari-
ants and OSA risk, involving 13 polymorphisms in 10 genes in Chinese population were identi-
fied for quantitative analysis. These articles were published between 1999 and 2014. Fig 1
presents a flow chart of the study inclusion and exclusion criteria.

All polymorphisms were identified by polymerase chain reaction (PCR) (25 studies) or
PCR-restriction fragment length polymorphism (PCR-RFLP) techniques (6 studies). Of the 31
case-control studies, 9 polymorphisms were not in HWE, only one study handled with minor-
ity population-Uygur [27]. The detail information of each included study is presented in S1
table. The concrete characteristics of each polymorphism are listed in S2–S14 tables.

Main results, sensitivity analysis and publication bias
In summary, for outcomes>1 available study, a meta-analysis was performed for polymor-
phisms such as angiotensin-converting enzyme insertion/deletion (ACE I/D)[28–35], tumor
necrosis factor (TNF)-α-308G/A[27,36–39], interleukin (IL)-6[40,41], 5-hydroxytryptamine
receptor (5-HTR) 2A-102T/C[42–44] and -1438G/A[42–45], 5-HTR2C-796 C/G[42,44],
5-hydroxytryptamine transporter gene-linked promoter region (5-HTTLPR)[36,45–47],
5-HTT variable number tandem repeat (5-HTTVNTR)[44–47], leptin receptor (LEPR)
Gln223Arg[48–50], peroxisome proliferator-activated receptor (PPAR-γ) Pro12Ala[51,52],
apolipoprotein E (APOE) ε2/ε4[53,54], β1-adrenergic receptor (ADRB1)[55,56] and ADRB2
[55,57]. Candidate genes identified from included studies were summarized in Table 1.

Table 2 summarizes the associations between various genetic variants and the risk of OSA.
The model-free approach and the allele contrast were used. In summary, we obtained signifi-
cant results from four polymorphisms [TNF-α-308G/A, 2.01(1.31–3.07); 5-HTTLPR, 1.31
(1.09–1.58); 5-HTTVNTR, 1.85(1.16–2.95) and APOE, 1.79(1.10–2.92)] in the model-free
approach, and three polymorphisms [TNF-α-308G/A, 2.15(1.39–3.31); 5-HTTLPR, 1.32(1.12–
1.55); 5-HTTVNTR, 1.86(1.12–3.08)] in the allele contrast (Table 2). The results indicated that
the aforementioned genetic polymorphisms were significantly associated with OSA risk in Chi-
nese populations. With regards to TNF-α-308G/A, when we excluded the Uygur study, the
result was not affected in the meta-analysis. Finally, the heterogeneity across the included stud-
ies ranged from none (PQ = 0.97; I2 = 0%) to large (PQ =< 0.01; I2 = 99.9%).

For ACE I/D, TNF-α-308G/A, and 5-HTTLPR polymorphisms, cumulative meta-analyses
and recursive cumulative meta-analyses were performed (S1–S9 Figs). The pooled genetic risk
effect by CMA remained significant in the entire period covered by the papers studied.
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However, the slight instability in the pooled OR change was found by recursive CMA. Thus,
there is a trend towards association and more evidence is needed therefore to draw a safe con-
clusion on the significance and magnitude of the size of the effect.

Harbold’s test indicated that there was no differential magnitude of effect in large versus
small studies for all genetic polymorphisms (Table 2). After correcting for deviation from
HWE, the co-dominant and additive models also produced significant ORs (corrected for devi-
ation from HWE); the mode of inheritance (h index) is shown in Table 2.

Discussion
The current study used a field synopsis and comprehensive meta-analysis of GAS to reveal
associations of candidate genetic variants and OSA-susceptibility in Chinese population. In
total, 13 gene polymorphisms in 10 genes were identified. Of them, four gene polymorphisms
were significantly associated with the risk of OSA, while the other nine were not. Understand-
ing the hereditary pathophysiologic mechanisms in OSA development is essential in establish-
ing effective screening tests, to implement appropriate preventive and therapeutic approaches
to early intervention, and to develop gene therapy strategies [58]. Thus, this HuGE meta-analy-
sis may provide useful information for those with a genetic predisposition towards OSA.

In this meta-analysis, we utilized the ORG metric to quantify the magnitude of associations
between genetic polymorphisms and OSA risk. Numerous current meta-analyses of GAS have

Fig 1. Flow chart of literature search and study selection, with the specification of reasons.

doi:10.1371/journal.pone.0135942.g001
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summarized the various genetic contrasts, including the dominant, recessive, additive, and co-
dominant. However, these models are not independently satisfied for choosing a specific
genetic model, and if more than two models are significant, interpretations of the relative risk
effects in these models are not straightforward [18]. In contrast, the ORG metric could over-
come the shortcomings of multiple model testing (i.e., lack of biological justification and non-
independency of effects). Thus, ORG is optimal for the meta-analysis of GAS for the following
reasons: 1) to provide an integrated method to estimate genetic associations by exploring all
available information; 2) to make the interpretation of the results easier; 3) to produce more
robust results.

In our meta-analysis, we identified all candidate genes from the following six aspects:

1. The Renin-angiotensin system (RAS): the ACE gene, located on chromosome 17q23, con-
tains 26 exons and 25 introns, is critical in the pathogenesis of OSA. ACE is a key enzyme
and plays an important role in converting angiotensin I to angiotensin II [59], and serum
ACE activity was found to be increased in patients with OSA [60]. Previous meta-analyses
revealed no significant associations between ACE I/D polymorphisms and increased OSA
risk [10,59,61]. In consistent with former meta-analyses, we also found no association
between ACE I/D in the allele contrast and OSA risk in Chinese population.

2. Inflammatory genes: TNF-α, located on region-chromosome 6p, is an important pro-
inflammatory cytokine which is elevated in OSA patients and exerts multiple physiological
effects on OSA [11]. IL-6, located on chromosome 7p21-14, is another important mediator
of inflammatory responses [62]. Using the HuGE meta-analysis, we found that inflamma-
tory gene-TNF-α was indeed associated with increased risk of OSA. This may be explained
by the fact that elevated inflammatory cytokines can aggravate upper airways narrowed by
edema of the mucosal layers. With regards to IL-6, only two studies were included, we could
not give a robust conclusion.

3. Serotonin systems and serotonin transporter systems: 5-HTR2A and 5-HTR2C genes are
located on chromosome 13q14–q21 and the q24 region of chromosome X, respectively [9].

Table 1. Summary of candidate genes identified from included studies.

Gene Chromosome location Polymorphism Amino acid change Cases Controls

ACE 17q23 I/D NR 580 438

TNF-α 6p21.1–21.3 -308A/G NR 864 430

IL-6 7p21-14 -572G/C NR 451 175

5-HTR2A 13q14-q21 -102T/C NR 396 264

-1438G/A NR 489 379

5-HTR2C q24 -796 C/G NR 33 28

5-HTT 17q11.1–17q12 LPR NR 596 756

VNTR NR 572 708

LEPR 7q31.3 NR Gln223Arg 346 339

PPAR-γ 3p25 NR Pro12Ala 520 290

APOE 19q13.2 ε2/ε3/ε4 NR 436 562

ADRB 5q33.1 NR Arg389Gly 372 132

NR Arg16Gly 345 189

Abbreviation: NR, not reported; ACE, angiotensin-converting enzyme; I/D, insertion/deletion; TNF, tumor necrosis factor; IL-6, Interleukin-6; 5-HTR,

5-hydroxytryptamine receptor; 5-HTT, 5-hydroxytryptamine transporter; LPR, linked promoter region; VNTR, variable number tandem repeat; PPAR-γ,

peroxisome proliferator-activated receptor; APOE, apolipoprotein E; ADRB, β-adrenergic receptor.

doi:10.1371/journal.pone.0135942.t001
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The 5-HTT gene is another focus, located on the 17q11.1–17q12 region of chromosome 17
[9]. Consistent with a previous meta-analysis [9], we found that the 5-HTT gene (including
5-HTTLRP and 5-HTTVNTR) was associated with OSA susceptibility, while 5-HTR2A-
102T/C was not. However, our results did not reveal a positive association between the
5-HTR2A 1438G/A polymorphism and risk of OSA in Chinese population. In addition,
5-HTR2C was not associated with an increased risk of OSA.

4. Leptin receptor genes: the leptin receptor gene is mapped to 1p31 and has one long isoform
and three short isoforms [63]. Neither of the Gln223Arg and Lys109Arg polymorphisms in
the LEPR gene showed a positive association with OSA risk.

5. Lipid metabolism genes: the PPAR-γ gene is located on chromosome 3p25 [51]. We found
that the Pro12Ala polymorphism in the PPAR-γ gene was indeed associated with OSA sus-
ceptibility in Chinese population. The Apo E gene is located on chromosome 19q13.2, with
three common alleles: ε2, ε3 and ε4 [12]. Previous meta-analyses showed that there was no
association between the APOE gene and OSA risk [7,12]. However, contrary to this, we
found in our meta-analysis that the APOE gene was associated with a risk of OSA in Chi-
nese population.

Table 2. Summary of comparisons of different genetic models for genetic polymorphisms and OSA risk.

Gene Polymorphism Effect model ORG(95%CI) PQ I2 PH h index

ACE All model-free 1.46(0.80–2.66) 0.00 85.1 0.18 0.91

All allele 1.62(0.89–2.94) 0.00 89.4 NC NC

TNF-α-308G/A All model-free 2.01(1.31–3.07) 0.18 36.9 0.66 0.31

All allele 2.15(1.39–3.31) 0.09 50.8 NC NC

IL-6-572G/C All model-free 0.96(0.66–1.40) 0.24 26.9 NC 0.70

All allele 0.99(0.73–1.34) 0.28 15.9 NC NC

5-HT2A -102C/T All model-free 1.12(0.86–1.47) 0.99 0 0.70 0.10

All allele 0.91(0.73–1.13) 0.99 0 NC NC

5-HT2A-1438G/A All model-free 1.63(0.78–3.39) 0.00 93.7 0.73 0.50

All allele 2.02(0.83–4.91) 0.00 94.7 NC NC

5-HT2C -796 C/G All model-free 1.00(0.37–2.69) 0.42 0 NC 5.12

All allele 0.88(0.35–2.24) 0.97 0 NC NC

5-HTTLPR All model-free 1.31(1.09–1.58) 0.85 0 0.62 0.09

All allele 1.32(1.12–1.55) 0.80 0 NC NC

5-HTTVNTR All model-free 1.85(1.16–2.95) 0.01 55.7 0.98 0.41

All allele 1.86(1.12–3.08) 0.03 66.5 NC NC

LEPR Gln223Arg All model-free 1.09(0.74–1.59) 0.73 0 0.45 -0.62

All allele 0.91(0.64–1.29) 0.75 0 NC NC

PPAR-γ All model-free 1.40(0.84–2.31) 0.80 0 0.31 0.51

All allele 0.06(0.01–2.66) 0.00 99.2 NC NC

APOE All model-free 1.79(1.10–2.92) 0.86 0 NC NC

ADRB1Arg389Gly All model-free 0.97(0.67–1.42) 0.49 0 NC -0.26

All allele 0.95(0.68–1.33) 0.58 0 NC NC

ADRB2 Arg16Gly All model-free 0.93(0.68–1.26) 0.37 0 NC NC

All allele 1.11(0.83–1.48) 0.43 0 NC 1.24

Abbreviation: NC, not calculated; ORG, generalized odds ratio; ACE, angiotensin-converting enzyme; I/D, insertion/deletion; TNF, tumor necrosis factor;

IL-6, Interleukin-6; 5-HTR, 5-hydroxytryptamine receptor; 5-HTT, 5-hydroxytryptamine transporter; LPR, linked promoter region; VNTR, variable number

tandem repeat; PPAR-γ, peroxisome proliferator-activated receptor; APOE, apolipoprotein E; ADRB, β-adrenergic receptor.

doi:10.1371/journal.pone.0135942.t002
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6. Sympathetic nervous system: ADRB is located on chromosome 3p25, and is essential for
adiposity differentiation and lipid storage [51]. In our study, we found that ADRB1 and
ADRB2 were not associated with OSA risk. However, the sample size concerning the Chi-
nese population was small, and thus further large-scale studies should be carried out to
more clearly reveal any such associations.

Some limitations of this meta-analysis should be considered when explaining our results.
First, the meta-analysis was based on unadjusted risk estimates for confounding factors (e.g.,
sex, age, body mass index, life style) not provided by all of the individual GAS. Thus, the exis-
tence of effect modifiers may have produced the large heterogeneity between studies, leading to
bias [64]. Second, OSA is likely to result from multiple gene-gene interactions occurring in a
suitable environment, and we did not consider the potential confounding factors that might
have had an impact on the results of the current meta-analysis. The case-control design of each
GAS precludes adjusted analysis for gene-gene/gene-environment interactions, and might have
reduced the efficiency of genetic risk estimates [65]. Third, a power analysis showed that, to
achieve a power of>80% of detecting a modest genetic risk, a sample size of more than 10,000
subjects is needed [64]. Thus, our HuGE meta-analysis might lack sufficient power to detect
the weak genetic risk effects of common variants.

Despite the limitations mentioned above, the present meta-analysis first pooled all the spo-
radic, inconsistent, and small-sample-size studies and provided a cost-effective and a reason-
able approach to evaluating the relationship between all candidate genetic polymorphisms and
OSA in Chinese population. Of note, the sensitivity analysis and Harbord’s test suggested that
the pooled estimates of allelic and genotypic risks obtained in the present study were stable and
robust.

In conclusion, the HuGE meta-analysis indicated that the TNF-α, 5-HTT, and APOE genes
were associated with OSA susceptibility in Chinese population. These findings may help physi-
cians to formulate personalized prevention and therapy strategies for OSA in Chinese popula-
tion. Large-scale genome-wide association studies (GWAS) on OSA are needed to expand our
understanding of the genetic background to OSA.
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