
A modular network model of aging

Huiling Xue1,2,3, Bo Xian1,2,3, Dong Dong1, Kai Xia1, Shanshan Zhu1, Zhongnan Zhang1, Lei Hou1, Qingpeng Zhang1, Yi Zhang1 and
Jing-Dong J Han1,*

1 Chinese Academy of Sciences Key Laboratory of Molecular and Developmental Biology, Center for Molecular Systems Biology, Institute of Genetics and
Developmental Biology, Chinese Academy of Sciences, Beijing, China and 2 Graduate School, Chinese Academy of Sciences, Beijing, China
* Corresponding author. Chinese Academy of Sciences Key Laboratory of Molecular and Developmental Biology, Center for Molecular Systems Biology, Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China. Tel.: þ 8610 6484 5843; Fax: þ 8610 6484 5797;
E-mail: jdhan@genetics.ac.cn
3 These authors contributed equally to this work

Received 13.6.07; accepted 17.10.07

Many fundamental questions on aging are still unanswered or are under intense debate. These
questions are frequently not addressable by examining a single gene or a single pathway, but can
best be addressed at the systems level. Here we examined the modular structure of the protein–
protein interaction (PPI) networks during fruitfly and human brain aging. In both networks, there
are two modules associated with the cellular proliferation to differentiation temporal switch that
display opposite aging-related changes in expression. During fly aging, another couple of modules
are associated with the oxidative–reductive metabolic temporal switch. These network modules and
their relationships demonstrate (1) that aging is largely associated with a small number, instead of
many network modules, (2) that some modular changes might be reversible and (3) that genes
connecting different modules through PPIs are more likely to affect aging/longevity, a conclusion
that is experimentally validated by Caenorhabditis elegans lifespan analysis. Network simulations
further suggest that aging might preferentially attack key regulatory nodes that are important for
the network stability, implicating a potential molecular basis for the stochastic nature of aging.
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Introduction

Aging is a most prominent factor associated with many
complex diseases, such as cancer, diabetes, cardiovascular
diseases and neurodegenerative disorders. Decades of re-
search on aging have found hundreds of genes and many
biological processes that are associated with the aging process;
however, many fundamental questions are still unanswered
and/or are under intense debate. As summarized by a few
recent reviews (Kirkwood, 2005; Sinclair, 2005; Hekimi, 2006),
these questions include the following: (1) Are there many or
only a few biological processes contributing to aging? What are
they? (2) Are aging changes irreversible or reversible? (3) Is it
possible that a single gene mutation recapitulates all the aging
phenotypes? (4) Above all, why aging is a stochastic event
(Herndon et al, 2002; Rea et al, 2005; Somel et al, 2006)? These
questions are extremely important because they shape our
basic view of the aging process and influence how we think
about and develop strategies to interfere with the aging
processes. However, these questions cannot be fully addressed
by focusing on a single gene or a single pathway. For example,

even to answer if a single gene mutation can recapitulate all
the aging phenotypes, we have to have a good knowledge of
the ‘phenome’ of aging. Systems biology has therefore been
viewed as a promising way toward a more comprehensive
understanding of aging (Hood, 2003; Kirkwood, 2005).

To study the global transcriptional changes during aging, Lu
et al (2004) collected 30 post-mortem human brain frontal
cortex samples and through microarray analysis found B440
differentially expressed genes between the old and young
brains. Pletcher et al (2002) have performed such an analysis
on isogenic populations of once-mated female fruitflies at
different ages using five flies for each mRNA sample. Lund et al
(2002) carried out a microarray analysis on Caenorhabditis
elegans using three different strains collected at a variety of
ages, and found only 164 genes that showed a significant
change with age. These studies identified a large number of
genes that display age-related changes in various seemingly
unrelated biological processes. However, it is possible that, at
the network level, these genes aggregate into a few dynami-
cally organized network modules (Han et al, 2004) and their
expressions are changed concertedly through the same
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regulatory circuitry. Finding these dynamically organized
network modules will be an important first step toward
revealing the regulatory circuitry.

Here we focus on the dynamic modular structure of the
protein–protein interaction (PPI) networks during aging as
revealed by gene expression profiles. Recently, we developed a
new analytic method, which we termed ‘NPanalysis’ (Xia et al,
2006). It permits integration of both transcriptome and
interactome information. Briefly, ‘NP analysis’ finds a sub-
PPI network that is active during a specific process such as

aging. The subnetwork is termed the ‘NP network’ as it
contains only PPIs between genes that are positively or
negatively correlated during aging. The subnetwork identified
this way is dependent only on the variations during the aging
process, instead of the amplitude of change, and thus can
include even regulatory genes at the top of regulatory cascade
that are expressed at low levels and only slightly change during
aging. Next, the analysis divides genes in the NP network into
coregulated gene groups or clusters through expression
profile-based hierarchical clustering followed by manual or
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automated dissection of the major gene clusters. In the context
of the network we called these gene clusters network
‘modules’. The automated cluster dissection procedure uses
a threshold of 1% transcriptionally negatively correlated PPIs
to define the boundary of a module (Figure 1A; Supplementary
data; Xia et al, 2006). Then the relationships among the
modules are established through gene expression profiles and
PPIs (Figure 1A; Supplementary data). Such an integrative
analysis increases the homogeneity and stability of the module
compositions and ensures a high probability of identifying the
transcriptionally anticorrelated modules, which often repre-
sent alternative cellular states separated by a temporal switch
(Xia et al, 2006). For example, by examining only the expres-
sion profiles, the chance of finding anticorrelated modules is
62–66%, whereas by first extracting the NP network from the
PPI network, the chance increases to 98–99%; if randomly
constructed PPI network of the same degree of distribution as
the real PPI network is used, the modules identified will be
B30% smaller in size than those found using the real PPI
network and the average interaction degree will also be much
smaller than that of the real modules. More details can be
found in Table II of Xia et al (2006). A pair of anticorrelated
modules can be the result of a ‘toggle-switch’ regulatory
control circuitry that is designed to coordinate different cell
fates/states (Hasty et al, 2002). Finding the transcriptionally
anticorrelated modules that concurrently upregulate and
downregulate during aging will not only allow us to identify
the genes whose changes correlate or inversely correlate with
chronological age, but also other concerted alterations in
expression states that assume different directionalities during
aging and developmental stages. More importantly, such an
analysis also leads to the identification of the PPI interface
between the modules that potentially regulate or coordinate
expression of the modules (Xia et al, 2006) and might play
regulatory roles in aging.

Results

Are there many or only a few biological processes
contributing to aging?

Aging affects multiple seemingly unrelated biological pro-
cesses (Finch, 1990). However, by using the ‘NP analysis’ on

the human brain aging network, we found that the genes
aggregate into a small number of network modules. During
human brain aging, four modules were found in the NP
network. Two of them, the ‘P’ and ‘D’ modules, are transcrip-
tionally anticorrelated with each other. They are so named
because the genes in the modules are enriched in GO
annotations related to cell proliferation and differentiation,
respectively, and because the former decrease and the latter
increase in expression level when cells are induced to switch
from proliferation to differentiation state (Figure 1B; Xia et al,
2006). In addition to the P and D modules, there are two other
major network modules, the PP and I modules, which are
named for ‘protein processing’ and ‘immunity,’ respectively
(named ‘N’ and ‘S’ in Xia et al, 2006). The PP module is
enriched for genes encoding protein translational and degra-
dation activities and the I module is a small module of genes
related to immunity (Figure 1B; Xia et al, 2006). Using a single
criterion of the percentage of transcriptionally anticorrelated
PPIs cannot separate the PP module from the P module
because of their high transcriptional correlation. However, the
two modules are clearly separable when the clustering results
were visualized using the TreeView program. We therefore
separated these modules manually.

To determine whether similar modules and their relation-
ships are conserved in other species, we examined the dynamic
modular structure of the fruitfly interactome during aging
based on the fly yeast two-hybrid (Y2H) interactome (Giot et al,
2003; Formstecher et al, 2005) and fly aging expression profiles
(Pletcher et al, 2002) using ‘NP analysis’. As in the human
brain NP network, we found in the fly NP network a pair of
transcriptionally anticorrelated gene modules corresponding
to the proliferation (P module) and differentiation (D module)
states at the cellular level (Xia et al, 2006). In addition, we
found another pair of transcriptionally anticorrelated gene
modules, which we named the reductive metabolism (R)
and oxidative metabolism (O) modules as indicated by their
associations with cellular processes (see below; Figure 1C, D).
The genes and enriched function annotations of each module
are listed in Supplementary Tables I and II. Unlike the human
PP module, all the four modules in the fly NP network are
clearly the only four large clusters visually identifiable
using the TreeView program, and additional constraints on
module-wise correlations do not generate extra modules.

Figure 1 Network modules during human brain and fruitfly aging. (A) Flow diagram of the NP analysis arriving at the aging-related NP network and modularized NP
network. The first step of the NP analysis is to obtain all the PPIs between interactors that are negatively or positively correlated at the transcription level (|PCC|>0.4) during
aging. Once the subnetwork is found, the genes in the subnetwork are clustered by their expression profiles using hierarchical clustering, then the best separated modules
on the clustering tree are found judged by the percentage of negatively correlated interacting gene pairs within a module (o1%). PCC stands for Pearson correlation
coefficient. (B) Transcriptional relationships among the modules of the human brain aging NP network. Human D (differentiation), P (proliferation), PP (protein processing)
and I (immunity) modules are represented with nodes of lavender, green, brown and dark blue, respectively. Pearson correlation coefficient (PCC) between the two serials
of the average expression levels of a pair of the modules over different samples are used to measure the similarity of expression patterns between the modules. The PCC
for each module pair is marked at the line connecting the two modules. Solid red and green lines represent strong transcriptional correlations and anticorrelations,
respectively (|PCC|>¼0.7), whereas dotted red and green lines indicate weak correlations and anticorrelations, respectively (0.4o|PCC|o0.7). Gray dotted lines
represent no obvious transcriptional relationships (|PCC|o¼0.4). The number of genes of each network module is indicated below the name of the module. (C, D)
Transcriptional relationships among the modules of the fruitfly aging under normal (C) and CR (D) conditions. (E) Average expression intensities are plotted against the
age of the human subjects for the human brain module genes. The gray vertical line marks age 85. (F, G) Average expression intensities are plotted against fly age for the
fly module genes under normal (E) and CR condition (F), respectively. Polynomial fits of the fly module expression level across different populations over age are also
displayed, indicating perfect linearity of O and R module expression level with age. Linear regression R2 of the O and R modular changes with age are also displayed. Only
the expression levels of the genes overlapping between the corresponding normal diet and CR modules are plotted. Those for the nonoverlapping genes are shown in
Supplementary Figure 4. (H) Relationship of O and R modules to metabolic cycle. The average expression levels of the yeast orthologs of the fly R and O genes oscillate
with the metabolic cycles and reach the highest levels in the antiphases of reductive and oxidative metabolisms, respectively (marked by the arrows). The P and D modules
are also included for comparison. Genes for each module are the overlapping genes between the corresponding modules under normal diet and CR.
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Through transcriptional relationships, the modules also
form a modular network. Under normal condition, module
gene expression levels of the P module slightly correlate with
R, and D slightly correlates with O across different samples
(Figure 1C; Supplementary Figure 1). Upon caloric restriction
(CR), the weak expression correlations between P and R and
correlation between D and O are lost (Figure 1D; Supplemen-
tary Figure 1), due to the apparent lack of a P–D aging pattern
during the first half of life in the CR flies (see below).

These modules can also be observed using other inter-
actome data sets (Supplementary data; Supplementary
Figure 2; Supplementary Table III), indicating that only a
small number of modules are associated with aging, and the
number is unlikely to increase significantly with higher
genome coverage.

Cross-examination of the orthologous gene expression of
fly modules in human and that of the human modules in
fly indicates that the lack of O and R modules in human brain
and the different composition of fly and human D modules
are unlikely due to different coverage of the fly and
human interactome and transcriptome (Supplementary data;
Supplementary Figure 3; Supplementary Table IV).

Are modular expression changes reversible or
irreversible?

Because the genes inside a module have similar expression
profiles, we used the average transcription level of the genes
inside a module to represent the expression level of a module.
We examined the average gene expression levels within a
module (module expression levels) relative to age and found
that the P and D modules are not only transcriptionally
anticorrelated among individuals (Xia et al, 2006), but also
undergo opposite changes in expression level with age
(Figure 1E). The expression of D decreases and that of P

increases with age in the human brain (both significant when
only samples of age p85 are included, whereas only D
module’s decrease is significant if the entire sample set is
included; Table I). Such a trend stops and even reverses in
the longest-lived people (ages485), which suggests that
their expression levels might also be related to longevity.
The reversal is visually clear in Figure 1E, but due to the
small sample size, it is only marginally significant (Table I).
These changes also suggest that the relationship of P and D
module expression with age might be reversible. However, it is
not known whether such a reverse is due to the age these
individuals achieved or if a difference in the relationship of the
P and D modules may have allowed survival to older ages. The
expression levels of PP do not have a significant association
with age if the longest-lived samples are not included, but
are significantly downregulated in these samples (Figure 1E;
Table I). The expression of the I module increases steadily in
the aging brains, consistent with the previous findings of
increased inflammation responses in the aging brain (Lynch,
2004) (Figure 1E; Table I).

The increase of P and decrease of D gene expression levels
can also be observed in the fruitfly (Figure 1F; Table I;
Supplementary Figure 4). The expression levels of fly R and O
are linear with age (Figure 1F; Table I; Supplementary Figure
4). Although the P and D module expressions display more
variation as compared to the O and R modules, both the
increase in expression of the P module and the decrease in
expression of D module with age are highly significant
(P¼4.81�10�3 and 1.31�10�3 for P and D modules, respec-
tively; Table I).

Effects of calorie restriction on aging changes

CR is the single most universal way to slow aging in all species
examined (Sinclair, 2005); we therefore asked which, if any, of

Table I Statistical significance of age-related gene expression changes of the human brain and the fly modules

Module Slope P-value R square Spearman correlation P-value Condition

D �0.353 5.16E�02 0.13 �0.37 4.25E�02 Human brain (entire period)
P 0.693 4.19E�01 0.02 0.10 6.06E�01
PP �2.327 1.71E�02 0.19 �0.33 7.83E�02
I 0.900 1.95E�02 0.18 0.40 2.82E�02
D �0.582 1.90E�02 0.23 �0.46 2.22E�02 Human brain first period (agep85 years)
P 2.661 2.04E�02 0.22 0.39 5.77E�02
PP �0.429 6.82E�01 0.01 �0.12 5.83E�01
I 1.366 1.77E�02 0.23 0.46 2.44E�02
D 1.355 5.08E�01 0.09 0.56 1.92E�01 Human brain second period (ageX85 years)
P �10.220 2.09E�01 0.29 �0.83 2.12E�02
PP �19.511 5.64E�02 0.55 �0.77 4.08E�02
I 4.079 6.71E�03 0.8 0.83 2.12E�02
D �0.003 1.31E�03 0.3 �0.53 1.74E�03 Fly normal condition (7B47 days)
P 0.003 4.81E�03 0.24 0.47 7.17E�03
O �0.009 4.06E�12 0.8 �0.88 1.00E�06
R 0.012 6.66E�16 0.89 0.94 1.00E�06
D 0.001 3.70E�01 0.07 0.21 4.71E�01 Fly CR first half life span (ageo40 days)
P �0.004 9.21E�02 0.22 �0.31 2.86E�01
O �0.005 6.70E�04 0.63 �0.47 9.13E�02
R 0.005 5.27E�04 0.65 0.81 4.80E�04
D �0.004 4.54E�05 0.52 �0.73 3.50E�05 Fly CR last half life span (ageX40 days)
P 0.005 1.90E�03 0.35 0.55 4.14E�03
O �0.005 5.42E�06 0.6 �0.79 2.86E�06
R 0.006 2.24E�04 0.45 0.64 5.23E�04
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the aging changes can be reversed or slowed by CR. At the end
of life, the expression levels of P, D, R and O are about the
same, whether the flies were grown under normal or under CR
condition, suggesting that the terminal expression levels of
these genes are good indicators of when a life ends. In young
flies with normal diet, the expression level of R is lower and
that of O is higher, and the difference between R and O is
greater when compared to those under CR. This phenomenon
is consistent with the metabolic burst in young adults
(McCarroll et al, 2004), which is probably enhanced by high
food intake. Although the expression levels of fly R and O
remain linear with age (Figure 1F, G), under CR the rate of
change is slowed by nearly half (Figure 1F, G). The linear
change of O and R module expression with age under both
normal and CR conditions indicates that the O–R change is an
accumulating and likely irreversible event just as is age. The
different rates of O–R change under normal diet and CR
suggest that these modules reflect biological age rather than
chronological age and that the aging processes are associated
with concerted changes.

Under diet restriction, the age-related decrease in D
expression and increase in P expression only occur at mid-
life and through the second half of the lifespan (Figure 1G;
Table I; Supplementary Figure 4). In other words, diet
restriction delays the onset of P–D aging pattern (decrease of
D and increase of P with age) to nearly the end of the normal fly
life expectancy (B40 days) (Figure 1G), which is well before
the rapid increase in mortality rate. Once the P–D aging pattern
starts, the flies can live about another adult lifetime, as if a
span of the P–D aging pattern (from the start to the end of
decrease in D and increase in P) demarks a cycle of ‘lifetime’
(B40 days) (Figure 1G). The decrease in D and increase in P
with age during the last half lifespan are highly significant
(P¼4.54�10�5 and 1.9�10�3, respectively). This again
confirms D and P as aging-related modules even under CR.

During the first half lifespan of the diet-restricted flies, the P
and D modules almost assume opposite changes. The increase
in D with age is not significant (P¼0.37) and decrease in P with
age is marginal (P¼0.09). The lack of aging changes in the P
and D modules during this period suggests that, similar to the
human brain P and D modules, the fruitfly P and D module
changes might be reversible at least within a certain time frame
(e.g. first half of lifespan) under certain condition (e.g. CR).

Therefore, there seem to be two different types of changes
with age. The changes to the O and R modules are irreversible,
whereas in agreement with the human P and D modules’
reversibility, the changes to the fly P and D modules seem to
be reversible under CR. By ‘reversibility’, we refer to the
possibility of modules to assume opposite direction of change,
not that the aging process is reversed.

What biological processes are the modules
related to?

Using Gene Ontology annotations (Ashburner et al, 2000), we
found that the D module is enriched in development- and
differentiation-related genes, the P is enriched in nuclear
transport and cell-cycle genes (Xia et al, 2006; Supplementary
Table II). Among other enriched function annotations,
mitochondrial and cellular metabolic reactions are enriched

in the O and R modules, respectively (Supplementary Table II).
The genes in P modules identified from human brain and fly
share a significant overlap (P¼0.0016, Supplementary Figure
5) and well-conserved functions (Supplementary Table II). In
addition, the P modules of both humans and flies are enriched
for cell-cycle commitment genes (Supplementary data;
Supplementary Figure 6). Although the D modules share no
significant overlap between the two species and the enriched
functions are also very different, both are enriched in genes
required for differentiation and just tailored to the tissue- and
species-specific differentiation needs. It is expected that
cellular proliferation is conserved between distant species,
whereas differentiation is not. Besides being differentiation-
related, both the fly and human D modules assume higher
expression level when cells are induced to differentiate, and
they both have opposite properties toward the P module. We,
therefore, termed both modules as the D modules referring to
the fly differentiation and human brain differentiation, as the
fly and human brain differentiation are explicitly distinctive
processes.

As the transcriptionally anticorrelated P and D modules
correspond to two alternative cellular states temporally
separated by the proliferation to differentiation switch in
multiple cell lines (Xia et al, 2006), we hypothesized that the R
and O modules could also correspond to a different cellular
switch. From the enriched GO annotations in the R and O
modules, it is clear that the two modules are related to cellular
metabolism. A metabolic cycle has been described in yeast
that when synchronized by starvation followed by glucose
perfusion, the cells oscillates between oxidative metabolic
and reductive metabolic phases. Furthermore, the cell cycle is
tightly gated by the metabolic cycle, so that the cell division
only occurs during a reductive metabolic phase (Tu et al,
2005). We, therefore, examined whether R and O were tempo-
rally separated during the metabolic cycle. Based on the yeast
expression profiles during the metabolic cycles (Tu et al, 2005),
the average expression levels of the yeast homologs of the R
and O module genes strongly oscillate throughout the
metabolic cycles and display alternating highest expression
levels in antiphases of each metabolic cycle (Figure 1H). The
two antiphases correspond to the reductive and oxidative
metabolic phases, respectively. Thus, the R and O temporal
expression pattern might be introduced by transcription
regulators overlapping with those controlling the metabolic
cycle. The association of O and R module with the oxidative
and reductive metabolic phase is not expected randomly
(empirical Po0.01, Supplementary data). In contrast to the
R and O modules, the P and D modules display no obvious
metabolic cycle-dependent expression (Figure 1G).

Are aging genes unevenly distributed in the aging
network?

Protein interaction interface usually refers to the structural
surface mediating PPIs. Here, we use the term ‘interface’ to
refer to the module–module interactions mediated by PPIs, so
that the proteins on the module interface have PPIs connecting
two modules. Our previous study indicates that the module
interface between the human brain P and D modules may have
regulatory roles coordinating the P and D modules in that the
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proteins at the module interfaces are enriched in regulatory
genes, tumor suppressors and oncogenes and feedback loops,
which are defined as cyclic paths (whose start and end
nodes are the same) of length between 2 to 10 directed PPI or
regulatory interactions (Xia et al, 2006). To further investigate
whether the module interfaces may regulate the aging process,
we examined in each interface and ‘cores,’ or noninterfaces of
the human brain aging modules, the proportion of known
‘aging genes,’ which are the genes that have been observed to
affect cellular or organism aging reported in the literature and/
or curated in online databases (Materials and methods).
Except for the human brain PP–I interface, all other pair-wise
module interfaces consistently have two- to threefold enrich-
ment of known aging genes over that of the cores or the
background level in the genome (Figure 2A; Supplementary
Table V). There is also a significant enrichment of transcription
regulators (obtained as in Xia et al, 2006) at the module
interfaces (Figure 2A; Supplementary Table V). When we
examined the genes for disease association, we found that as
expected, genes associated with cancers are only enriched
in the P–D interface but not any other interfaces (data not
shown).

To examine whether the high percentages of aging and regu-
latory genes at the module interfaces are a mere consequence
of the ‘module interface’ definition, we randomly grouped
genes in the NP network into modules of the same sizes as the
D, P, PP and I modules, and examined the percentages of aging
and regulatory genes on their module interfaces. We
performed such simulations 100 times, and found only the
transcriptionally anticorrelated D–P and D–PP interfaces
having significantly higher percentages of aging (P¼0.04 for
D-P and Po0.01 for D–PP interface) and regulatory genes
(Po0.01 for both D–P and D–PP interfaces) than randomly
expected. This highlights the importance of finding the
transcriptionally anticorrelated modules and their interfaces.

Together these results suggest that the module interfaces,
especially those that are transcriptionally anticorrelated, have
specific regulatory roles in coordinating the two modules it
bridges. Such properties led to a testable hypothesis that the
genes on the interface, especially those located in the feedback
loops at the anticorrelated module interfaces may constitute
the key regulatory components in coordinating different
modules during the aging process, which we validated with
lifespan assays in C. elegans upon RNAi knockdown of
the genes.

We randomly selected eight C. elegans orthologs of human
genes that locate in the regulatory feedback loops at the human
brain module interfaces and one other gene on the interface
but not in a feedback loop (POLA) as testing genes, and seven
randomly selected C. elegans orthologs of human genes as
control genes. We then analyzed the lifespan of the worms
upon RNAi knockdown of both the testing and control genes in
parallel with at least two repeated experiments. RNAi knock-
down of three of the nine testing genes extended the worm
lifespan and that of five other genes shortened the lifespan
significantly (log-rank test, P-valueo0.01 for both repeated
experiments, Figure 2B; Table II), whereas RNAi of only one of
the seven control randomly selected human ortholog genes
shortened the lifespan and none extended the lifespan of the
worm under the same significance level (Figure 2C; Table II).

The significant difference (Fisher exact test P¼0.006) of the
effect on the worm lifespan between the P–D or PP–D interface
genes and the random genes proved that these interface genes
indeed play an important regulatory role on longevity of the
worm. Although without more detailed genetic and biochem-
ical analysis, we cannot rule out that some of the lifespan-
shortening effect might be due to developmental defects, the
mere difference in the proportion of genes that can extend
lifespan upon RNAi is dramatic (33 versus 0%). Moreover, in
contrast to the control genes, each of the testing genes always
displayed consistent lifespan increase or decrease (same
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Figure 2 Aging regulatory role of the interface genes. (A) Aging genes and
transcription regulators are more enriched on the module interfaces than in the
cores. * indicates insignificant differences. Proportion test P-values for the
differences can be found in Supplementary Table V. (B) Worm lifespan upon
RNAi inactivation of worm orthologs of selected human module interface genes.
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differences. (C) Worm lifespan upon RNAi inactivation of randomly selected
worm genes that have human orthologs.
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direction of change) among replicates, despite the variations in
the extent of change between different experiments (Table II).

All the three genes we found to extend worm lifespan upon
RNAi knockdown are known to be associated with cell
proliferation, growth and/or differentiation at the cellular
level. Again all the five genes whose RNAi shortens lifespan
are known to be associated with cell proliferation, growth and/
or differentiation; there is direct evidence that one of the them
affect cellular senescence (MAPK1) (Ota et al, 2006), and the
other four are associated with aging or neural degeneration,
which is a phenotype of aging. This is consistent with our
prediction that the coordination of the proliferation, differ-
entiation and metabolic modules are important for regulating
aging (Supplementary data). These experiments also indicate
that a high proportion of the regulatory genes are functionally
conserved between human and worms.

The enrichment of aging regulatory genes at the module
interface suggests that the regulation or the coordination of the
modular relationship has strong effect on aging. This
implicates that the misregulation of modular relationships is
a more direct cause of aging or altering the regulation has
stronger impacts, as it may change many genes related to the
process at once. Such a scenario will make it possible for a
single or a few regulatory genes in combination to recapitulate
all the aging phenotypes.

Are aging genes the key nodes to maintain system
homeostasis or network stability?

It is known that hubs (nodes making many links) are
important to the stability of a network (Albert et al, 2000).
We, therefore, examined whether the aging genes are
preferentially hubs in the network. In both the HPRD network
and the active subnetworks (the NP network), during human
brain aging, the percentage of known aging genes increases
with the increasing degrees of PPI of the genes (Figure 3A).
Transcription regulators, which are also enriched at the
module interfaces, also increase in percentage with increasing
PPI degree in both the NP network and the HPRD network
(Figure 3B).

Node ‘betweeness’ is the number of shortest distance paths
between any two nodes in the network that passes through a
node. As betweeness and PPI degree are highly correlated and
both correlate well with the essentiality of genes in the yeast
PPI networks (Yu et al, 2007), we also examined its relation-
ship to the likelihood of being an aging gene. Similarly, the
percentages of aging genes and transcription regulators
increase with increasing node betweeness as well (Figure 3C,
D). Furthermore, the percentages of both aging genes and
regulatory genes are higher and the increase with degree or
betweeness is sharper inside the NP network as compared to
the full PPI network or the HPRD network, confirming the NP
network as an aging-related subnetwork. The insufficient
number of annotated aging genes or transcription regulators in
fruitfly precludes any statistically meaningful results from
such analysis.

It has been shown that, based on interaction dynamics, hubs
in the yeast PPI networks can be categorized into ‘date’ and
‘party’ hubs. Party hubs are those that interact with their
interactors at the same time and space, whereas date hubs
interact with their interactors at different time or space. The
dynamic behavior of the two types of hubs can be estimated by
the average PCC (AvgPCC) between the expression profiles of
a hub and its partners. High AvgPCC is characteristic of
party hubs, and a relatively low AvgPCC signifies date hubs
(Han et al, 2004; Bertin et al, 2007). As aging genes are
enriched at the module interface, which by definition would
have relatively low AvgPCC compared with those inside the
modules, we examined if aging genes are preferentially
associated with date hubs. Defining NP and HPRD hubs as
the top 10% highly connected genes in the NP and HPRD
networks, respectively, we plotted the AvgPCC of the hubs
against either the percentage of aging genes or the percentage
of transcription regulators within equal intervals of AvgPCC.
Both aging genes and transcription regulators are preferen-
tially associated with low AvgPCC or ‘date hubs’ (Figure 3E,
F). The bias is much stronger for aging genes where there is an
inverse relationship between the percentage of aging genes
and the AvgPCC of the hubs (Figure 3E), suggesting that
aging genes are not only predominately date hubs, but hubs

Table II Significance of changes in C. elegans lifespan upon RNAi knockdown of testing and control genes

Group Gene name Human orthorlog P-value 1 % change in lifespan 1 P-value 2 % change in lifespan 2 Module

Testing genes R06A10.2a GNAS 0 �82.46 0 �84.83 PP interface
Y40B1A.4a SP3 1.20E�12 �20.07 5.42E�12 �28.35 P core
F43C1.2Ba MAPK1 0.00366 �14.23 0.0103b �8.24 D interface
T20B12.2a TBP 9.66E�15 �26.88 3.19E�11 �15.31 D interface
Y47D3A.29a POLA 0 �25.68 2.55E�15 �18.69 D interface
Y54G9A.6 BUB3 0.027 +5.78 0.0497 +7.09 P interface
ZK177.6a CDC20 5.11E�15 +32.43 0.000342 +17.19 D interface
R03D7.4a TCEB3 0.00282 +8.73 0.000011 +16.74 D interface
Y38F1A.10a PAK3 1.72E�08 +21.22 5.32E�13 +28.91 D interface

Control genes F26A3.2a NCBP2 6.40E�07 �22.79 1.11E�08 �25.27
Y51H1A.5 HDAC10 0.917 +1.58 0.149 �3.36
K10D2.7 MOCS2 0.0316 +11.09 0.434 �1.00
C04G2.6 KIAA1008 0.0212 �7.82 0.00301 �13.12
Y41E3.7 ACBD3 0.608 +3.74 0.255 �2.00
F45F2.2 HIST2H2BE 0.0633 �2.91 0.0861 �1.08
W09B12.1 ACHE 0.607 +0.11 0.0423 �8.10

aAfter the gene names denote that RNAi of the genes significantly extend (shorten) C. elegans lifespan (Po0.01 for both duplicate experiments).
bA third time repeat gives rise to a more significant P-value, 2.68E-009.
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participating in inhibitory interactions. The negative values of
AvgPCC (Figure 3E, F) for the majority of aging genes and
transcription regulators indicate that both types of genes are
more likely to connect anticorrelated modules, consistent
with the observation that the interface between the highly
correlated P and PP modules have the lowest percentage
of aging and transcription regulators among all the module
interfaces (Figure 2A). These results suggest that aging is
characterized by a change in network stability and especially
dynamic stability.

To test whether the aging genes are important to the network
stability, we used an established test for network structure
stability—the analysis of the changes in characteristic path
length (CPL) in the largest connected component of the
network after sequential node removal. If the nodes removed

are important mediators for network communication, connec-
tions from one node to another within the network will take
longer paths, hence an increase of CPL of the resulting network
(Albert et al, 2000). Sequential removal of nodes according to
decreasing interaction degrees is also called an ‘attack’ (Albert
et al, 2000). Attacking hubs in the network, as expected,
increases the CPL very rapidly, whereas random removal of
nodes from the network hardly changes the CPL (Figure 4A).
Attacking the aging genes obviously has a much stronger effect
on the network stability than removal of random proteins
without sorting for interaction degrees (also called ‘failure’
(Albert et al, 2000)) or attacking randomly selected non-aging
genes, but is not as severe as specific attacks on the hubs
(Figure 4A). Removal of aging genes belonging to the NP
network has stronger effects on CPL than those that are not in
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Figure 3 Correlations of the percentage of aging genes and regulatory genes to PPI degree, betweeness of the proteins and the AvgPCC of the hubs. (A, B) The
percentage of aging genes (A) or transcription regulators (B) among the NP or HPRD proteins of distinct PPI degrees are plotted against the PPI degrees of the proteins.
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the NP network, consistent with the NP network being
an aging-specific subnetwork with genes important to the
network or system stability overrepresented (Figure 4B). In
agreement with the enrichment of aging genes and regulatory

genes at the module interfaces, attacking the interface genes
dramatically destabilizes the NP network when compared to
those in the cores of the modules or to the removal of random
genes (Figure 4C). A similarly drastic difference also exists
between the aging genes on the interfaces and those in the
cores (Figure 4C).

Other than interaction degrees, positions in the network can
also affect whether a node is dispensable or indispensable, for
instance, a centrally located node may be indispensable,
whereas a peripherally located one is not. These properties
can be inferred by CPL changes upon degree-matched attacks.
Upon degree-matched attacks (Supplementary data), the
differences of aging versus non-aging and interface versus
core still exist albeit to a less extent (Figure 4A, C, insets),
suggesting that other than higher interaction degrees, the
aging genes and the interface genes also have more important
network positions in the network compared to the non-aging
genes and core genes. In contrast, the difference between NP
aging genes and non-NP aging genes mostly disappear upon
degree-matched attacks (Figure 4B, inset), suggesting that
their differences are largely due to the difference in interaction
degrees. ‘Betweeness’-matched attacks from highest to lowest
betweeness nodes also left some differential impact on CPL
unexplained (Supplementary Figure 7). The residual differ-
ences remained after controlling for degree or betweeness is
likely a feature of the date hubs, which in addition to having
relatively higher PPI degrees and betweeness values as
compared with party hubs, also tends to connect different
dynamic modules (Han et al, 2004; Bertin et al, 2007; Yu et al,
2007). The fly aging network displays similar properties
(Supplementary Figure 8).

Discussion

Genetic screens and natural mutations have identified more
than 200 genes that affect aging and/or longevity. These
mutant alleles come from diverse functional categories.
However, none of these biological functions or processes are
isolated, but instead are embedded in a large web of physical
and genetic interactions to achieve a balanced and coordinated
state at the cellular and organism level. Here, different from
many other meta-analyses, by combining gene expression data
with the knowledge of PPI interaction networks, our approach
allowed us to identify ‘active’ protein interaction modules—
subnetworks that are coherently expressed during aging. This
approach enables us to analyze the temporal profiles and the
correlations between these modules, as well as the connec-
tions between the topological properties of the genes in the
modules (such as interaction degrees or betweeness) and their
physiological roles (such as the effect on lifespan).

Our analysis revealed a modularized network view of the
aging process, where aging is linked to the dynamic network
stability. Such a view provides a potential molecular explana-
tion for the stochastic effects of aging, that is, isogenic
populations age at vastly different paces (Herndon et al,
2002; Rea et al, 2005; Somel et al, 2006), where the states of the
network can be differentially affected by developmental and
environmental factors.

We have also analyzed the C. elegans NP network derived
based on Y2H and/or computationally predicted PPIs and
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aging transcriptome profiles, but did not find any obvious
age-related modules. Possible explanations are as follows.
(1) McCarroll’s data set (McCarroll et al, 2004) contains only
seven time points, too few for robust calculations of PCC.
(2) Lund’s data set contains enough data points, but the
sample repeatability is low. In the original study, the authors
had to pool multiple sample points together to get statistically
reliable results, and found only a very small set of 164 genes
change with age (Lund et al, 2002). In agreement with their
results, we could only find very small modules in the NP
network, only one of them having more than 100 genes,
with no significantly enriched GO annotations in any of the
modules. Furthermore, their overlaps to all the human and fly
modules are too small to determine statistical significance.
Most importantly, the modules’ expression levels do not
change significantly with age. (3) The PPI data set is relatively
small for C. elegans (Li et al, 2004).

Although knocking down of a gene leading to shortened
lifespan cannot fully establish that the gene is the causal
to aging, it is encouraging that overexpressing one such
gene, SP3, extends worm lifespan, as an expected opposite
phenotype to RNAi knockdown of the gene (B Xian et al,
unpublished results). It should also be noted that only
knockdown of a gene leading to shortened lifespan is a more
direct evidence for the network destabilization model for
aging, although extending lifespan might be due to an indirect
effect, such as antagonizing or balancing effect to the other
group of genes, as the relationship of P and D modules.

The modular aging networks uncovered by our analysis
provided an entry point to address many fundamental
questions on aging at the systems level. The answers to these
questions will provide guidance for finding preventive and
interference strategies for the aging process and its associated
diseases. For example, as the coordination and regulation
of the modules have strong impact on aging, we may want to
design drugs to target the regulatory circuitry. Also, as some
changes are more reversible than others, we should make
them high-priority drug targets.

Materials and methods

Data sets

The human brain NP analysis were based on the PPIs in the HPRD
database (Peri et al, 2003) downloaded from www.hprd.org on
November 22, 2004 and September 13, 2005 and two human Y2H data
sets were included in an extended PPI network (Rual et al, 2005; Stelzl
et al, 2005). Details are described by Xia et al (2006). Two Y2H screens
were combined as the fly protein interactions data set (Giot et al, 2003;
Formstecher et al, 2005). Microarray expression profiles were obtained
from previously published studies on post-mortem human brains
of subjects between ages 26 and 106 (Lu et al, 2004), Drosophila
melanogaster aging and diet restriction (Pletcher et al, 2002), yeast
metabolic cycle (Tu et al, 2005), gene expression in the heads of young
and old flies (McCarroll et al, 2004), in young and old human muscles
(GEO accession number GSE674 for female muscle) (Welle et al, 2003)
and in young and old human primary skin cells (Kyng et al, 2003).

GO annotations was downloaded from ftp://ftp.ncbi.nlm.nih.gov/
gene/DATA/ on March 10, 2005.

Human G1/S and G2/M cell-cycle genes are derived from a
microarray analysis of the HeLa cell-cycle gene expression (Whitfield
et al, 2002) and downloaded from http://genome-www.stanford.edu/
Human-CellCycle/Hela/. The fly orthologs of these genes were used to
examine the percentage of the fly cell-cycle genes in each module.

Genes downloaded from http://genomics.senescence.info/genes/
(de Magalhaes et al, 2005) on Dec 12, 2005 were combined with those
manually curated from several reviews to form the ‘aging gene’ list.
The list contains both genes derived from human progeria diseases and
genes when mutated or up- or downregulated affect lifespan in model
organisms, but not necessarily tested directly in human aging.

Orthologs

Fly orthologs in human, worm and yeast were identified as the best
reciprocal BlastP hits with e-value cutoff of 10�6 based on RefSeq
protein sequences downloaded on December 9, 2004.

Filtering GO terms, GO term enrichment calculation, expression
clustering and modular NP network layout were performed as
described previously (Xia et al, 2006).

RNAi experiment

RNAi of N2 worms were carried out as described by Kamath et al
(2001) with minor modifications. We selected the bacteria from
Ahringer’s RNAi feeding bacteria library (Kamath et al, 2003). The
same HT115 bacteria carrying empty L4440 construct were used as
controls in all experiments.

Lifespan assay

10–20 gravid N2 worms were plated on RNAi plates to lay eggs for 2–
4 h at 201C and then removed. After the synchronized eggs grew to
young adult stage, we distributed them (E20 worms per plate) to RNAi
plates containing 20 mg/ml FUDR to prevent the growth of the progeny
(day¼0). Three plates were scored for each gene in each experiment.
Worms were scored every 2 days from the young adult stage until they
showed no response to a gentle prodding with a platinum wire. The
worms were transferred to fresh RNAi plates every 4 days to ensure the
continued efficacy of RNAi knockdown. Worms that crawled off were
excluded from the experiments. All experiments were independently
performed at least twice. The P-value is calculated by a log-rank test on
the Kaplan–Meier curves.

Degree-matched or betweeness-matched attacks

To examine whether factors other than the interactions degrees (or
‘betweeness’) also contribute to the differential impacts on network
topology between two different groups of genes, we ordered all the
genes in the two groups in one list according to decreasing interaction
degrees (or betweeness). Then starting from the first gene in the low
average degree (or betweeness) group, we alternatively select genes of
the low and high average degree (or betweeness) group next on the list,
until the last gene on the list of the high average degree (or betweeness)
group. The resulting two subgroups of genes to be compared have one-
to-one matched degree (or betweeness) distributions. Then the nodes
in each ordered list are sequentially attacked according to decreasing
the PPI degrees (or betweeness values).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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