
Gait Detection in Children with and without Hemiplegia
Using Single-Axis Wearable Gyroscopes
Nicole Abaid1*, Paolo Cappa2,3, Eduardo Palermo2,3, Maurizio Petrarca3, Maurizio Porfiri4

1Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America, 2Department of

Mechanical and Aerospace Engineering, ‘‘Sapienza’’ University of Rome, Rome, Italy, 3Department of Neuroscience and Neurorehabilitation, MARlab Movement Analysis
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Abstract

In this work, we develop a novel gait phase detection algorithm based on a hidden Markov model, which uses data from
foot-mounted single-axis gyroscopes as input. We explore whether the proposed gait detection algorithm can generate
equivalent results as a reference signal provided by force sensitive resistors (FSRs) for typically developing children (TD) and
children with hemiplegia (HC). We find that the algorithm faithfully reproduces reference results in terms of high values of
sensitivity and specificity with respect to FSR signals. In addition, the algorithm distinguishes between TD and HC and is
able to assess the level of gait ability in patients. Finally, we show that the algorithm can be adapted to enable real-time
processing with high accuracy. Due to the small, inexpensive nature of gyroscopes utilized in this study and the ease of
implementation of the developed algorithm, this work finds application in the on-going development of active orthoses
designed for therapy and locomotion in children with gait pathologies.
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Introduction

Disorders of gait affect an estimated 1.1 million children in the

United States as of 2007 [1] and may originate from different

somatosensory conditions [2]. Many assessment tools, therapies,

and rehabilitation strategies for these disorders are impacted by

the complex problem of recognizing the repeated features or

‘‘phases’’ of the gait cycle [3]. In fact, detecting gait phases plays

an integral role in the design of controllers for many real-time

therapies which seek to coordinate body support and limb

progression required for locomotion. Therapies which rely on

such information include functional electrical stimulation (FES)

[4,5], active orthoses [6–9], and behavioural strategies [10]. While

current FES therapies actively assist walking, they rely on patients’

manual stimulation for even simple locomotory tasks [11]. The use

of gait identification in active orthoses is expected to permit such

therapies to operate synchronously and synergistically with

patients [8]. Finally, behavioural training based on adherence

enhancing strategies needs accurate feedback to obtain gait

symmetry [10].

Sensors used in gait detection include accelerometers, gyro-

scopes, force sensitive resistors (FSRs), capacitive sensors, and

composite inertial measurement units (IMUs) [12–23]. Computa-

tional methodologies for gait phase detection fall into two major

categories: algorithms which partition the gait phases through

thresholds for sensor data based on experimental observation

[12,17,20] and machine-learning schemes which extract patterns

from large sensor datasets based on a few assumptions [21,24,25].

In the first category, data from a variety of sensors may be fused to

both partition individual gait cycles and identify phases within one

cycle. The second category takes advantage of recent techniques

from computer science, which offer methods for pattern recogni-

tion in periodic or quasiperiodic gait data, such as: (i) logic

networks trained with and used to analyse data from an

electroneurogram of the sural nerve [24]; (ii) probabilistic Bayesian

networks implemented on video data [25]; and, finally, (iii) hidden

Markov models (HMMs) used to identify the most probable gait

phase sequence from shoes instrumented with pressure sensors

[21] or from single-axis gyroscope data [23].

In a larger research goal, we are developing an active lower limb

orthosis for rehabilitation in children with gait pathologies. We

expect that the identification of children’s gaits phases could

enhance the control of wearable devices, allowing a more efficient

functional training and personalization with respect to specific

motor abilities. Towards this end, it is essential to identify gait

phases in a robust manner from minimal sensor data that can be

acquired and processed onboard a mobile device sized for a child.

From this perspective, here, we propose a novel post-processing

algorithm for gait detection using single-axis gyroscope data based

on a trained HMM [26] whose execution is automated. A HMM-

based algorithm is selected over other approaches as it has been

previously demonstrated to be successful at identifying motor tasks

using wearable and remote sensors [23,27,28]. The HMM

parameters are acquired directly from experimental data through
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a single preliminary trial integrating gyroscopes and FSRs for

labelling training data; we validate experimental results against the

FSR signal. Gyroscopic sensors are selected over FSRs for

experimental trials due to their ease of implementation in small-

sized, paediatric orthoses. Although FSRs are delicate and require

precise positioning on the foot sole, they are only used in a single

preliminary trial to calibrate and train the algorithm, after which

the real time control of an active orthosis may be achieved with

only gyroscopes. We compare results between children with

hemiplegia (HC) and a control group of typically developing

children (TD).

This strategy is entirely novel in the subjects it targets, since, to

the best of our knowledge, current studies on neurologically-based

gait pathologies using wearable sensors target only adult partic-

ipants [22,29,30]. Our analytical approach follows the recently

published work of Mannini and Sabatini [23], wherein the authors

develop a HMM for gait detection from foot-mounted gyroscopes

similarly to this study. However, our methodology for algorithm

training differs from this previous work, since gait phases in the

training dataset are manually identified and the analysis is only

used in post-processing in [23]. In contrast, our work synthesizes

an automated method for labelling training datasets without

operator intervention and can be implemented in real time.

The goals of this study are fourfold. First, we seek to answer the

question of whether a gait detection algorithm using an automated

HMM on one-dimensional angular velocity data, from sensors

placed on the subjects’ feet, is able to generate equivalent results as

a reference signal provided by FSRs over a variety of walking and

non-walking tasks. Once the HMM algorithm is validated, we

explore its ability to differentiate between the gait of TD and HC.

Next, we investigate the use of gait detection as an assessment tool

for hemiplegia of varying severity by comparing results obtained

with assessments generally used in clinical practice. Finally, we

introduce and validate a reduced version of the HMM which can

be used for real-time processing.

Materials and Methods

Ethics Statement
The protocol was approved by the ethics and medical board of

the Children’s Hospital ‘‘Bambino Gesù’’, Rome, Italy. The goals

and procedure were explained to the participants and their parents

before the experiment started; oral informed consent was obtained

from children and written consent was obtained from their

parents. Raw data from anonymous subjects is stored at the

authors’ institutions and will be provided on request after the

approval provided by the ethics board.

Participants
A total of twenty participants comprising ten TD (9.562.0

years, mean 6 standard deviation) and ten HC (8.863.8 years)

were enlisted in the study. TD had no known pathologies

influencing their innate walking patterns. HC were able to walk

short distances at low speeds either with or without passive assistive

devices, such as orthoses, walkers, or crutches. The pathology

severity was rated according to the Gross Motor Function

Measure (GMFM) [31], see Table 1. The GMFM ranges from 0

to 100, where higher scores indicate more physical ability and,

since this rating system has a high inter-rater reliability [31], a

single licensed physician scored all the patients in this study.

Hardware
Participants’ lower limb motion was captured using FSRs and

IMUs. The FSRs (Wave, Cometa, Italy) measured the contact

between each foot and shoe and they communicated wirelessly to a

hub. The IMUs (XBus Master MTx, Xsens Technologies, The

Netherlands) comprised tri-axial gyroscopes, tri-axial accelerom-

eters, and tri-axial magnetometers. These units were wired to a

base station attached to a belt worn by the participant; the base

communicated wirelessly using Bluetooth.

In the present study, one-dimensional data from gyroscopes

embedded in IMUs were used to measure the angular velocity of

the participants’ feet. Each IMU’s y-axis was aligned with the

subject’s sagittal plane; alignment precision was verified by

manually moving each subject’s feet in the sagittal plane and

verifying that the gyroscope output responded to the movement

only along the desired axis. The signals from the two types of

sensors were synchronized using a data acquisition board (NI

USB-6211, National Instruments, USA). Unfiltered data were

acquired at 200 Hz from the FSRs and 50 Hz from the IMUs; the

IMU data were further interpolated to match the FSR acquisition

rate.

Experimental Protocol
The participants were equipped with an IMU on each shoe and

three FSRs on the foot sole at the heel and at the first and fifth

metatarsophalangeal articulations, denoted Rh, Rm1, and Rm5,

respectively, see Figure 1.

After verifying proper threshold values for the FSR-defined

reference data and the dominance of gyroscope signals in the

sagittal plane, participants were asked to perform four walking

tasks and four non-walking tasks. The four walking tasks

comprised walking on a treadmill for at least 60 seconds with all

combinations of two speeds and two inclinations.

Specifically, we selected: level walking at 1.0 km/h (L1.0);

inclined walking (8.5% inclination) at 1.0 km/h (I1.0); level walking

at 1.5 km/h (L1.5); and, finally, inclined walking (8.5% inclination)

at 1.5 km/h (I1.5). The treadmill speeds and inclinations were

chosen to be performable by all participants, as assessed by a

licensed physician.

The non-walking tasks comprised transitioning from sitting with

feet on the ground to standing without moving one’s feet (S);

touching one’s toes from a standing position allowing knee and hip

flexion without moving one’s feet (T); and completing one

revolution clockwise (CW) and counter clockwise (CCW) without

picking one’s feet off the floor. The participants were instructed to

keep their feet fixed on the floor during S and T and to slide them

along the floor to turn their bodies during CW and CCW.

The full set of tasks was completed by all participants except one

patient (patient 3), who was unable to perform T due to balance

limitations. All tasks were repeated two times; the first L1.0 trial was

used as a training trial for acquiring HMM parameters and the

second trials of all tasks were analysed as experimental trials. The

order of experiments was L1.0, L1.5, I1.0, I1.5, S, T, CW, and CWW

for all HC, with the two trials of each condition completed

consecutively, except for patient 3 who, as mentioned before, did

not perform the condition T.

All trials, including instrumentation, walking and non-walking

tasks, and de-instrumentation, were completed within one hour by

all participants. HC rested sitting between tasks if fatigue became

evident; all TD completed the tasks without expressing fatigue.

Data Treatment
Data from experimental trials were analysed off-line using

MATLAB software (MATLAB 2012a, MathWorks, USA) to

generate discrete time series, with a time step of 5 ms, whose

elements belonged to the four states of the gait cycle: stance (ST),

heel off (HO), swing (SW), and heel strike (HS). These states
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outline the general progression of a step for a single foot. ST

corresponds to the state where the entire foot sole in contact with

the floor; HO to the state where the toe, but not the heel, is in

contact with the floor; SW to the state where no part of the foot is

in contact with the floor; and HS to the state where the heel, but

not the toe, is in contact with the floor. We developed a trained

HMM algorithm for off-line gait detection in post-processing

(AOL) and its real-time incarnation (ART).

The reference signal was taken as the voltage from the FSRs,

similarly to the experimental methods in [15,20]. By properly

defining thresholds for the signal, the state of each FSR was able to

be determined. The four gait phases were defined as follows: ST

when Rh was pressed and Rm1 or Rm5 were pressed; HO when Rh

was not pressed and Rm1 or Rm5 was pressed; SW when no FSRs

were pressed; and, finally, HS when Rh was pressed and neither

Rm1 nor Rm5 was pressed.

Algorithm AOL was constructed with a trained HMM based

solely on gyroscope data, which was treated before analysis with a

low-pass Butterworth filter with 15 Hz cut-off frequency [23].

Similarly to the analysis in [23], the four gait phases were defined

as states and the Viterbi algorithm was used to identify the most

probable state sequence from the model for an experimental

dataset [26].

First, the model was trained on the designated dataset from

training trial of L1.0. The percentage of time spent in each of the

four gait phases during each gait cycle was used to create a

probability distribution of the states used in the HMM. The

gyroscope signal from the training trial was partitioned into

individual cycles using the FSR data, that is, without operator

intervention. The probability distribution for the initial state was

taken as uniform and the state transition matrix of the model was

trained on the entire gyroscope time series from the training

dataset. The gyroscope data from experimental trials were then

analysed with the trained state transition matrix and identified

parameters, and the Viterbi algorithm was used to identify the

state sequence for this data.

We then adapted this algorithm to enable real-time processing,

referred to as ART. In particular, we performed the analysis on the

experimental dataset with the same training as in AOL, but we

used a forward algorithm to identify gait phases as opposed to the

Viterbi algorithm. Since this processing does not use a backward

step to refine the analysis, it is computationally less heavy than the

Viterbi algorithm and it may be performed sample by sample on

the experimental signal. Thus, ART may be implemented in

applications requiring real-time gait detection, such as orthoses

with active, state-dependent control.

Statistical Analyses
From both implementations of the algorithm, we generated

state time series for the experimental trial of each of the eight tasks.

We computed the specificity and sensitivity of gait phases detected

by AOL with respect to the reference FSR signal [23,32]. Following

the analysis in [23], these quantities were calculated using a

window of 60 ms centred at each time step to define concurrence

of transitions between gait phases in the compared signals. For

typical gait patterns, at most one gait phase occurs in a time

window of this length, which accounts for 6% of a one-second-long

step. In the case that no strides were detected by FSRs and AOL,

which was noted especially during the trials of non-walking tasks,

the sensitivity was set to 1 to avoid division by zero.

The statistical significance of variation in these quantities for the

different participant populations was computed with a one-way

analysis of variance (ANOVA) [33], with specificity and sensitivity

as dependent factors and health status, i.e. TD and HC, as

independent factor. To compare performance between TD and

HC, we performed an ANOVA on the percentage of time spent in

each state with health status as the independent factor. Spearman’s

correlation coefficient with an R-to-t conversion and t-test was

used to ascertain correlations between GMFM and experimental

performance [33]. All statistical tests were performed with

MATLAB and Microsoft Excel (Microsoft Excel 2010, Microsoft,

Table 1. Demographic data and experimental details for children with hemiplegia.

Patient number Age (years) Affected side Gross Motor Function Measurea Walking aid used in study

1 5 Both 97.8 None

2 8 Left 57.3b None

3 7 Left 78.6 Foot orthoses

4 12 Right 97.9 None

5 5 Left 86.5 None

6 13 Right 93.3 Foot orthoses

7 10 Left 94.3 None

8 7 Right 70 None

9 5 Both 88.2 None

10 16 Right 86.8 None

aGross Motor Function Measure GMFM-88 and Classification System.
bGross Motor Function Measure GMFM-66.
doi:10.1371/journal.pone.0073152.t001

Figure 1. Schematic of positions for IMU and FSRs. a) An IMU is
attached to the shoe and Q measures the angular position in the
sagittal plane with respect to resting position and b) FSRs are placed on
the sole of the foot at the heel and the first and fifth metatarsals.
doi:10.1371/journal.pone.0073152.g001
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USA) and significance was taken as p,0.05. In particular, we used

the built-in MATLAB function corrcoef.m for the t-test, which

computes the following t-statistic to find the statistical significance

of a correlation coefficient: t =R((N-2)/(1-R2))1/2, with N equal to

the number of data points. Statistics are reported below as (test,

value of F-test statistic, significance).

Results

Gait Phases Detected by AOL

In Figure 2, we report the specificity and sensitivity of the time

series computed by AOL with respect to the FSR signal. For all

participants in walking tasks, we find consistently high values for

both specificity and sensitivity, indicating correspondence between

the output of AOL and the reference signal. In particular, the mean

specificity and sensitivity are greater than 0.77 for walking tasks

averaged over each health status. Moreover, the algorithm

performs equally well for TD and the more and less affected legs

of HC (ANOVA, F [37,2],2.2,3.3 =Fcrit, NS for specificity and

sensitivity in all tasks).

Gait Phase Percentages Detected by AOL

The percentages of each task spent in the four gait phases

grouped by participants’ health status are reported in Figure 3.

Gait phases for which the time spent depends significantly on

health status of the participant are starred, with results from the

ANOVA reported in Table 2. We find significant differences

depending on health status in ST and HO for seven and six out of

eight tasks, respectively, which reflects toe walking exhibited by

many patients with hemiplegia.

Use of AOL as an Assessment Tool for Gait Pathologies of
Varying Severity
Correlations between patients’ GMFM and the time spent in

each gait phase are reported in Table 3. For the population of 10

patients, the critical correlation coefficient for statistical signifi-

cance is R=0.58. For all gait phases in the less affected leg, we see

small-magnitude correlations. However, the time spent by the

more affected leg in ST and HO shows significant positive and

negative correlations with GMFM, respectively, in the majority of

walking and non-walking trials. All conditions that are not strictly

significant are within 0.04 of the absolute critical value of R (0.57

for L1.5 and S in ST, 0.56 for T in ST, 0.55 for CCW in ST, 20.56

for L1.5 in HO, 20.54 for I1.5 in HO).

Matching Results from AOL and ART

In Figure 4, we report the specificity and sensitivity of the time

series computed with ART using AOL as a reference. We find the

minimum mean values for specificity and sensitivity to be very

large for all conditions. In particular, the mean specificity and

Figure 2. Specificity and sensitivity of AOL-detected gait phases, with FSR reference, for typically developing children and children
with hemiplegia. The three populations are the combined legs of typically developing children (TD), the more affected legs of the children with
hemiplegia (HC), and the less affected legs of the children with hemiplegia. Performance measures are given as mean6 one standard error over each
population. For patients with equally affected sides, the right is taken as the more affected leg.
doi:10.1371/journal.pone.0073152.g002

Table 2. p values from ANOVA on time spent in gait phases
depending on health status.

Task ST HO SW HS

L1.0 4.7 (,0.01) 5.3 (,0.01) 0.8 (0.46) 0.3 (0.73)

I1.0 4.1 (,0.05) 5.0 (,0.05) 1.0 (0.39) 0.3 (0.72)

L1.5 3.9 (,0.05) 3.0 (0.06) 0.7 (0.58) 0.5 (0.62)

I1.5 4.1 (,0.05) 3.3 (,0.05) 0.7 (0.51) 0.4 (0.64)

S 5.1 (,0.05) 5.1 (,0.05) 0.6 (0.55) 0.3 (0.72)

Ta 2.2 (0.12) 2.7 (0.08) 0.8 (0.46) 0.2 (0.82)

CW 5.3 (,0.01) 3.6 (,0.05) 0.5 (0.60) 0.8 (0.46)

CCW 8.2 (,0.01) 7.8 (,0.01) 1.0 (0.37) 0.2 (0.15)

Percent time in each gait phase is the dependent variable and health status is
the independent variable, reported as the value of F [37,2] with the p value in
parentheses. aF [35,2], due to patient 39s lack of completion of task T.
doi:10.1371/journal.pone.0073152.t002
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sensitivity are greater than or equal to 0.95 for walking tasks

averaged over each health status and are greater than 0.92 for

non-walking tasks averaged over each health status.

Discussion

Gait Phases Detected by the HMM Algorithm Correspond
to those from the Reference Signal
In this study, we find that data from a single-axis gyroscope

mounted on the foot is sufficient to detect gait phases in TD and

HC, with a prior training phase carried out for each patient using

three FSRs added to the sensor set on each foot. From the

reference FSR signal, we are able to limit the sensor set in

experimental trials to gyroscopes; the HMM consistently detects

the gait phase from this data after an initial training. We favour

gait detection with a single gyroscope since this sensor is

universally easy to use. Although the sensors used here are

embedded in IMUs for off-the-shelf convenience, gyroscopes are

easily miniaturized and inexpensive and have a high signal-to-

noise ratio. Thus, the proposed algorithm has the potential to

impact the processing of sensor data implemented in therapies

which patients may use independently of clinical supervision.

The developed HMM-based gait detection algorithm offers a

viable data analysis protocol for such gyroscope data. Although

Figure 3. Percent time spent in each gait phase by typically developing children and children with hemiplegia. The three populations
are the combined legs of typically developing children (TD), the more affected legs of the children with hemiplegia (HC), and the less affected legs of
the children with hemiplegia. Results are given as mean 6 one standard error over each population, detected by AOL. For patients with equally
affected sides, the right is taken as the more affected leg. Gait phases in which the three populations spend statistically significant different times are
starred (ANOVA, p,0.05).
doi:10.1371/journal.pone.0073152.g003

Table 3. Correlation coefficients between GMFM and time spent in each gait phase by children with hemiplegia as determined by
AOL.

More affected leg Less affected leg

Task ST HO SW HS ST HO SW HS

L1.0 0.60 20.68 0.06 0.04 20.06 0.03 0.06 0.04

I1.0 0.60 20.66 20.02 0.04 20.05 0.04 0.01 0.04

L1.5 0.57 20.56 20.01 0.04 20.06 0.11 20.23 0.04

I1.5 0.59 20.54 20.09 0.02 20.04 0.18 20.49 0.04

S 0.57 20.76 0.25 0.04 20.18 0.17 20.16 0.04

T 0.56 20.76 0.24 0.02 20.28 0.30 20.26 0.02

CW 0.59 20.75 0.09 0.04 20.17 0.25 20.24 0.04

CCW 0.55 20.77 0.23 0.04 20.05 0.05 20.05 0.03

doi:10.1371/journal.pone.0073152.t003

Gait Detection in Children with/without Hemiplegia
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correspondence between the results of this data treatment and the

reference algorithm is less striking than the results from [23],

which reports very large values for specificity and sensitivity, the

algorithm proposed here requires no direct operator oversight and

is easily trained for each individual. Conversely, in the algorithm

in [23], gait phases are manually assigned during training, which is

time-intensive and user-dependent. Here, AOL and its real-time

implementation ART are trained using a short dataset that

necessitates instrumenting subjects with FSRs only once. After

training in one reference task, the algorithm detects gait well in

post-processing or in real time without operator intervention and

for a variety of walking regimes.

We comment that the detection of non-walking in terms of gait

phases appears in TD as a general bias towards ST and absence of

time spent in the other dynamic phases. In the case of HC, the

time in ST may be replaced with time in HO due to the

prevalence of toe walking in some patients. The ability of the

algorithm to also identify non-walking is an essential feature for

wearable orthoses, since the daily routine of a user would

necessarily interleave walking and rest periods. Following the

instructions to participants, we expect that no time should be spent

in SW during non-walking tasks, which is in opposition to the

observed results. The nonzero time in SW may be attributed to

inaccuracy in the HMM outputs and the inability of participants

to complete the tasks as instructed, due to lack of coordination.

Nevertheless, we observe less and more time spent in SW and ST,

respectively, for non-walking tasks compared to walking tasks,

which is consistent with typical gait patterns.

The same gait detection algorithm was implemented for both

TD and HC, leaving the training procedure to adapt the HMM

parameters to the specific gait pattern of each subject. Defining a

unique model for each subject with hemiplegia (for example, toe

walking) is expected to lead AOL and ART to produce higher values

of sensitivity and specificity than reported here. The reason for the

selected methodology lies in the perspective of implementing this

algorithm in an active orthosis designed to progressively induce

gait functional tuning. In other words, the algorithm should

accommodate a continuously varying training data set in its most

general form.

We notice that the smallest values for both sensitivity and

specificity occur in non-walking tasks for both TD and HC; this

lack of correspondence is most likely due to the training of the

algorithm, which used the L1.0 as input. We expect that this

mismatch can be remedied in future incarnations of this work,

which will use a variety of training datasets to build a set of models

covering everyday tasks. Moreover, the use of FSR data for

partitioning gait cycles may be unnecessary for training in later

models, as numerical algorithms, such as wavelet analysis, have

proven capable of interpreting sensor data measuring posture and

gait [20,34].

Gait Phases Detected from Gyroscope Data Distinguish
between Participants with Pathologies of Varying
Severity
Results from AOL are able to distinguish between TD and HC.

This fact, combined with the nature of the selected sensors,

suggests that such algorithm can be implemented in active orthoses

with control schemes aimed at both locomotion and rehabilitation.

In some cases, the algorithm is even able to differentiate the more

affected leg of the patients with hemiplegia in both walking and

non-walking tasks, which lends itself to the necessary implemen-

tation of asymmetric leg control in such orthoses.

The development of these active orthoses is particularly

important for rehabilitation in children, since age is a crucial

factor in the reception of neurological therapy [35,36]. It is worth

noting that this outcome is fundamental in patient-oriented gait

training [37]. Moreover, these results highlight inherent differ-

ences in the walking and non-walking tasks, wherein populations

show more even distributions for the percent of time spent in ST,

HO, and SW during walking tasks and higher time in ST during

Figure 4. Specificity and sensitivity of ART-detected gait phases, with AOL reference, for typically developing children and children
with hemiplegia. The three populations are the combined legs of typically developing children (TD), the more affected legs of the children with
hemiplegia (HC), and the less affected legs of the children with hemiplegia. Performance measures are given as mean6 one standard error over each
population. For patients with equally affected sides, the right is taken as the more affected leg.
doi:10.1371/journal.pone.0073152.g004
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non-walking tasks. This suggests that the HMM methodology may

be designed for task identification, similarly to the application in

[38].

Gait Phases Detected from Gyroscope Data may Act as
an Assessment Tool
Results from gait detection carried out with AOL may also be

used to predict the level of gait ability, evidenced by the negative

correlation between GMFM and the percentage of time spent by

the patients’ more affected legs in ST and HO. Thus, comparison

between a reference distribution of healthy gait phase percentages

and data from both of the patient’s legs may also offer an

assessment tool to validate measures of motor function and to

qualitatively compare the relative function of each leg. We

comment that this study has included patients with a wide range of

pathology severity; targeting a specific etiology for gait pathology

may improve correlation between detected gait phases and motor

function in future incarnations of this work.

The Real-time Implementation is Sufficient to Detect Gait
Phases
The close correspondence between the post-processing and real-

time implementations of the algorithm indicates that gait detection

will be able to be performed in active settings. Since the

experiments were 60 seconds long, ART is able detect the gait

phase with a delay that is conservatively computed on the order of

a millisecond. Given the characteristic time of human motion, we

expect that this time delay does not preclude gait phases detected

by ART as a viable input for real-time gait control [39].

We comment that ART represents a suboptimal solution

compared to the Viterbi algorithm. In fact, the latter is based on

a two-step computation of state probabilities for the measured

signal, with the first iteration starting from the first sample and

proceeding to the last and the second iteration starting from the

last sample and proceeding to the first [26]. We define ART as a so-

called left-right model, which uses only the first iteration, since the

probability computed by the Viterbi algorithm is highly dominated

by this forward step in this type of model. The backward iteration

enables refining the state transitions, which we disregard as it also

prohibits real-time applications, by introducing significant com-

putational delay. The dominance of results from the forward

computation, combined with the 60 ms tolerance window on state

transitions, result in the technically suboptimal algorithm imple-

mentation ART providing performance comparable to that of AOL.

Conclusions

In this study, we have developed a novel gait detection

algorithm based on a HMM applied to data from a limited sensor

set. The algorithm differs from existing models as it is trained on

data from a short trial using an operator-independent method,

which allows its use on patients with a variety of gait patterns. We

have demonstrated that the algorithm can successfully track a FSR

reference signal and that a modified implementation enables its

use in real time, without significantly affecting results in children

both with and without hemiplegia. In addition, this analysis

differentiates between children with and without hemiplegia and

can be correlated with gross motor functional assessments, which

supports its potential as an assessment tool.

Future work on this gait detection algorithm will primarily

target replicating the HMM-based algorithm for a range of

different activities. In this scheme, a supervising algorithm will

treat sensor data with a variety of activity-specific HMMs and

identify both the most probable activity from such data and the

most probable state within that model. This expansion is expected

to enable control schemes for active orthoses which can support

patients in a wide variety of everyday tasks, such as walking,

running, and climbing stairs. The model input will also be

extended to a vectorial form using more diverse sensor placement

on the trunk or at multiple leg locations [14,40] and including

salient features of the upper body motion [41].
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