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ABSTRACT
Chimeric antigen receptor (CAR) T-cell adoptive therapy is set to transform the treatment of a rapidly 
expanding range of malignancies. Although the activation process of normal T cells is well characterized, 
comparatively little is known about the activation of cells via the CAR. Here we have used flow cytometry 
together with single-cell transcriptome profiling to characterize the starting material (peripheral blood 
mononuclear cells) and CAR therapeutic products of 3 healthy donors in the presence and absence of 
antigen-specific stimulation. Analysis of 53,191 single-cell transcriptomes showed APRIL-based CAR 
products to contain several subpopulations of cells, with cellular composition reproducible from donor 
to donor, and all major cellular subsets compatible with CAR expression. Only 50% of CAR-expressing cells 
displayed transcriptional changes upon CAR-specific antigen exposure. The resulting molecular signature 
for CAR T-cell activation provides a rich resource for future dissection of underlying mechanisms. Targeted 
data interrogation also revealed that a small proportion of antigen-responding CAR-expressing cells 
displayed an exhaustion signature, with both known markers and genes not previously associated with 
T-cell exhaustion. Comprehensive single-cell transcriptomic analysis thus represents a powerful way to 
guide the assessment and optimization of clinical-grade CAR-T-cells, and inform future research into the 
underlying molecular processes.
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Introduction

The immune system plays an important role in cancer devel
opment and treatment, in both solid tumors and hematological 
malignancies. Multiple approaches have been explored to 
direct immune cells specifically against cancer cells. Increased 
attention has been focused on direct manipulation of the 
patient’s own immune cells through either small molecules or 
cell therapy,1 including the transduction of peripheral blood 
T-cells of the patient with a chimeric antigen receptor (CAR) 
directed against an antigen present in the cancer cells. For these 
treatment protocols, T-cells harboring the CAR (CAR T-cells) 
are commonly expanded in vitro before reintroduction into the 
patient.

Following highly encouraging clinical trial results, CAR 
products have already been approved for therapeutic use and 
many more are at advanced stages of clinical trials.2,3 However, 
relatively little is known about how CARs function from 
a molecular point of view, especially with respect to their 
influence on the overall cellular state of the CAR T-cell pro
ducts. In particular, the cellular heterogeneity of CAR T-cell 
products remains poorly defined not only in terms of cellular 
heterogeneity as a result of culture conditions,4 but also 
because not all cells harbor the CAR as well as difficulties 
associated with recovery and analysis of the cells upon antigen 
encounter.

Traditionally, transcriptomic studies of the immune system 
have relied on flow cytometry to obtain large numbers of 
relatively homogenous cell populations. The more recent adap
tation of single-cell transcriptomic analysis has revealed that 
almost all cell populations thought to be largely homogeneous 
are in fact composed of clearly identifiable subpopulations.5 

Technological advances in single-cell RNA-Seq (scRNA-Seq) 
permit the cost-efficient processing of thousands of cells,6 

whereas previously this type of analysis was low-throughput 
and cost prohibitive. Single cell transcriptome profiling also 
provides powerful opportunities to analyze molecularly the 
response and behavior of individual immune cells following 
stimulation.

Here we have performed a large-scale single-cell transcrip
tomic analysis of CAR T-cells containing a previously 
described third-generation CAR based on an “A Proliferation- 
Inducing ligand” (APRIL) that specifically recognizes the B cell 
maturation antigen (BCMA) and cyclophilin ligand interactor 
(TACI), both present in multiple myeloma (MM) cells.7 We 
have combined conventional flow cytometry analysis with 
state-of-the-art scRNA-Seq to characterize in detail three cru
cial stages of the CAR T-cell production process, namely the 
starting leukapheresis sample, the in vitro generated CAR-T 
product, and the product upon specific antigen stimulation. 
Sampling these three stages from three different donors pro
vided the transcriptional profiles of 53,191 cells in total, 
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demonstrated the robustness of the procedure with respect to 
sample variation, and allowed us to determine molecular sig
natures associated with CAR activation as well as the small 
subset of cells displaying an exhaustion signature.

Results

A sampling strategy to capture key stages of CAR product 
development

To interrogate the molecular consequences of specific CAR 
activation, the CAR-T product from 3 healthy donors were 
generated and analyzed using a combined approach of tradi
tional flow cytometry and scRNA-Seq. Each CAR product 
sample was split in half, with one half cultured in the presence 
of cells displaying the specific CAR antigen (Figure 1). This 
sampling strategy was designed to provide valuable informa
tion about (i) the similarity or otherwise of CAR products 
generated from different donors, (ii) a full molecular charac
terization of the CAR activation process, and (iii) to provide an 
opportunity to explore clinically relevant aspects such as the 

identification of possible subpopulations associated with 
exhaustion processes of activated CAR-T cells.

To obtain a better understanding, we analyzed the whole 
product containing a mixture of transduced and non- 
transduced cells. In this way, we could analyze the behavior 
of CAR-T cells within the context of non-transduced cells and 
obtained an internal reference for comparative analysis. We 
obtained the transcriptional profiles of 37,898 single cells cor
responding to the CAR products of the three donors, of which 
17,163 cells were from the product in the absence of CAR- 
specific stimulation and 20,735 cells from the product in the 
presence of CAR-specific antigen exposure (Table 1).

The mapping of the region upstream of the predicted poly
adenylation site of the 3ʹLTR of the virus used to express the 
CAR allows the robust detection of CAR transcripts indepen
dently of the insertion point (Supplementary Figures 1A and 
1B). CAR expression was detected on a total of 8,534 cells, of 
which 4,218 cells corresponded to antigen-exposed cells and 
4,316 cells to unstimulated cells (Table 1). The CAR could be 
detected on an average of 22.5% of the cells, in line with 
previous reports,2 with expression levels similar in all samples 

Figure 1. Experimental pipeline for single cell transcriptomic analysis of CAR T-cells. PBMCs from 3 different donors were obtained and T-cells were specifically activated 
using CD3/CD28 for 2 days prior to transduction of the chimeric antigen receptor (CAR). T-cells were then expanded and final product was frozen. For analysis, product 
samples were thawed, split in 2 and cultured overnight either in the presence or absence of the specific antigen. Aliquots of the original PBMC samples were thawed 
and cultured overnight. Samples were FACS sorted to remove dead cells followed by single cell RNA-Seq and bioinformatics analysis.
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(Supplementary Figure 1C). CAR-expressing cells also express 
RQR8 on the surface, which allows the detection of successfully 
infected cells by flow cytometry. Importantly, the percentage of 
CAR-expressing cells was very similar when measured by 
either scRNA-Seq or RQR8 detection by flow cytometry 
(Supplementary Figure 1D).

Bioinformatic identification of cell clusters was used to 
identify cellular subtypes and/or molecular states present in 
the products, as defined by single-cell gene expression analysis. 

The clustering results were visualized using UMAP and the 
cells were colored retrospectively according to their allocated 
cluster. This analysis highlighted the presence of eleven clusters 
(Figure 2(a), Table 1). We next investigated the nature of the 
defined clusters using the expression of known T-cell subpo
pulation marker genes such as CD8A, CD4, CCR7, and SELL 
(CD62L)8 (Figure 2(b,c), Supplementary Figures 2A and 2B) 
and inferred the probability for each cell to stay in a particular 
cell cycle stage (Figure 2(d) and Supplementary Figure 2E) 

Table 1. Distribution of single cell transcriptomes analyzed in this work.

Unstimulated CAR-non-expressing Unstimulated CAR-expressing Stimulated CAR-non-expressing Stimulated CAR-expressing

Donor 1 Donor 2 Donor 3 Donor 1 Donor 2 Donor 3 Donor 1 Donor 2 Donor 3 Donor 1 Donor 2 Donor 3 Total

Cluster 1 10 47 57 47 61 195 336 190 351 768 435 901 3398
Cluster 2 36 2 9 317 12 93 40 9 8 134 4 39 703
Cluster 3 397 162 61 201 90 25 404 101 37 70 25 4 1577
Cluster 4 134 1112 1793 32 173 561 203 1847 1997 28 133 286 8299
Cluster 5 1891 1139 1171 653 344 348 805 638 549 194 87 101 7920
Cluster 6 398 229 552 117 65 141 2636 970 1155 338 140 166 6907
Cluster 7 26 37 199 7 8 45 70 27 32 9 2 6 468
Cluster 8 19 12 41 10 6 18 24 13 20 7 0 4 174
Cluster 9 23 266 104 5 39 29 34 435 128 5 38 45 1151
Cluster 10 634 1291 986 266 201 207 760 1836 846 72 92 83 7274
Cluster 11 0 9 0 0 0 0 0 14 2 0 1 1 27
Total 3568 4306 4973 1655 999 1662 5312 6080 5125 1625 957 1636 37898
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Figure 2. Single cell transcriptomics defines cellular composition of CAR product. (a) UMAP visualization of transcriptomic profiles of CAR product cells (contains CAR- 
expressing and -non-expressing cells before and after CAR-specific stimulation) and Leiden clustering. (b) The cells in the UMAP were colored according to the 
expression levels of CD8A. Color scheme is based on ln scale of normalized counts from 0 (gray) to the indicated maximum value in the scale (dark red). (c) Heatmap 
using selected genes to characterize each cluster. For each gene, mean expression in all cells within each cluster was calculated, scaled across the clusters and expressed 
relative to the maximum mean value. Color scheme goes from 0 (gray) to 1 (dark red). (d) Stacked bar chart showing the proportion of cells predicted in each cell cycle 
stage for each cluster. The total number of cells in each cluster is indicated at the top.
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using a list of cell cycle genes previously defined.9 CD8A 
expression was strongly detected in clusters 9 and 10 whereas 
CD4 expression was detected in the rest of the clusters. Clusters 
1, 7, and 8 contained a mixture of CD4 and CD8-expressing 
cells. Thus, we could define cells that expressed: CD4 
+CCR7highSELLhigh (cluster 5); CD4+CCR7highSELLmid (clus
ter 6); CD4+CCR7lowSELLmid (cluster 4); CD4 
+CCR7highSELLhigh (clusters 2 and 3); CD8+CCR7lowSELLlow 

(cluster 9); CD8+CCR7highSELLhigh (cluster 10). Cells in cluster 
1 presented high levels of CCR7, low levels of SELL, and higher 
levels of genes related to T-cell activation such as IL2RA 
(CD25) (Figure 2(c)).

All cells in the dataset expressed CD3E except a small num
ber of cells that belonged to cluster 11 and a very small number 
of cells located within cluster 9 (Supplementary Figure 2C). 
Cells within cluster 11 expressed high levels of MHC class II 
(HLA-DR, HLA-DP, and HLA-DM) as well as FCER1A sug
gesting that they have a dendritic phenotype. The small num
ber of cells in cluster 9 that did not express CD3E had a high 
expression of GNLY, NCAM1, and NKG7 suggesting that they 
present a phenotype similar to NK cells (Supplementary 
Figure 2D).

CAR products from different donors show a similar cellular 
composition

To assess the variability between CAR-T products from differ
ent donors in terms of cell types and distribution of cellular 
states, we compared the distribution of the three different 
donors within the previously defined clusters of CAR products.

Importantly, all clusters (except cluster 11 that only com
prised 27 cells) contained cells from all three donors (Figure 3 
(a) and Supplementary Figure 3A), indicating that the scRNA- 
Seq data produced with our experimental and processing pipe
line can be readily compared across different donors. The 
contribution of each donor to each cluster was variable, sug
gesting that the different subtypes/states can be present in 
different proportions in each donor. In particular, donor 1 
was less represented in cluster 4 but contributed proportionally 
more to clusters 5, 6 and especially to cluster 2, where it 
constituted 75% of the cells within this cluster (Figure 3(a)).

Early activation promotes effector-like transcriptional 
signatures

To gain a better understanding of the potential impact of the 
CAR T-cell production process (early activation treatment and 
transduction) on the cells, we compared the CAR product 
single-cell transcriptomes to those of the T-cells in the original 
PBMC starting material. To this end, we characterized 10,845 
leukapheresis T-cells from the very same three healthy donors 
using scRNA-Seq analysis and identified 3,693 T-cells from 
donor 1, 3,763 T-cells from donor 2, and 3,389 T-cells from 
donor 3 (Extended Results). The UMAP visualization contain
ing PBMCs and product T-cells separated cells according to 
their source (Supplementary Figures 4A and 4B) indepen
dently of the expression pattern of markers such as CD8A, 
CCR7, and SELL (Supplementary Figure 4C). We then inte
grated both datasets (Supplementary Figures 4D, 4E and 4F) 

and assigned leukapheresis T-cells to the closest predefined 
product T-cell clusters (Supplementary Figure 4G). Next, we 
compared unstimulated CAR-non-expressing cells and leuka
pheresis T-cells within each associated cluster (Supplementary 
Table 1). Of note, we could not identify a counterpart to cluster 
1 in the leukapheresis sample, as can be observed from the 
pattern of expression of markers such as IL2RA 
(Supplementary Figure 4F), nor was there a clear separation 
between clusters 5 and 6 (Supplementary Figure 4E). We there
fore excluded cells assigned to cluster 1 from this comparative 
analysis and we considered cells assigned to clusters 5 and 6 as 
one single group.

The integration of the 200 most upregulated genes from 
each of the different comparisons defined 5 groups of genes 
(Supplementary Figure 4H and Supplementary Table 1). One 
group of genes was upregulated in all clusters suggesting the 
presence of a common differentially expressed signature 
between the leukapheresis T-cells and product T-cells. This 
group contained genes that are upregulated in effector and 
effector memory cells when compared to naïve cells 
(“GSE11057_NAIVE_VS_MEMORY_CD4_TCELL_DN”, p- 
adjusted value 5.63E-11; 
“GSE9650_NAIVE_VS_EFF_CD8_TCELL_DN”, p-adjusted 
value 5.63E-11). Although we could define groups of genes 
upregulated in the specific clusters, the genes we identified 
were generally related to an acquisition of effector and effector 
memory states.

CAR-expressing and CAR-non-expressing cells are similar 
in the absence of CAR-specific stimulation

Since we had determined that CAR-expressing cells can be 
robustly detected and we had generated parallel scRNA-Seq data
sets for CAR products with and without CAR-specific antigen 
exposure, we then analyzed the distribution of CAR-expressing 
cells in the previously defined clusters to investigate whether CAR- 
expressing cells are enriched in certain subpopulations, and 
whether expression of the CAR influences transcriptional profiles 
even in the absence of antigen stimulation. Unstimulated CAR- 
expressing cells had a very similar distribution to the unstimulated 
CAR-non-expressing cells (Figure 3(b) and Supplementary 
Figures 3B and 3C). These results indicate that all major cell 
subtypes are equally susceptible to CAR virus transduction.

We then compared the unstimulated CAR-expressing and 
CAR-non-expressing cells within each of the major clusters to 
investigate if there were transcriptional differences between 
them. We could not detect a shared signature across the dif
ferent comparisons and only few genes were differentially 
expressed for each of the clusters (Supplementary Table 2).

Our results suggest that CAR-expressing cells behave simi
larly to untransduced cells in resting conditions.

Few CAR-expressing cells show transcriptional response 
without specific antigen stimulation

The proportion of CAR-expressing cells in the absence of 
specific stimulus was higher in clusters 1 and 2 when compared 
to non-expressing CAR cells (Figure 3(b) and Supplementary 
Figure 3C). Cluster 2 contained 422 unstimulated CAR- 
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expressing cells (9.8% of 4316 unstimulated CAR-expressing 
cells) that presented a central memory-like phenotype (CCR7+ 
SELLhigh) although these cells were present mainly in only one 
of the donors (see Figure 3(a)). Cluster 1 (which was consisted 
mostly of CAR-expressing antigen-exposed cells) contained 
303 unstimulated CAR-expressing cells (7% of all unstimulated 
CAR-expressing cells). These cells presented an activation sig
nature that was independent of the CAR-expression levels 
(Figure 3(c) and Supplementary Figure 3D). Of note, unstimu
lated CAR-non-expressing cells could also be detected within 
clusters 1 and 2, although in much smaller proportions, 0.9% 
and 0.4%, respectively (114 and 47 cells out of 12,847 cells, 
respectively).

Our approach using single-cell transcriptomics has allowed 
us to reveal that approximately 7% of CAR-expressing cells are 
activated already prior to encountering the specific antigen.

Antigen exposure results in homogeneous activation of 
CAR-expressing cells

Our sampling strategy allows us to compare the effect of 
exposure to the CAR-specific antigen in CAR-expressing 
T-cells, using non-expressing cells as a reference. Upon CAR- 
specific antigen stimulation, there is a relative increase of CAR- 
non-expressing cells in clusters 1 and 6 paralleled by a relative 
decrease of cells in cluster 5 when compared to the distribution 
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Figure 3. Cluster composition is independent of donor and condition. (a, b) All donors and all conditions contributed to all clusters. Of note, the small cluster 11 (only 
contained 27 cells) was the only exception. Distribution of cells per donor and cluster (a) and per condition and cluster (b) is depicted. The total number of cells in each 
group is shown at the top. (c) Violin plots showing expression levels (ln scale of raw counts on y axis) of CAR across CAR-expressing cells from the clusters. Cluster 11 was 
excluded since it only contained 2 CAR-expressing cells.
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in the absence of the stimulus (Figure 3(b) and Supplementary 
Figure 3C).

Cells in cluster 6 present lower levels of SELL and higher 
expression of genes that code for granzymes (GZMA, GZMB, 
and GZMH), cytokine genes (such as IL3, IL4, IL5, IL8, IL13, 
and CSF2), activating transcriptional factors (such as FOS, 
a member of the AP-1 complex) and receptors (such as CCR1 
and CXCR6) when compared to cluster 5 (Supplementary 
Table 3). These results suggest that a proportion of CAR-non- 
expressing cells acquired a transcriptional state resembling 
activation upon CAR-specific antigen stimulation, although 
at lower levels than cells in cluster 1. Since CAR-non- 
expressing cells cannot respond to the CAR-specific antigen, 
this would suggest that there is cell-to-cell signaling between 
the CAR-expressing cells and a proportion of CAR-non- 
expressing cells upon stimulation.

The distribution of CAR-expressing cells changed drastically 
upon stimulation. These cells were substantially enriched in 
cluster 1, where they constituted 62% of the cells, and dramati
cally reduced in all the remaining clusters, with the exception of 
a moderate increase in cluster 6 (in a similar trend to CAR-non- 
expressing cells) (Figure 3(b) and Supplementary Figure 3C). 
Our results suggest that a proportion of CAR-expressing cells 
acquire a similar transcriptional state upon antigen-specific sti
mulation and these cells simultaneously transition to cluster 1 
from most of the other clusters.

Cluster 1 contained a small proportion of unstimulated cells 
and 26% of cells in this cluster corresponded to stimulated 
CAR-non-expressing cells (Figure 3(b)). We therefore investi
gated if the cells within cluster 1 had a homogenous transcrip
tional profile. To this end, we obtained an UMAP visualization 
of the cells within cluster 1 and could observe a separation 
between CD8- and CD4-expressing cells that could be con
firmed by the appearance of subclusters within cluster 1 
(Figure 4(a) and Supplementary Figures 5A and 5B). Of note, 
we could not see a separation between CAR-expressing and 
CAR-non-expressing cells or in relation to CAR-expression 
levels (Supplementary Figures 5D and 5E).

We also compared the expression patterns of CD8- 
expressing cells with the rest of the cells within cluster 1 and 
we found very few differences (Supplementary Figure 5C and 
Supplementary Table 4). These results suggest that there is one 
single program for T cell activation triggered by antigen sti
mulation and the presence of CAR, although a small propor
tion of cells can activate this program even in the absence of the 
antigen. Taken together, our analysis shows that nearly 50% of 
CAR-expressing cells respond to CAR-specific stimulation in 
a consistent fashion, thus implying the existence of a molecular 
signature that should be characteristic of the CAR response to 
specific antigen.

Some CAR-expressing cells show no transcriptional 
response to specific antigen stimulation

Our previous results revealed a specific transcriptional 
response in a subset of CAR-expressing cells upon expo
sure to specific antigen stimulation. However, a big pro
portion of CAR-expressing cells from the stimulated 
condition were assigned to other clusters than cluster 1 

where they were intermixed with non-CAR expressing 
cells in both clustering and UMAP analysis, thus indicat
ing that CAR-expressing cells within those clusters do not 
respond to antigen exposure. We then investigated 
whether these cells did not present a transcriptional 
response to the antigen stimulation or whether they 
showed evidence of a short-term response to the stimulus. 
Since we had cultured the product in parallel in the pre
sence and absence of the CAR-specific antigen, we next 
compared the unstimulated and stimulated CAR- 
expressing cells within clusters other than cluster 1. We 
could not find major differences between these cells 
(Supplementary Table 5). Our results suggest that cells in 
the product exposed to antigen that fall outside of cluster 
1 remain transcriptionally very similar to cells that have 
not been exposed to the antigen.

The molecular signature of CAR activation includes 
upregulation of the MYC program

To dissect the molecular program of CAR activation, we focussed 
our bioinformatic analysis on the 4,218 stimulated CAR- 
expressing cells. We compared the transcriptional profiles of anti
gen-exposed cells present in cluster 1, which contained the acti
vated cells, with antigen-exposed cells present in all the other 
clusters. Differential gene expression analysis showed that 899 
genes were upregulated and 364 genes downregulated in antigen- 
exposed cells within cluster 1 when compared with the other 
clusters (Figure 4(b) and Supplementary Table 6). The upregulated 
genes included receptors (such as CCR4), cytokines (such as IL2, 
IL3, IL4, IL5, IL8, IL10, IL13, and CSF2) and granzyme B (GZMB). 
Analysis of the upregulated genes showed an enrichment in genes 
corresponding to pathways related to lymphocyte activation 
(Figure 4(c,d)). Enriched pathways included “ribosome biogen
esis” (p-adjusted value 5.29E-76), genes related to the “calcineurin- 
regulated NFAT-dependent transcription in lymphocytes” 
(p-adjusted value 2.35E-11) (which contains genes such as 
BATF3, CSF2, IRF4, CDK4, IL2RA, IL3, IL4, and IL5) together 
with “Calcium signaling in the CD4+ TCR pathway” (p-adjusted 
value 5.19E-05) and “IL-2 signaling mediated by STAT5” 
(p-adjusted value 7.72E-05). MYC was also found to have 
a prominent role in the CAR activation (p-adjusted value 2.96E- 
13). Not only is MYC itself upregulated but additionally validated 
target genes of MYC were also upregulated (including genes such 
as FOSL1, CDK4, KAT2A, PMAIP1, CDC25A, NME1, NPM1, 
TFRC, and BMI1).

The downregulated genes contained expected genes such as 
SELL10 and genes that code for MHC class I, such as B2M. Of 
note, genes such as HLA-A, HLA-B, HLA-C, HLA-E, and HLA- 
F had an FDR <0.05 and a fold-change close to −2. In sum
mary, our results show that CAR-expressing cells activated 
upon antigen exposure activate similar pathways to the ones 
triggered by the T-cell receptor.

Only a small proportion of stimulated CAR-expressing cells 
exhibit exhaustion features

The exhaustion of T-cells commonly occurs upon long 
exposure to the antigen in the absence of adequate 
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costimulatory signals. It is an important factor to take into 
consideration when producing CAR T-cells since there are 
reports of relapse after an initial phase of clearing of the 
disease followed by the eventual exhaustion of CAR 
T-cells.11 Traditionally, surface markers including PD-1, 
TIM-3 and LAG-3 have been used to identify exhausted 
T-cells by flow cytometry. We measured the expression of 
those surface markers in the lymphocytic compartment of 
our leukapheresis and final product by flow cytometry 
(Figure 5(a) and Supplementary Figure 6A). Very few 

cells expressed the inhibitory receptor PD-1 in the final 
product and only a slightly higher proportion of cells 
expressed it in the original leukapheresis samples. TIM-3 
and LAG-3 were detected in a higher proportion of cells 
of the final product than the leukapheresis with no differ
ences between CAR-expressing and non-expressing cells.

From a transcriptomic point of view, exhaustion is charac
terized by the upregulation of inhibitory receptors and down
regulation of stimulatory signals. A molecular signature for 
exhaustion was defined for mouse upon chronic viral 

Figure 4. Antigen exposure results in homogeneous activation of CAR-expressing cells. (a) UMAP visualization of cells within cluster 1, which contains activated cells 
upon CAR-specific antigen stimulation. Cells were colored according to the expression levels of CD8A. Color scheme is based on ln scale of normalized counts from 0 
(gray) to the indicated maximum value in the scale (dark red). (b) Volcano plot showing differentially expressed genes in antigen-exposed CAR-expressing cells 
contained in the activated cluster 1 compared with the antigen-exposed CAR-expressing cells contained in the rest of clusters. Fold change is presented in the x-axis 
(expressed as log 2) and the q-value of the analysis (expressed as – log10 of q-value) in the y-axis. Genes with log2 fold change > |1| and p-adjusted value < 0.05 and 
with log2 mean expression > −5 are depicted in red. Genes that overlapped with GO terms “Validated targets of C-MYC transcriptional activation” and “Validated targets 
of C-MYC transcriptional repression” are highlighted in blue and orange, respectively. (c, d) Gene set enrichments analysis (GSEA) of differentially expressed genes 
showed in B) with GO term “ribosome biogenesis” (c) and all GO terms contained in the PID database (d). In C, genes were ranked according to their p-adjusted value 
with most upregulated genes to the left and most downregulated genes to the right. Normalized Enrichment Score (NES) and Fold Discovery Rate (FDR) are shown. In 
(d), the ratio of overlapping upregulated and downregulated genes within each GO term is presented in the x-axis (expressed as log 2) and the q-value of the analysis 
(expressed as – log2 of q-value) in the y-axis. Thresholds indicating 2-fold upregulated genes over downregulated genes and minimum significance (FDR<0.05) are 
denoted. The size of the dot represents the number of genes included in the term. The dots are colored according to the ratio of upregulated genes that overlap relative 
to the total number of genes included in the term.
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infection,12 and has also subsequently proved to be informative 
in patients with autoimmune diseases13 as well as in the 
response of CML patients to treatment with anti-CD19 auto
logous CAR-T cells.14 We used this molecular signature to 
evaluate the exhaustion state of cells in our dataset by scoring 
all single-cell transcriptomes from the final products in our 
study against these genes (Figure 5(b), Supplementary Table 7 
and methods). This comprehensive transcriptome-based 
approach identified 752 cells with a strong exhaustion gene 
signature (Figure 5(c) and Supplementary Figure 6B). These 
cells showed a good overlap with the expression of typical 
markers used to evaluate exhaustion by flow cytometry, parti
cularly LAG-3 (Supplementary Figure 6D), and the ones 
located within cluster 1 were mainly concentrated within one 
of the previously defined subclusters for cluster 1 
(Supplementary Figures 5B and 6C). Only 7% (153 cells out 
of 2,104) of the responding antigen-exposed CAR-expressing 
cells (cluster 1 in Figure 2(a)) presented an exhaustion signa
ture. Importantly, these 153 cells presented higher expression 
levels of the CAR when compared with non-exhausted- 
stimulated CAR-expressing cells within the same cluster 

(Figure 5(d)). Another noteworthy observation is that the 
exhaustion signature cells were distributed unequally between 
the donors, with most coming from donor 3, fewer from donor 
1 and even fewer from donor 2 (Supplementary Figure 6E). 
The frequency of these cells may therefore represent a key 
feature that distinguishes CAR T-cell products from different 
donors.

We next compared the 153 CAR-expressing cells with 
strong exhaustion signature from cluster 1 to the 153 CAR- 
expressing and antigen-responding cells with the lowest 
exhaustion score from the same cluster (Supplementary 
Table 8). The cells with high exhaustion signature showed 
upregulation of typical co-inhibitory receptors (like LAG3, 
HAVCR2/TIM3, CTLA4, and TIGIT) (Figure 5(d)). 
Moreover, differential gene expression analysis demonstrated 
overexpression of gene sets previously shown to be expressed 
by exhausted CD4 and CD8 murine T-cells15 (Figure 5(e)). The 
differentially upregulated genes included typical exhaustion 
transcription factors (like T-BET/TBX2115) (Figure 5(d)), 
IFNG, chemokine genes (such as CCL1, CCL5, CCL3/MIP1- 
alpha, and CCL4/MIP1-beta), genes specifically identified in 
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exhausted CAR-T cells (such as ENTPD116), as well as genes 
downregulated following a treatment to prevent exhaustion of 
human CD8 T-cells13 (Figure 5(f)).

In summary, our data not only indicate that a small propor
tion of CAR-expressing cells exhibit features similar to T-cell 
exhaustion following antigen-specific CAR stimulation, but 
also that scRNA-Seq represents a powerful analytical technique 
to (i) quantify their proportion in CAR products, and (ii) 
identify previously unrecognized genes affected by immune 
cell exhaustion, with direct implications for both correlation 
to patient outcomes as well as optimization strategies for pro
duct development.

Discussion

Here we provide a comprehensive single-cell transcriptomic 
analysis of key sequential stages during CAR T-cell generation. 
Traditionally, the characterization of immune cell populations 
has relied on flow cytometry, which resulted in a detailed 
vocabulary to describe primary immune cell populations. 
However, the link between surface marker expression and 
cellular function is often lost during in vitro culture, thus 
making a nomenclature based on surface markers potentially 
unreliable. Moreover, the need to pre-select markers from a list 
of ready-made antibodies prohibits a data-driven approach, 
which would collect unbiased information at full genome- 
scale, and then “learn” the subpopulation structure purely 
from the data itself. Here we used flow cytometry analysis to 
define basic parameters of CAR T-cell populations, and then 
performed comprehensive scRNA-Seq analysis, which allowed 
us to show that overall cellular composition is reproducible 
between donors. We furthermore show that all major cell 
populations are transduced with the CAR virus, yet only 
a subset of CAR-expressing cells responds to antigen- 
mediated activation. Moreover, we devised a new bioinfor
matic pipeline to define CAR activated cells displaying an 
exhaustion signature, thus providing a new means to assess 
this clinically relevant subpopulation in CAR T-cell products.

Our results show that the CAR product is heterogeneous 
and that cell cycle and predicted memory status are important 
factors to define this heterogeneity, in line with previous 
reports.8,17 Interestingly, we find that this heterogeneity is 
present in all donors although at different levels. We also 
corroborated that all major subpopulations present after 
T-cell culture were susceptible to CAR transduction as 
reported before,18 and moreover found that approximately 
7% of CAR-transduced cells already presented an activation 
signature before antigen-specific stimulation. Importantly, 
high levels of CAR expression are unlikely to cause this activa
tion in the absence of antigen since CAR expression in pre- 
activated cells is not higher than in cells without this gene 
signature. The reports of CAR T-cell activation are contra
dictory; some report homogenous response17 while others 
report diverse signatures.19 In our study, stratifying cell popu
lations in a data-driven way based on their full transcriptomes 
allowed us to demonstrate that, following antigen activation, all 
major subpopulations within the CAR product can respond to 
antigen-specific stimulation in a similar way, thus revealing 
a uniform activation signature, which included a strong MYC 

gene signature together with the upregulation of genes related 
to calcium activation pathways. Both pathways are usually 
associated with an increase of glycolysis following T-cell 
stimulation.20 We also detected concomitant downregulation 
of CD3D, CD3E and CD3G (components of the T cell receptor) 
(Supplementary Table 6) which is well-established upon T-cell 
response21 as well as upregulation of genes involved in riboso
mal RNA synthesis and processing.22 We also detected a strong 
upregulation of CSF2, IL2RA(CD25) and cytokines as pre
viously described in cytolytic CAR T-cells.19

Of note, we did not detect expression of CD8 in the majority 
of CAR cells responding to antigen stimulation. The existence 
of CD4 CAR T cells with lytic activity has been described 
before.18,19 These cells present a very similar behavior and 
transcriptional profile to CD8 CAR T cells with lytic 
activity,19 although they have been suggested to have weaker 
activity than CD8 cells.18 Interestingly, previously reported 
CD4 CTL may be related to the CD4-expressing CAR T-cells 
in our samples. CD4 CTL cells express high levels of GZMB 
and IFNG.23 Accordingly, we detected increased expression of 
BATF, BATF3, and IRF4 which are involved in the differentia
tion of effector T-cells24,25 and collaborate to promote genes 
such as T-BET (TBX21), which was also upregulated, and has 
been shown to promote the production of CD4 CTL cells.23 

These comparisons not only provide new hypotheses for future 
investigations, but also demonstrate that the cellular complex
ity of CAR products may be higher than previously anticipated.

The conventional identification of memory cells using flow 
cytometry relies on detecting different isoforms of the gene 
PTPRC (that codes for CD45), but this portion of the mRNA is 
covered with very low efficiency when using droplet scRNA- 
Seq technology that captures the 3ʹ end of the mRNA. The 
expression of CCR7 and SELL has been used in the past to 
identify different cell types in datasets generated using this 
technology.8 The bioinformatic pipeline devised here detects 
CCR7 expression at the same proportion as identified by flow 
cytometry thus providing independent validation. The mem
ory status of T-cells before CAR production is thought to 
represent a key parameter when trying to predict the down
stream performance of the therapeutic product. Detailed atten
tion has also been paid to the ratios of CD4:CD8 cells and the 
proportion of different subpopulations within the product.18,26

In our study, we combined the expression of CCR7 and 
SELL with unsupervised clustering to group cells with similar 
transcriptional profiles. This analysis demonstrated that mem
ory status is a strong parameter contributing to cell grouping, 
as is the CD8 or CD4 nature of the cells. Importantly, our data- 
driven approach allowed us to account for heterogeneity within 
and between donors, and thus derive broadly relevant cell 
classifications that would not have been possible to obtain 
using conventional approaches.

The exhaustion status of T-cells has previously been linked 
with the in vivo response of CAR T cells.14 Robust ways of 
identifying cells with exhaustion status within CAR products 
therefore represents an important goal with broad clinical 
relevance. We devised a bioinformatic pipeline that allows 
us to score single-cell transcriptomes based on the activity 
of a previously defined gene signature in chronically stimu
lated murine T-cells.12 This analysis identified a subset of 
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cells, which showed specific upregulation of genes that 
matched previously described exhaustion signatures.13,15 

Only few cells showed an exhaustion signature, corroborating 
previous reports of low incidence of exhaustion following 
acute stimulation in CAR-activated cells.17,19 Single-cell 
molecular profiling therefore emerges as a potentially power
ful analytical technique, that can be used to define coarse 
grain population structure, donor-specific differences in sub
population abundance, and also functional parameters such 
as the proportion of cells displaying an exhaustion signature. 
Application to extensive clinical studies would provide unpre
cedented new opportunities to correlate CAR product fea
tures with clinical outcomes, and thus guide patient 
management as well as the design of new and improved 
CAR production protocols.

Materials and methods

Donor samples

PBMCs were derived from healthy donors leukapheresis. 
Peripheral blood leukapaheresis were obtained from the NHS 
as part of a research study (IRAS ID 185945) or purchased as 
LeukoPaks from AllCells.

Manufacturing of CAR T cells product

Genetically modified T cells were generated using the 
CliniMacs Prodigy (Miltenyi) following manufacturer’s 
instructions. Transduction was performed using an APRIL- 
CAR retroviral vector as previously described.7 The sequence 
of the CAR corresponds to SEQ ID No. 17 found within the 
patent WO 2015/052538. Briefly, T-cells are enriched from 
leukapheresis blood samples by stimulating their proliferation 
through 2 days of specific T-cell stimulation (CD3/CD28). 
Following removal of the stimulus, cells are infected with 
a retrovirus containing the CAR and cultured for 5 days in 
the presence of cytokines to promote T cell expansion, after 
which the culture is entirely made up of T cells. The final 
product is then stored in liquid nitrogen as well as the bulk 
of the original leukapheresis sample (Figure 1). CAR transduc
tion efficiency was assessed in the final product by flow cyto
metry using RQR8 staining (Qbend10 antibody; R&D).

Target cells

MM.1S cells were obtained from ATCC (CRL-2974) and cul
tured in RPMI (Lonza) supplemented with 10% FBS (Gibco) 
and 1% Glutamax (Gibco).

Sampling for analysis

Leukapheresis samples were thawed, washed and seeded at 
a concentration of 2 × 106 cells/ml in TexMacs (Miltenyi) 
supplemented with human AB serum (Seralab) and IL-7 and 
IL-15 (Miltenyi) in 24 well plates.

Similarly, product samples were thawed, washed, and resus
pended at a concentration of 1 × 105 CAR+ cells/ml in 0.5 ml of 
culture media and cultured for 24 hours in 48 well plates. For 

the antigen-exposure experiments, product samples were co- 
cultured in the presence of MM1.S cells in a 1:1 effector (CAR+ 

cells)/target (MM1.S) ratio.
For single-cell RNA-Seq analysis, following 20 hours of 

incubation, wells from the same conditions were pooled and 
all samples were FACS sorted, selecting live cells by using 
DAPI staining. Cells were washed and counted before entering 
the droplet-based scRNA-Seq workflow.

Flow cytometry

Cellular composition of leukapheresis samples was determined 
by flow cytometry using the following antibodies (20 min at 4° 
C): CD3 (BD), CD19 (BioLegend), and CD56 (BioLegend).

Expression of exhaustion markers was determined by flow 
cytometry using the following antibodies (20 min at 4°C): CD3 
(BD), RQR8 (Qbend10 antibody; R&D), CD8 (BioLegend), 
LAG3 (Enzo Life Sciences), PD1 (BioLegend), and TIM3 
(BioLegend).

All samples were counterstained with 7AAD (BioLegend) to 
exclude dead cells.

BD Celesta was used for cell acquisition, and data were 
analyzed using FlowJo V10 (Treestar). Representative plots 
showing the gating strategy are shown in Supplementary 
Figure 6A.

Droplet-based scRNA-sequencing

Samples were processed following manufacturer’s recommen
dations for Chromium Single Cell 3′ Library & Gel Bead Kit v2 
(10X Genomics). 17,500 cells were loaded for each sample and 
1 sample was loaded per condition. Samples were sequenced in 
Illumina HiSeq4000 sequencer machine. We obtained an aver
age of ~286 million reads per sample. Per cell, we obtained an 
average of ~46,000 reads; 6,194 median UMIs and 1,851 med
ian genes detected.

Pre-processing of scRNA-seq data

The alignment was done using Cellranger (version 2.0.0). The 
expected number of cells was set to 10,000. In total, 17,089 
cells were detected for leukapheresis samples and 40,523 cells 
for product T cells. The downstream analysis was done using 
Scanpy27 (version 1.5.0). For the leukapheresis samples, 382 
doublets were estimated and removed using Scrublet 
package28 (version 0.2.1) in Python. Due to the homogeneity 
of the product samples, this method is not adequate for the 
estimation of doublets in these samples. Further quality con
trol was performed based on 3 parameters: 1) at least 400 or 
1,000 genes detected per cell for leukapheresis or product 
samples, respectively; 2) less than 8% of UMI counts asso
ciated to mitochondrial genes; 3) more than 10,000 or 30,000 
of total UMI counts per cell for leukapheresis or product 
samples, respectively. After QC, 15,293 cells were remained 
for leukapheresis samples and 37,898 cells were remained for 
product T cells. In addition, only genes that have more than 1 
UMI count were maintained in further analysis. Cells were 
then normalized to 10,000 UMIs per cell and logarithmically 
transformed. Highly variable genes (HVGs) were selected 
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using “highly_variable_genes” method with “flavor = ‘Seurat’, 
min_mean =0.02, max_mean =3, min_disp =.5” with “batch_
key” included so that the HVGs were selected within each 
batch separately and merged. Read depth, number of genes, 
number of mitochondrial counts and cell cycle effects were 
removed using the “regress_out” function in Scanpy. The 
number of cell barcodes retained for each sample/condition 
after processing can be found in Table 1.

As part of our scRNA-Seq processing pipeline, we 
mapped sequence reads in parallel to both the human 
reference genome and a customized reference genome that 
included the sequence encompassing the 1.3 kb just 
upstream of the predicted polyadenylation site of the 
3ʹLTR of the virus used to express the CAR. This strategy 
allows the detection of CAR transcripts since the polyade
nylation site located in the 3ʹLTR of the virus is used 
independently of the insertion point.

Data integration

In order to directly compare between the leukapheresis and the 
product T cells, we used BBKNN29 (version 1.3.9) to calculate 
the batch-balanced neighbors between them with “neighbors_
within_batch” set to “7”. Leukapheresis T cells were assigned to 
the most frequent product cluster of the closest 7 product 
neighbor cells.

Visualization and clustering

UMAPs were obtained from 50 PCA components using 
Scanpy. Louvain clustering was used to obtain clusters in leu
kapheresis samples and Leiden clustering was used to obtain 
clusters in product T cells. Modularity scores were calculated 
from resolutions 0.1 to 2 and the final number of clusters were 
selected based on the trade-off of the modularity score and the 
biological complexity.

Differential expression analysis

Differential expression analysis was done using “rank_gen
es_groups” function in Scanpy with method “t-test”. The p-values 
were adjusted using Benjamini-Hochberg method. Genes were 
considered differentially expressed only if complied with all the 
following criteria: i) FDR < 0.05; ii) log2 fold change > |1|; and 3) 
base mean expression > −5 (results in Supplementary Tables 1, 2, 
4, 5 and 6) or > −7 (results in Supplementary Table 3) or > −3 
(results in Supplementary Table 8).

To characterize each cluster, mean expression in all cells 
within each cluster was calculated for each selected gene and 
scaled across the clusters using “matrixplot” function with 
parameter “standard_scale =’var’” in Scanpy.

For the comparison between leukapheresis and product 
T cells, the 200 most upregulated genes from each cluster 
comparison were obtained and the union list was extracted. 
The upregulated genes from each cluster were converted into 
binary vectors so that if a gene overlaps with the union of 
genes, then 1 was assigned, otherwise, 0. The Euclidean dis
tances between genes and clusters were calculated using “pdist” 
function from SciPy package (version 1.4.1) in Python. Then 

the hierarchical clustering was performed with ‘ward’ method 
using the “linkage” function in SciPy. The heatmap was plotted 
using “clustermap” function in Seaborn (version 0.10.0).

Prediction of exhaustion status

The list of 107 up-regulated genes that constitute the previously 
defined exhaustion signature12 (Supplementary Table 7) was 
obtained and intersected with the list of highly variable genes 
in our dataset. The exhaustion score was calculated using the 
“score_genes” function in Scanpy based on the 26 overlapping 
exhaustion genes (Supplementary Table 7). The cells with 
exhaustion score larger than 0.6 were considered as cells with 
high exhaustion potential.

Gene set enrichment analysis

The gene set enrichment analysis of upregulated genes in 
cluster 1 (relates to Figure 4d) was performed using the hyper
geometric test (“phyper” function in R). The over-represented 
genes are determined by: 

P X � xð Þ ¼ HGT x;N;m; kð Þ ¼
Xmin n;Bð Þ

i¼x

m
i

� �
N � m
k � i

� �

N
k

� �

where
- N: the total number of expressed Homo sapiens genes
- m: the number of genes in individual reference database 

terms
- k: the number of upregulated/downregulated genes
- x: the number of upregulated/downregulated genes found 

in individual reference database terms
P-values were then corrected using the Benjamini– 

Hochberg (BH) method for multiple comparisons.
All gene sets included in the Pathway Interaction Database 

(PID) were used for comparison. The PID gene sets with 
adjusted p-value lower than 0.05 were selected as being sig
nificant. The upregulated/downregulated ratio for the selected 
pathways was calculated as: 

upregulated genes\ genes in the sig PID pathway
downregulated genes \ genes in the sig PID pathway 

The calculation was performed using the in-house single-cell 
analysis pipeline smqpp30 (version 0.1.1) in Python.

Pre-ranked gene set enrichment analysis

All genes were ranked according to the scores calculated using 
the following: 

1
adjusted pvalue

� sign log2FCð Þ

where adjusted p-value and log2FC values were obtained from 
the differential expression analysis.

The resulting pre-ranked gene lists were used as reference sets 
for GSEA Pre-ranked analysis using GSEA software (version 
4.0.3) with parameters enrichment statistic =’classic’, Max 
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size =500 and Min size =15. The lists of genes sets used for the 
comparison were: GO:0042254 “Ribosome Biogenesis”; upregu
lated genes in exhausted T-cells (Supplementary Table 7), 
obtained from Crawdford et al.;15 downregulated genes upon 
CD2-co-stimulation (Supplementary Table 7), obtained from 
McKinney et al.13
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