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The Animal Production and Health section (APH) of the Joint FAO/IAEA Centre of Nuclear
Techniques in Food and Agriculture at the International Atomic Energy Agency has over
the last 58 years provided technical and scientific support to more than 100 countries
through co-ordinated research activities and technical co-operation projects in peaceful
uses of nuclear technologies. A key component of this support has been the development
of irradiated vaccines targeting diseases that are endemic to participating countries. APH
laboratories has over the last decade developed new techniques and has put in place a
framework that allows researchers from participating member states to develop relevant
vaccines targeting local diseases while using irradiation as a tool for improving
livestock resources.
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INTRODUCTION

Vaccines are a mainstay in supporting livestock health both in intensive industrial based animal
systems and in the pastoralist livestock industry where they play a crucial role in supporting
vulnerable communities. The development of livestock vaccines fits well within the framework of
the Sustainable Development Goals specifically SD Goal 2 that aims to end hunger, achieve food
security, improve nutrition, and promote sustainable agriculture (1). There are 117 OIE-listed
diseases and many of these could be better addressed by a vaccine for control or require an
improvement in the current vaccine setup (2, 3). In 2011, FAO declared the eradication of
rinderpest globally which was achieved with the use of an attenuated live vaccine, thus
emphasizing the importance of livestock vaccines in agriculture (4). The animal health and
production laboratory (APHL), a section of the Joint FAO/IAEA center based at Seibersdorf, was
involved in sero-monitoring of the Rinderpest vaccination programme and supported the
development and validation of diagnostic tests that correlated antibody status with animal or
herd level protection (5). This participation led to increasing the activities of the laboratory in
different aspects of veterinary vaccine production with the use of irradiation as a tool for researching
new vaccine formulations and in serological surveillance for disease eradication programs.
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Irradiation has previously been used as a technique to address
some of the gaps that exist in developing livestock vaccines but
was later abandoned for newer techniques such as recombinant
and gene-based vaccines (6). There has only ever been one
irradiated livestock vaccine in common use for the cattle lung
nematode Dictyocaulus viviparous that utilises irradiated L3
stage larvae for vaccination (7–9). Other diseases were not
pursued further due to the lack of adequate immunological tools
that could assess the effect of using irradiated vaccines. With more
recent advances in livestock immunology, there has been a chance
to re-examine irradiation for vaccine development with a novel
approach targeting replication deficiency while maintaining some
metabolic activities and reducing conformational alterations of
antigens by employing new radio-protectant compounds such as
manganese ions (Mn2+) and Trehalose (10, 11). Additional
functions for irradiated material have also been explored e.g., as
adjuvants (12). A comprehensive summary of the characteristics of
irradiated vaccines is found on Figure 1.
BACKGROUND ON
IRRADIATED VACCINES

Although live attenuated vaccines have been successfully used in
preventing diseases, they can trigger side effects in recipients, and
in the case of viruses, revert back to infectivity (17, 18).
Chemically inactivated and recombinant vaccines are however
considered safe but unfortunately are often unable to elicit an
effective immune response that is protective in all vaccinated
individuals e.g. chemically inactivated vaccines against seasonal
flu have an efficacy of only 30- 40% among the elderly (19).
Irradiation therefore offers an alternative that can be as effective
as live attenuated vaccines yet equally safe as killed or
recombinant vaccines (20). The use of irradiation for vaccine
development was initiated almost a century ago as an alternative
to live attenuated and chemically inactivated Shigella spp bacteria
(21). In livestock, irradiation experiments using the isotope
Cobalt-60 (Co-60) were carried out in the late sixties to study
Trypanosome spp., the causative agent of Nagana in livestock
(22–27). Many of these experiments used higher than necessary
irradiation doses to kill their targets rather than rendering them
non-infective. Subsequent developments in immunology that
described killed but metabolically active bacteria led to the idea
that metabolic products produced by living but non-replicating
irradiated pathogens made superior antigens compared to those
produced by traditional chemical inactivation techniques (17, 18,
28, 29). Irradiation, when compared to chemical methods, is a
rapid method of inactivation that requires no post inactivation
manipulation and is suitable for industrial production (30).
Exposure to radiation randomly causes breaks in single and
double stranded nucleic acids that most cellular systems cannot
repair, thus eliminating the possibility of reversion back to a virulent
state (31). Radiation mediated genetic damage is also comparatively
more severe when compared to chemical inactivation (32, 33). The
ROS (reactive oxygen species) generated during the inactivation
process, whether chemical or irradiation, imparts additional indirect
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nucleic acid and protein damage (31). Chemical inactivation
however, possess the challenge of ineffective membrane
penetration by chemical agents and residues in the products that
must be eliminated by expensive and time consuming down-stream
purification steps (34). The bigger the protein damage during
inactivation, the less specific and immunogenic the vaccine
becomes due to the loss of conformational epitopes. Epitope
damage is more severe for chemically inactivated pathogens when
compared to irradiated ones due to radio-protectants employed
thus eliciting better responses as has been observed with the Gamma
flu vaccine (34, 35). The quality of antigens used for immunization
becomes especially important when targeting intracellular parasites
where humoral responses have limited efficacy. During L.
monocytogenes infections, specific neutralizing antibodies fail to
clear intracellular infection which is vital to establish infection in
the host (36). The recruitment of MHC class I mediated CD8 T cells
is necessary for pathogen elimination and can only be induced by
vaccines that mimic a natural infection (29). Vaccination with
irradiated and killed but metabolically active Listeria spp. is able
to elicit this crucial response when compared to chemically treated
Listeria (17, 37). Using a wider repertoire of conformational
epitopes that retain their secondary structures after irradiation
becomes even more crucial in diseases where the correlates of
immunity are unknown or poorly understood as neutralizing
antibodies are not always a marker for protective immunity. The
required type of immune response elicited by any radio-vaccine
ultimately depends on the pathology pathway in the host vaccinated
as it should ultimately strive to mimic the wild-type situation
without replication. In the case of bacterial infections, irradiated
Salmonella elicit T-independent immune protection through both
humoral responses (IgG2b, IgG3) and CD4+ T-cell mediated
responses (Th1, Th17) (38). Numerous other bacterial and
parasitic pathogens have been irradiated for vaccine development
and are in various stages of vaccine development. These include
pathogens such as E. coli, Brucella, Clostridium, Mycobacterium,
Plasmodium, Toxoplasma, Ancylostoma, and Schistosoma all
observed to be non-dividing but metabolically active after
irradiation treatment (16, 39–45). It is clear from these
experiments that irradiation generates metabolically active but
non-replicative pathogens mainly for bacteria and protozoans,
where they resemble a live infective pathogen more closely.

The approach for inactivating viruses using irradiation is
however considered different. Viruses, obligate intracellular
pathogens, are metabolically dependent on their host for viral
replication and reproduction (46). An inactivated virus would
essentially be unable to replicate within the host cell even after
gaining entry. Gamma inactivated influenza A (g-flu) can elicit IFN-
I dependent partial lymphocyte activation in vivo contrary to UV
and formalin treated vaccines. This is associated with the synthesis
of structural internal viral proteins such as nucleoproteins in the
cytosol of antigen presenting cells (47). The IFN-I response elicited
by g-flu can be attributed to the preservation of conformational
peptides that are presented via MHC class I which trigger a type 1
response that is absent in formulations prepared using formalin or
UV. Preparations made with formalin lose peptide moieties that
elicit a cell mediated inflammatory response but still maintain
March 2022 | Volume 13 | Article 853874
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FIGURE 1 | Characteristics of irradiated vaccines: Irradiated vaccines are produced mainly by delivering ionizing radiation through gamma ray, X-ray, or electronic
beam (e-Beam) irradiation (13). The mechanism behind inactivation of pathogens is through direct and indirect damage of genetic material (DNA/RNA) and cross
linking of proteins. Direct genome damage is by contact of photons (from gamma-rays/X-rays) or accelerated electrons (10eMV mega electron volt) through the
breakage of phosphodiester bonds (14). Indirect damage is by highly reactive short lived radiolytic species such as hydrogen peroxide (H2O2), hydroxyl radical,
hydrogen (H2) and superoxide radicals (O−

2 ), that are the product of endogenous water molecules radiolysis. O−
2 can cause protein cross linkage and upon its

reaction with nitric oxide it can generate reactive nitrogen species (RNS) that damages nucleic acids (15). In bacteria and parasites, irradiation stops replication
yielding metabolically active organisms that present structural antigens and functional proteins in a vaccine as reported through ATP production, redox potential, or
bacteriophage multiplication (16). Irradiation produces short RNA/DNA fragments which activate pathogen pattern recognition receptors (PRR)s, for example retinoic
acid-inducible gene I (RIG I) or toll like receptors (TLR’s) in the innate immune system thus acting as a vaccine adjuvant (12). Adding radio-protective compounds
such Mn2+-decapeptide complex (MDP) derived from Deinococcus radiodurans or trehalose preserves immunogenic epitopes (10, 11).
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humoral responses which are not effective at preventing disease
(19). Given that irradiation leads to major nucleic acid damage
when compared to other techniques, the risk of reversion in
pathogens with segmented genomes is low. Innocuity testing post
irradiation is however required for all formulations before further
use to confirm inactivation. In the case of Avian influenza, this is
carried out using embryonated chicken eggs which are susceptible
to infection and are routinely used for virus isolation during
surveillance of the disease (48). Other livestock viruses that have
been subjected to irradiation studies with great promise include
Bluetongue, Equine encephalitis and rabies amongst others (49–51).

Irradiation has also been used to improve inactivated vaccines
from toxin producing pathogens. The best way to currently
prevent tetanus is through vaccination using formaldehyde
inactivated tetanus toxin (52). In order to overcome the
disadvantages of exposing vaccine recipients to long term
effects of formaldehyde and associated salts, irradiation was
used to inactivate tetanus toxin (53). The toxin was inactivated
at 5 kGy but retained immunogenicity at 8 KGy which was the
upper limit of irradiation used in the experiment. In addition,
pure irradiated toxin retained more than 50% of its enzymatic
activity. Future studies will optimize the production process,
detoxification and explore its feasibility as an adjuvant (53).
Other toxin producing pathogens tested in irradiation studies
include Mycobacterium spp., Anthrax, Cholera, Coli and
paratyphoid B where irradiation does not necessarily inactivate
the toxins in contaminated meat (28, 54–56). Irradiation has also
been used in the research and production of several snake venom
vaccines including African elapid, viperid and Crotalus venoms
(57, 58). There are currently no effective treatments or vaccines
against prion diseases due to their complex biology (59, 60).
Radiation induced protein damage is considered a sterilization
method of infectious proteins like prions in aqueous solution and
the inactivation of infectious scrapie from transmissible
spongiform encephalopathy (33, 61, 62). It was noted that high
doses of up to 100 KGy were not enough to completely inactivate
prions but instead reduced their quantities by 4 – 5 logs. Diluting
the original stock of prion prepared had a stronger effect on
reducing the chances of causing disease in mice when compared
to irradiation (63). A combination of dilution and irradiation
would be considered the best approach to developing antigens
for anti-prion vaccines.
TECHNICAL SUPPORT TO MEMBER
STATES THROUGH COORDINATED
RESEARCH ACTIVITIES

Due to the requirement for basic level research in developing new
irradiation vaccine formulations, APHL has initiated several
different coordinated research programs (CRP) and technical
cooperation projects (TCP) that have run concurrently since
2009 (Supplementary Table 1). The initial research project
required participating members to establish the basic parameters
required to carry out experiments with their chosen diseases. The
participants were requested to devise a work plan that included the
Frontiers in Immunology | www.frontiersin.org 4
following points of interest for each disease in the CRP for
future experiments.

1. To establish a dose of irradiation for attenuation that is
consistent in scale i.e., using KGy as opposed to Krad, due
to inconsistencies in groups studying the same pathogen.

2. To determine indicator/s of attenuation of the pathogen to be
used for vaccination

3. To describe the representative animals used in vaccine
experiments and determine the appropriate sample size.

4. To describe the parameters for vaccination including the
amount of pathogen used and number of times and period of
duration between inoculations.

5. To describe the parameters for challenge including number of
non-irradiated pathogens used, duration of challenge after
vaccination and the difference between homologous Vs
heterologous.

6. To establish the criteria for protection i.e., full protection or
alleviation of pathology associated with the pathogen and
parameters to be measured after challenge.

7. To establish a sequence of events starting with safety at dose
of irradiation, diagnostic tools available for measuring
protection and the performance of the vaccine generated.

8. To identify the immune response important for protection
where possible.

As a result of these activities, various basic parameters were
established at the end of the first two CRP as shown in Table 1.
To support participating laboratories further with ongoing
activities, APH laboratories also developed tools that could be
used in evaluating vaccine efficacy. Quantitative PCR panels that
measure innate and adaptive immunity were developed for
ruminants, pigs and chicken (70). Quantitative PCR panels are
easy to adopt especially where collaborating partners have
limited resources to carry out other assays. Similar panels
using flow cytometry, ELISA, ELISPOT, Immunofluorescence,
microarray and RNAseq technologies are also currently under
development. A more complex assay that measures vaccine
immunogenicity in vitro using bovine monocyte derived
dendritic cells was also developed for use as a filter for
antigens before proceeding to animal experiments (71). This
would be particularly useful in cases where the number of
irradiated vaccine candidates was large with limited animal
testing facilities.
FUTURE PERSPECTIVES

The future for developing irradiated vaccines in veterinary
medicine is bright. Recent advances in delivering ionising
radiation using safer methods other than Co-60 have greatly
advanced with the development of inactivation techniques like
low energy electron beam irradiation that maintains antigenicity
for Influenza A (H3N8), Porcine reproductive and respiratory
syndrome (PRRSV), Equine herpes (EHV-1), Zika, Respiratory
syncytial virus, Rodentibacter pneumotropicus, Bacillus cereus
and E. coli (72–74). Irradiated pathogens have also been used
March 2022 | Volume 13 | Article 853874
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as adjuvants as in the case of gamma irradiated influenza A virus
co-administered with Semliki Forest virus where it displayed the
potential to enhance immune response against Semliki Forest
virus by six-fold in mouse (12). This adjuvant activity is
attributed to g-irradiated influenza A virus which behaves like
Poly I:C (synthetic dsRNA) and elicits an interferon type I (IFN-
I) humoral response through TLR3 (toll like receptor 3) signaling
plus IFN-I mediated lymphocytes activation (12, 75). Irradiated
Frontiers in Immunology | www.frontiersin.org 5
parasite vaccines have also opened new areas of immunological
study, as in the case of irradiated Salmonella gallinarum
protecting mice and chicken from infection and Haemonchus
contortus where metabolically active irradiated larvae of parasites
remain immobilised in the abomasum of vaccinated sheep
conferring long term protective response and long term
immune stimulation (38, 64). The introduction or generation
of unmethylated cytosine–guanine dinucleotide (CpGs) during
TABLE 1 | Comparison of different irradiation experiments carried out by IAEA and partners.

Species Strain Disease Administered
Deactivation
dose (KGy)

D10
(KGy)

Post irradiation
activity

In vivo
innoculation/
Challenge

Notes

Brucella abortus S19 Abortion in
pregnant cattle

3.5 NA alamarBlue®, 1x107/S2308
strain

Murine Macrophage infection assays

Brucella
melitensis

Rev1 Human and bovine
disease (zoonotic)

1 - 5 NA alamarBlue® NA cross-species irradiated vaccine?

Theileria
annulate

local strain/
Schizont
stage
vaccine

Theileriosis in
ruminants

0.15 - 0.4 NA NA NA To replace schizont stage vaccine, 0.4
KGy used for irradiating blood with
21% parasitaemia (10ml/calf)

Fasciola
hepatica

Local strain Common liver
fluke (zoonotic)

3 - 24 NA NA NA (64)

Fasciola
gigantica

local strain Tropical liver
disease (zoonotic)

0.030-0.050 NA NA metacercaria; 40/
oral dose

Haemonchus
contortus

local strain Blood feeding
nematodes for
sheep and goat

0.17 - 170 NA NA 10.000 larvae Larvae stage III; 99% protection;

Ichthyophthirius
multifiliis

local strain Protozoan ecto-
parasite in fish

1.5 5.2 Lysozyme, alkaline
phosphate, protease
and Estarases activitiy

100 trophonts/10
fish

(65)

Trypanosoma
evansi

RoTat 1.2 Mechanically
transmitted blood
protozoan parasite

0.2 0.1983 CFSE (replication),
Parasite growth

1x 104/103

homologous &
heterologous
Can86K

virulence gene mining

African Swine
fever

Estonia 124 African swine fever 30 1.81 NA 107.25HAU/
heterologous

No protection

Armenia 2008
Avian Influenza
virus

H9N2 Avian influenza 60 5.46 Hemagglutination
assay, inoculation in
embryonated eggs

128 HAU/103,104

& 106
Protection at lower doses with oral-
nasal application

Avian
pathogenic
Escherichia coli
(APEC)

APEC colibacillosis 1.2 0.89 NA NA Ongoing

Lumpy skin
disease virus
(LSDV)

Various Lumpy skin
disease

30 3.75 NA NA Ongoing

Theileria parva local strain East Coast fever 0.9 NA NA NA ongoing
Avian Influenza
virus

H9N2 LPAI 29.52 (frozen) 3.36 NA NA (66)

M. haemolytica local from
pneumonic
lungs

Pneumonic
mannheimiosis

2-20 NA NA 2×1010/3.6 x1010 (67)

Salmonella
gallinarum

Field strain Fowl typhoid 2.4 (RT) NA NA 108 (68)

White spot
syndrome virus

Local White spot
syndrom

15 2.56 NA NA (69)

Foot-and-mouth
disease virus

Local strain
IRN/1/2007

Foot-and-mouth
disease

50 4.8 NA NA (69)

P. multocida Local
(MK802880,
NVI)

Fowl cholera 1 NA NA NA (55)
Mar
*NA (Not Available).
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irradiation and the application of such vaccines address mucosal
immunity and inoculation strategies which are desirable when
dealing with intensive farming systems (76). Extensive epitope
damage due to high irradiation doses has been mitigated with the
development of radio protective compounds such as manganese
ions (Mn2+) and Trehalose which reduce structural damage of
surface epitopes (10, 11).

In summary, recent research over the past 10 years has created
a new base for the rational development of irradiated vaccines.
New irradiation devices like x-rays or e-beams which do not need
special radiation protection and are economically viable can be
installed in bio-safety laboratories (73). A broad spectrum of
molecular tests replaces traditional cell based immune assays
that require expensive equipment and expertise, and the in vitro
evaluation of immune induction replaces animal experiments
where possible (70, 71). This research can effectively be carried
out on local diseases in countries that have previously relied on
Frontiers in Immunology | www.frontiersin.org 6
results from advanced laboratories that increasingly cannot
prioritise them due to constrains on funding and human
resource capacities.
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