
GigaScience, 9, 2020, 1–12

doi: 10.1093/gigascience/giaa072
Technical Note

TE CHNICAL NO TE

Sequence Compression Benchmark (SCB) database—A
comprehensive evaluation of reference-free
compressors for FASTA-formatted sequences
Kirill Kryukov 1,2,*, Mahoko Takahashi Ueda 1,3, So Nakagawa 1 and
Tadashi Imanishi 1

1Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259–1193,
Japan; 2Current address: Department of Genomics and Evolutionary Biology, National Institute of Genetics,
Mishima, Shizuoka 411-8540, Japan and 3Current address: Department of Genomic Function and Diversity,
Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510, Japan
∗Correspondence address. Kirill Kryukov, Department of Genomics and Evolutionary Biology, National Institute of Genetics, 1111 Yata, Mishima,
Shizuoka 411-8540, Japan. E-mail: kkryukov@gmail.com http://orcid.org/0000-0002-0286-0288

Abstract

Background: Nearly all molecular sequence databases currently use gzip for data compression. Ongoing rapid accumulation
of stored data calls for a more efficient compression tool. Although numerous compressors exist, both specialized and
general-purpose, choosing one of them was difficult because no comprehensive analysis of their comparative advantages
for sequence compression was available. Findings: We systematically benchmarked 430 settings of 48 compressors
(including 29 specialized sequence compressors and 19 general-purpose compressors) on representative FASTA-formatted
datasets of DNA, RNA, and protein sequences. Each compressor was evaluated on 17 performance measures, including
compression strength, as well as time and memory required for compression and decompression. We used 27 test datasets
including individual genomes of various sizes, DNA and RNA datasets, and standard protein datasets. We summarized the
results as the Sequence Compression Benchmark database (SCB database,
http://kirr.dyndns.org/sequence-compression-benchmark/), which allows custom visualizations to be built for selected
subsets of benchmark results. Conclusion: We found that modern compressors offer a large improvement in compactness
and speed compared to gzip. Our benchmark allows compressors and their settings to be compared using a variety of
performance measures, offering the opportunity to select the optimal compressor on the basis of the data type and usage
scenario specific to a particular application.

Keywords: compression; benchmark; DNA; RNA; protein; genome; sequence; database

Background

Molecular sequence databases store and distribute DNA, RNA,
and protein sequences as compressed FASTA-formatted files. Bi-
ological sequence compression was first proposed in 1986 [1],
and the first practical compressor was made in 1993 [2]. A lively
field emerged that produced a stream of methods, algorithms,

and software tools for sequence compression [3, 4]. However, de-
spite this activity, currently nearly all databases universally de-
pend on gzip for compressing FASTA-formatted sequence data.
This incredible longevity of the 27-year-old compressor proba-
bly owes to multiple factors, including conservatism of database
operators, wide availability of gzip, and its generally acceptable
performance. Through all these years the amount of stored se-

Received: 4 February 2020; Revised: 1 June 2020; Accepted: 15 June 2020

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-0286-0288
http://orcid.org/0000-0002-3960-0922
http://orcid.org/0000-0003-1760-3839
http://orcid.org/0000-0002-1182-9127
mailto:kkryukov@gmail.com
http://orcid.org/0000-0002-0286-0288
http://orcid.org/0000-0002-0286-0288
http://kirr.dyndns.org/sequence-compression-benchmark/
http://creativecommons.org/licenses/by/4.0/


2 Sequence Compression Benchmark (SCB) database

quence data kept growing steadily [5], increasing the load on
database operators, users, storage systems, and network infras-
tructure. However, someone thinking to replace gzip invariably
faces the questions, which of the numerous available compres-
sors to choose? And will the resulting gains even be worth the
trouble of switching?

Previous attempts at answering these questions are limited
by testing too few compressors and by using restricted test data
[6–11]. In addition, all of these studies provide results in the form
of tables, with no graphical outputs, which makes the interpre-
tation difficult. Existing benchmarks with useful visualization
such as Squash [12] are limited to general-purpose compressors.

The variety of available specialized and general-purpose
compressors is overwhelming. At the same time the field was
lacking a thorough investigation of the comparative merits of
these compressors for sequence data. Therefore we set out to
benchmark all available practically useful compressors on a va-
riety of relevant sequence data. Specifically, we focused on the
common task of compressing DNA, RNA, and protein sequences,
stored in FASTA format, without using reference sequence. The
benchmark results are available in the Sequence Compression
Benchmark database (SCB database [13]).

Findings
Scope, compressors, and test data

We considered the common scenario of archiving, transferring,
and working with large datasets of biological sequences. In the
present study we did not investigate compression of raw se-
quencing data in FASTQ format, which was previously thor-
oughly reviewed [11]. Instead we focused on typical FASTA-
formatted datasets, which includes individual genomes and sin-
gle gene sets. Consequently we also did not consider referential
compression, but only reference-free compression, which is typ-
ically used for such data. We evaluated stand-alone compres-
sion tools (rather than libraries), working under Linux OS on a
modern workstation PC. In this study we only consider lossless
compression.

We tested all DNA sequence compressors that are available
and functional in 2020: dnaX [14], XM [15], DELIMINATE [16],
Pufferfish [17], DNA-COMPACT [18], MFCompress [19], UHT [20],
GeCo [21], GeCo2 [22], JARVIS [23], NAF [24], and NUHT [25]. We
also included the relatively compact among homology search
database formats: BLAST [26] and 2bit—a database format of
BLAT [27].

Because compressors designed for FASTQ data can be triv-
ially adopted for FASTA-formatted inputs, we also included
a comprehensive array of compressors designed primarily or
specifically for FASTQ data: BEETL [28], Quip [29], fastqz [10], fqz-
comp [10], DSRC 2 [30], Leon [31], LFQC [32], KIC [33], ALAPY [34],
GTX.Zip [35], HARC [36], LFastqC [37], SPRING [38], Minicom [39],
and FQSqueezer [40]. We also included AC—a compressor de-
signed exclusively for protein sequences [41]. We also tested a
comprehensive array of general-purpose compressors: bcm [42],
brieflz [43], brotli [44], bsc [45], bzip2 [46], cmix [47], gzip [48],
lizard [49], lz4 [50], lzop [51], lzturbo [52], nakamichi [53], pbzip2
[54], pigz [55], snzip [56], xz [57], zpaq [58], zpipe [58], and zstd
[59]. See Table 1 for the list of compressors we used.

For the test data, we selected a variety of commonly used
sequence datasets in FASTA format: (i) individual genomes of
various sizes, as examples of non-repetitive data [60, 61]; (ii)
DNA and RNA datasets, such as collections of mitochondrial
genomes, influenza virus sequences [60–63], 16S ribosomal RNA

gene sequences [64], and genomic multiple DNA sequence align-
ments [65]; and (iii) standard protein datasets [62, 66–68]. Indi-
vidual genomes are less repetitive, while other datasets are more
repetitive. In total we used 27 test datasets. See Table 2 for the
list of test data. All test data are available at the GigaDB reposi-
tory [69].

Benchmark

We benchmarked each compressor on every test dataset, ex-
cept in cases of incompatibility (e.g., DNA compressors cannot
compress protein data) or excessive time requirement (some
compressors are so slow that they would take weeks on larger
datasets). For compressors with adjustable compression level,
we tested the relevant range of levels. We tested both 1- and 4-
thread variants of compressors that support multi-threading. In
total, we used 430 settings of 48 compressors. We also included
the non-compressing ”cat” command as control. For compres-
sors using non-trivial wrappers, we also benchmarked the wrap-
pers.

Currently many sequence analysis tools accept gzip-
compressed files as input. Switching to another compressor
may require either adding support of new format to those
tools, or passing the data in uncompressed form. The latter
solution can be achieved with the help of Unix pipes, if both
the compressor and the analysis tool support streaming mode.
Therefore, we benchmarked all compressors in streaming
mode (streaming uncompressed data in both compression and
decompression).

For each combination of compressor setting and test dataset
we recorded compressed size, compression time, decompres-
sion time, peak compression memory, and peak decompres-
sion memory. The details of the method and raw benchmark
data are available in the Methods section and Supplementary
Data, respectively. We share benchmark results at the online SCB
database [13]. All benchmark code is available [70].

The choice of measure for evaluating compressor perfor-
mance depends on a prospective application. For long-term data
storage, compactness may be the single most important crite-
rion. For a public sequence database, the key measure is how
much time it takes from initiating the download of compressed
files until the decompressed data are accessed. This time con-
sists of transfer time plus decompression time (TD-Time). Cor-
responding transfer-decompression speed (TD-Speed) is com-
puted as Original Size/TD-Time. In this use case, compression
time is relatively unimportant because compression happens
only once, while transfer and decompression times affect ev-
ery user of the database. For a 1-time data transfer, all 3 steps
of compression, transfer, and decompression are timed (CTD-
Time) and used for computing the resulting overall speed (CTD-
Speed).

A total of 17 measures, including the aforementioned ones,
are available in our results data (see Methods for the list of mea-
sures). Any of these measures can be used for selecting the best
setting of each compressor and for sorting the list of compres-
sors. These measures can then be shown in a table and visual-
ized in the form of column charts and scatterplots. This allows
the output to be tailored to answer specific questions, such as
what compressor is better at compressing a particular kind of
data or which setting of each compressor performs best at a par-
ticular task. The link speed that is used for estimating transfer
times is configurable. The default speed of 100 Mbit/sec corre-
sponds to the common speed of a fixed broadband internet con-
nection.



Kryukov et al. 3

Table 1: Compressor versions

A) Specialized sequence compressors
Compressor Version

2bit ”faToTwoBit” and ”twoBitToFa” binaries dated 7 November 2018
ac AC 1.1, 29 January 2020
alapy ALAPY 1.3.0, 25 July 2017
beetl BEETL, commit 327cc65, 14 November 2019
blast ”convert2blastmask”, ”makeblastdb”, and ”blastdbcmd” binaries from BLAST 2.8.1+, 26

November 2018
dcom DNA-COMPACT, latest public source 29 August 2013
dlim DELIMINATE, version 1.3c, 2012
dnaX dnaX 0.1.0, 3 August 2014
dsrc DSRC 2.02, commit 5eda82c, 4 June 2015
fastqz fastqz 1.5, commit 39b2bbc, 15 March 2012
fqs FQSqueezer 0.1, commit 5741fc5, 17 May 2019
fqzcomp fqzcomp 4.6, commit 96f2f61, 2 December 2019
geco GeCo: v.2.1, 24 December 2016

GeCo2: v.1.1, 2 February 2019
gtz GTX.Zip PROFESSIONAL-2.1.3-V-2020-03-18 07:11:20, binary
harc HARC, commit cf35caf, 4 October 2019
jarvis JARVIS v.1.1, commit d7daef5, 30 April 2019
kic KIC binary, 0.2, 25 November 2015
leon Leon, 1.0.0, 27 February 2016, Linux binary
lfastqc LFastqC, commit 60e5fda, 28 February 2019, with fixes
lfqc LFQC, commit 59f56e0, 6 January 2016
mfc MFCompress,s1.01, 3 September 2013, 64-bit Linux binary
minicom Minicom, commit 2360dd9, 9 September 2019
naf NAF, 1.1.0, 1 October 2019
nuht NUHT, commit 08a42a8, 26 September 2018, Linux binary
pfish Pufferfish, v.1.0 alpha, 11 April 2012
quip Quip, commit 9165bb5, 1.1.8-8-g9165bb5, 17 December 2017
spring SPRING, commit 6536b1b, 28 November 2019
uht UHT, binary from 27 December 2016
xm XM (eXpert-Model), 3.0, commit 9b9ea57, 7 January 2019
B) General-purpose compressors
bcm 1.30, 21 January 2018
brieflz 1.3.0, 15 February 2020
brotli 1.0.7, 23 October 2018
bsc 3.1.0, 1 January 2016
bzip2 1.0.6, 6 September 2010
cmix 17, 24 March 2019
gzip 1.6, 9 June 2013
lizard 1.0.0, 8 March 2019
lz4 1.9.1, 24 April 2019
lzop 1.04, 10 August 2017
lzturbo 1.2, 11 August 2014
nakamichi 9 May 2020
pbzip2 1.1.13, 18 December 2015
pigz 2.4, 26 December 2017
snzip 1.0.4, 2 October 2016
xz 5.2.2, 29 September 2015
zpaq 7.15, 17 August 2016
zpipe 2.01, 23 December 2010
zstd 1.4.5, 22 May 2020

Fig. 1 compares the performance of the best settings of
36 compressors on the human genome. It shows that special-
ized sequence compressors achieve excellent compression ratio
on this genome. However, when total TD-Speed or CTD-Speed
is considered (measures that are important in practical appli-
cations), most sequence compressors fall behind the general-
purpose ones. The best compressors for this dataset in terms of
compression ratio, TD-Speed, and CTD-Speed are ”fastqz-slow,”
”naf-22,” and ”naf-1,” respectively (numbers in each compressor

name indicate compression level and other settings). Interest-
ingly, the non-compressing ”cat” command used as a control,
while naturally showing at the last place on compression ratio
(Fig. 1A), is not the slowest in terms of TD-Speed and CTD-Speed
(Fig. 1B and C, respectively). In the case of CTD-Speed, for exam-
ple, it means that some compressors are so slow that their com-
pression + transfer + decompression time turns out to be longer
than the time required for transferring raw uncompressed data
(using a particular link speed, in this case 100 Mbit/sec).



4 Sequence Compression Benchmark (SCB) database

Table 2: Test datasets

A) Genome sequence datasets
Category Organism Accession Size

Virus Gordonia phage GAL1 [61] GCF 001884535.1 50.7 kB
Bacteria WS1 bacterium JGI

0000059-K21 [60]
GCA 000398605.1 522 kB

Protist Astrammina rara [60] GCA 000211355.2 1.71 MB
Fungus Nosema ceranae [60] GCA 000988165.1 5.81 MB
Protist Cryptosporidium parvum

Iowa II [60]
GCA 000165345.1 9.22 MB

Protist Spironucleus salmonicida [60] GCA 000497125.1 13.1 MB
Protist Tieghemostelium lacteum [60] GCA 001606155.1 23.7 MB
Fungus Fusarium graminearum PH-1

[61]
GCF 000240135.3 36.9 MB

Protist Salpingoeca rosetta [60] GCA 000188695.1 56.2 MB
Algae Chondrus crispus [60] GCA 000350225.2 106 MB
Algae Kappaphycus alvarezii [60] GCA 002205965.2 341 MB
Animal Strongylocentrotus

purpuratus [61]
GCF 000002235.4 1.01 GB

Plant Picea abies [60] GCA 900067695.1 13.4 GB
B) Other DNA datasets
Dataset No. of sequences Size Source Date
Mitochondrion [61] 9,402 245 MB RefSeq ftp: ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mito

chondrion/mitochondrion.1.1.genomic.fna.gz
15 March

2019
ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/

mitochondrion.2.1.genomic.fna.gz
NCBI Virus
Complete
Nucleotide Human
[62]

36,745 482 MB NCBI Virus: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 11 May
2020

Influenza [63] 700,001 1.22 GB Influenza Virus Database: ftp:
//ftp.ncbi.nih.gov/genomes/INFLUENZA/influenza.fna.gz

27 April
2019

Helicobacter [60] 108,292 2.76 GB NCBI Assembly: https://www.ncbi.nlm.nih.gov/assembly 24 April
2019

C) RNA datasets
SILVA 132 LSURef
[64]

198,843 610 MB Silva database: https://ftp.arb-silva.de/release 132/Expor
ts/SILVA 132 LSURef tax silva.fasta.gz

11
December

2017
SILVA 132 SSURef
Nr99 [64]

695,171 1.11 GB Silva database: https://ftp.arb-silva.de/release 132/Expor
ts/SILVA 132 SSURef Nr99 tax silva.fasta.gz

11
Devember

2017
SILVA 132 SSURef
[64]

2,090,668 3.28 GB Silva database: https://ftp.arb-silva.de/release 132/Expor
ts/SILVA 132 SSURef tax silva.fasta.gz

11
December

2017
D) Multiple DNA sequence alignments
UCSC hg38 7way
knownCanonical-
exonNuc
[65]

1,470,154 340 MB UCSC: https://hgdownload.soe.ucsc.edu/goldenPath/hg38/
multiz7way/alignments/knownCanonical.exonNuc.fa.gz

6 June 2014

UCSC hg38 20way
knownCanonical-
exonNuc
[65]

4,211,940 969 MB UCSC: https://hgdownload.soe.ucsc.edu/goldenPath/hg38/
multiz20way/alignments/knownCanonical.exonNuc.fa.gz

30 June
2015

E) Protein datasets
PDB [66] 109,914 67.6 MB PDB database FTP:

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz
9 April
2019

Homo sapiens
GRCh38 [67]

105,961 73.2 MB NCBI ftp: ftp://ftp.ensembl.org/pub/release-96/fasta/hom
o sapiens/pep/Homo sapiens.GRCh38.pep.all.fa.gz

12 March
2019

NCBI Virus RefSeq
Protein [62]

373,332 122 MB NCBI Virus: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/ 10 May
2020

UniProtKB Reviewed
(Swiss-Prot) [68]

560,118 277 MB UniProt ftp:
ftp://ftp.uniprot.org/pub/databases/uniprot/current relea

se/knowledgebase/complete/uniprot sprot.fasta.gz

2 April
2019

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/mitochondrion.1.1.genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/mitochondrion.2.1.genomic.fna.gz
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
ftp://ftp.ncbi.nih.gov/genomes/INFLUENZA/influenza.fna.gz
https://www.ncbi.nlm.nih.gov/assembly
https://ftp.arb-silva.de/release_132/Exports/SILVA_132_LSURef_tax_silva.fasta.gz
https://ftp.arb-silva.de/release_132/Exports/SILVA_132_SSURef_Nr99_tax_silva.fasta.gz
https://ftp.arb-silva.de/release_132/Exports/SILVA_132_SSURef_tax_silva.fasta.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz7way/alignments/knownCanonical.exonNuc.fa.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz20way/alignments/knownCanonical.exonNuc.fa.gz
ftp://ftp.ncbi.nih.gov/blast/db/FASTA/pdbaa.gz
ftp://ftp.ensembl.org/pub/release-96/fasta/homo_sapiens/pep/Homo_sapiens.GRCh38.pep.all.fa.gz
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.fasta.gz


Kryukov et al. 5

fas
tqz
-slo
w
ala
py-
b
mfc
-3
lfqc
-4t dlim

spr
ing
-s-1
t
gtz
-9-4

t
har
c-1
t
naf
-22

zpa
q-5
-4t

fqz
com

p-7

bcm
-b2
047 qui

p

bsc
-b1
024
cfe
2

lztu
rbo
-49
-1t
zpip

e-3

bee
tl-b
500
-z…

bro
tli-1
1w3

0

kic-
2-8
-4t xz-

e9

dsr
c-m
2-4
t

zstd
-22
-4t
leo
n-3
1
pfis
h
nuh
t
bzip

2-9

pbz
ip2
-9-4

t

liza
rd-4

9

pig
z-11

-4t

brie
flz-
9-3
60… 2bi

t
gzip

-9 bla
st
lzop

-9 lz4-
9
snz
ip
cop
y-c
at

0

1

2

3

4

5

6

naf
-22

lztu
rbo
-49
-1t

zstd
-19
-4t

liza
rd-4

9

bro
tli-1
1w3

0

pbz
ip2
-7-4

t

pig
z-11

-1t

bsc
-b1
6cf
e1

zpa
q-2
-1t
gtz
-1-4

t

brie
flz-
9-3
60… 2bi

t

dsr
c-m
1-4
t
gzip

-9
xz-
e7 lz4-

9
lzop

-9

fas
tqz
-fas
t

spr
ing
-s-4
t
leo
n-3
0
bla
st
snz
ip
pfis
h

fqz
com

p-1
bzip

2-1
har
c-4
t
kic-
0-4
t
dlim qui

p
cop
y-c
at
mfc
-1
ala
py-
f

bcm
-b1
6
zpip

e-1

bee
tl-b
50-
zst… nuh

t
lfqc
-4t

0

10

20

30

40

50

60

naf
-1

zstd
-1-4

t

lztu
rbo
-30
-4t
bro
tli-0

pig
z-4
-4t
gtz
-1-4

t

dsr
c-m
1-4
t

liza
rd-4

0 2bi
t

zpa
q-1
-4t
brie
flz-
1

pbz
ip2
-2-4

t
lzop

-1 lz4-
2
gzip

-2

fas
tqz
-fas
t
snz
ip
leo
n-1
2
pfis
h

fqz
com

p-1 bla
st

cop
y-c
at xz-

0
bzip

2-1 qui
p

bsc
-b1
6cf
e1 dlimala

py-
f
mfc
-1

spr
ing
-l-4
t
har
c-4
t

bcm
-b1
6

bee
tl-b
50-
zst1
zpip

e-1
kic-
0-4
t
nuh
t
lfqc
-4t

0

10

20

30

40

50

Figure 1: Comparison of 36 compressors on human genome. The best settings of each compressor are selected on the basis of different aspects of performance: (A)
compression ratio, (B) transfer + decompression speed, and (C) compression + transfer + decompression speed. The copy-compressor (”cat” command), shown in red,
is included as a control. The selected settings of each compressor are shown in their names, after hyphen. Multi-threaded compressors have ”-1t” or ”-4t” at the end

of their names to indicate the number of threads used. Test data are the 3.31 GB reference human genome (accession number GCA 000001405.28). Benchmark CPU:
Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/sec was used for estimating the transfer time.

Fig. 2 compares all compressor settings on the same data (hu-
man genome). Fig. 2A shows that the strongest compressors of-
ten provide a very low decompression speed (shown using log-
arithmic scale owing to the enormous range of values), which
means that quick data transfer (resulting from strong compres-
sion) offered by those compressors is offset by significant wait-
ing time required for decompressing the data. Fig. 2B shows TD-
Speed plotted against CTD-Speed. Similar figures can be con-
structed for other data and performance measures on the SCB
database website.

Visualizing results from multiple test datasets simultane-
ously is possible, with or without aggregation of data. With ag-
gregation, the numbers will be summed or averaged, and a single
measurement will be shown for each setting of each compres-
sor. Without aggregation, the results of each compressor setting
will be shown separately on each dataset. Because the resulting
number of data points can be huge, in such case it is useful to
request only the best setting of each compressor to be shown.
The criteria for choosing the best setting are selectable among
the 17 measurements. In case of a column chart, any of the
17 measures can be used for ordering the compressors shown,
independently of the measure used for selecting the best ver-

sion and independently of the measure actually shown in the
chart.

One useful capability of the SCB database is showing mea-
surements relative to the specified compressor (and setting).
This allows a reference compressor to be selected and the other
compressors to be compared with this reference. For example,
we can compare compressors to gzip as shown in Fig. 3. In this
example, we compare only the best settings of each compres-
sor, selected using specific measures (transfer + decompression
speed and compression + transfer + decompression speed in
Fig. 3A and B, respectively). We also used a fixed scale to show
only the range >0.5 on both axes, which means that only per-
formances that are at least half as good as gzip on both axes are
shown. In this example, we can see that some compressors im-
prove compactness and some improve speed compared to gzip,
but few compressors improve both at the same time, such as
lizard, naf, pigz, pbzip, and zstd.

It is important to be aware of the memory requirements
when choosing a compressor (Fig. 4). In these charts we plot-
ted data size on the x-axis, and disabled aggregation. This lets
us see how much memory a particular compressor used on
each test dataset. As this example shows, memory requirement



6 Sequence Compression Benchmark (SCB) database

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

Figure 2: Comparison of 334 settings of 36 compressors on human genome. Each point represents a particular setting of some compressor. A, The relationship between

compression ratio and decompression speed. B, The transfer + decompression speed plotted against compression + transfer + decompression speed. Test data are
the 3.31 GB reference human genome (accession number GCA 000001405.28). Benchmark CPU: Intel Xeon E5-2643v3 (3.4 GHz). Link speed of 100 Mbit/sec was used for
estimating the transfer time.

A B

0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

2

3

4

5

6

7

8

9

0.6 0.8 1.0 1.2 1.4

1

2

3

4

5

6

7

8

9

10 2bit
blast
brieflz-1
brotli-0
dsrc-m0-4t
fastqz-fast
gtz-1-4t
gzip-2
lizard-40
lz4-1
lzop-1
lzturbo-30-4t
naf-1
pbzip2-2-4t
pigz-4-4t
snzip
zpaq-1-4t
zstd-1-4t

Figure 3: Comparison of compressor settings to gzip. Genome datasets were used as test data. Each point shows the performance of a compressor setting on a specific

genome test dataset. All values are shown relative to representative setting of gzip. Only performances that are at least half as good as gzip on both axes are shown.
A, Settings that performed best in Transfer + Decompression speed. B, Settings that performed best in Compression + Transfer + Decompression speed. Link speed
of 100 Mbit/sec was used for estimating the transfer time.

reaches a saturation point for most compressors. On the other
hand, some compressors have unbounded growth of consumed
memory, which makes them unusable for large data. Interest-
ingly, gzip apparently has the smallest memory footprint, which
may be one of the reasons for its popularity. Most compres-
sors can function on typical desktop hardware, but some require
larger memory, which is important to consider when choosing
a compressor that will be run by the consumers of distributed
data.

A wide variety of charts can be produced on the benchmark
website by selecting specific combinations of test data, compres-
sors, and performance measures. At any point the currently vi-
sualized data can be obtained in textual form using Table output
option. Also, all charts can be downloaded in SVG format.

Conclusions

Our benchmark reveals a complex relationship between com-
pressors and between their settings, based on various measures.
We found that continued use of gzip is usually far from an op-
timal choice. Transitioning from gzip to a better compressor
brings significant gains for genome and protein data and is espe-
cially beneficial with repetitive DNA/RNA datasets. The optimal
choice of compressor depends on many factors, including prop-
erties of the data to be compressed (such as sequence type, data
size, and amount of redundancy), relative importance of com-
pression strength, compression speed and decompression speed
for particular use scenario, as well as amount of memory avail-
able on data machines used for compression and decompres-



Kryukov et al. 7

A B

0.1 1 10 100 1,000 10,000
0.1

0.5

1

5

10

50

100

500

1,000

5,000

10,000

50,000

100,000

0.1 1 10 100 1,000 10,000
0.05

0.1

0.5

1

5

10

50

100

500

1,000

5,000

10,000

50,000

100,000 2bit
ac-seq-7
alapy-b
bcm-b2047
beetl-b500-zst22
blast
brieflz-9-3600m
brotli-11w30
bsc-b1024cfe2
bzip2-9
cmix
copy-cat
dcom-22
dlim
dnax-3
dsrc-m2-4t
fastqz-slow
fqs-1t
fqzcomp-8
geco2-14
gtz-9-4t
gzip-9
harc-1t
jarvis-4

kic-2-8-4t

leon-28
lfastqc
lfqc-4t
lizard-49
lz4-9
lzop-9
lzturbo-49-1t
mfc-3
minicom-4t
naf-22
nakamichi
nuht
pbzip2-9-4t
pfish
pigz-11-4t
quip
snzip
spring-s-1t
uht
xm-12-0.15
xz-e9
zpaq-5-4t
zpipe-3
zstd-22-4t

Figure 4: Compressor memory consumption. The strongest setting of each compressor is shown. On the x-axis is the test data size. On the y-axis is the peak memory
used by the compressor, for compression (A) and decompression (B).

sion. Our benchmark allows compressors to be compared on in-
dividual performance metrics, as well as on their combinations.

The Sequence Compression Benchmark (SCB) database will
help in navigating the complex landscape of sequence data
compression. With dozens of compressors available, making
an informed choice is not an easy task and requires careful
analysis of the project requirements, data type, and compressor
capabilities. Our benchmark is the first resource providing
a detailed practical evaluation of various compressors on a
wide range of molecular sequence datasets. Using the SCB
database, users can analyze compressor performances on a
variety of metrics and construct custom reports for answering
project-specific questions.

In contrast to previous studies that showed their results in
static tables, our project is dynamic in 2 important senses: (i)
the result tables and charts can be dynamically constructed for
a custom selection of test data, compressors, and measured per-
formance numbers; and (ii) our study is not a one-off benchmark
but marks the start of a project where we will continue to add
compressors and test data.

Making an informed choice of a compressor with the help of
our benchmark will lead to increased compactness of sequence
databases, with shorter time required for downloading and de-
compressing. This will reduce the load on network and storage
infrastructure and increase the speed and efficiency of biological
and medical research.

Methods
Benchmarked task

The task is to compress and decompress a FASTA-formatted file
containing DNA, RNA, or protein sequences. The process has to
be lossless, i.e., decompressed data must be byte-to-byte iden-
tical to the original data. Compression and decompression are
done without using any reference genome. Each compression
and decompression task is executed under the Linux OS, via a
command line interface. Input data for compression and output
data during decompression are streamed using Unix pipes.

Only well-formed FASTA files are used in the benchmark:
They must contain no empty lines, and all long sequence lines
have to be wrapped at the same position. Both upper- and lower-

case (soft-masked) letters can be present, as well as common
ambiguity codes. In multiple sequence alignments, additionally,
dashes (”-”) are used for indicating gaps. Each test dataset is
compressed separately from other datasets.

Compressor selection

We used all specialized sequence compressors that we could
find and make to work for the above-specified task. For general-
purpose compressors we used only the major ones, in terms of
performance, historical importance, or popularity. For each com-
pressor with configurable compression level (or other parame-
ters related to compression strength of speed), we used the rel-
evant range of settings, including the default.

Benchmark machine

� CPU: dual Xeon E5-2643v3 (3.4 GHz, 6 cores), hyperthreading:
off

� RAM: 128 GB DDR4-2133 ECC Registered
� Storage: 4 × 2 TB SSD, in RAID 0, XFS filesystem, block size:

4,096 bytes (blockdev –getbsz)
� OS: Ubuntu 18.04.1 LTS, kernel: 4.15.0
� GCC: 7.4.0

Compressor/dataset combinations that were tested

Each setting of each compressor was tested on every test
dataset, except when it was difficult or impossible owing to com-
pressor limitations:

� AC is a protein-specific compressor and was tested only on
protein datasets.

� Owing to their extreme slowness, these compressors were
not tested on any data >10 MB: cmix, DNA-COMPACT, GeCo,
JARVIS, Leon, and XM.

� UHT failed on the 245 MB dataset and on larger data.
� Nakamichi was only used on data <200 MB owing to its slow-

ness and memory requirements.
� Among sequence compressors, only DELIMINATE, MFCom-

press, and NAF support multiple sequence alignments.



8 Sequence Compression Benchmark (SCB) database

� Among sequence compressors, only AC, BLAST, and NAF sup-
port protein sequences.

� Some settings of XM crashed and/or produced wrong decom-
pressed output on some data—such results are not included.

� NUHT’s memory requirement made it impossible to use on
the 13.4 GB Picea abies genome.

� LFastqC failed on 2.7 GB dataset and larger data.

Benchmark process

The entire benchmark is orchestrated by a perl script. This script
loads the lists of compressor settings and test data, and pro-
ceeds to test each combination that still has its measurements
missing in the output directory. For each such combination (of
compressor setting and test dataset), the following steps are
performed:

1. Compression is performed by piping the test data into the
compressor. Compressed size and compression time are
recorded. For compressed formats consisting of multiple
files, sizes of all files are summed together.

2. If compression time did not exceed 10 seconds, 9 more com-
pression runs are performed, recording compression times.
Compressed data from previous run are deleted before each
subsequent compression run.

3. The next set of compression runs is performed to measure
peak memory consumption. This set consists of the same
number of runs as in steps 1 and 2 (either 1 or 10 runs). That
is, for fast compressors and for small data the measurement
is repeated 10 times.

4. Decompression test run is performed. In this run decom-
pressed data are piped to the ”md5sum -b -” command. The
resulting md5 signature is compared with that of the origi-
nal file. In case of any mismatch this combination of com-
pressor setting and dataset is disqualified and its measure-
ments are discarded.

5. Decompression time is measured. These time-
decompressed data are piped to/dev/null.

6. If decompression completed within 10 seconds, 9 more de-
compression runs are performed and timed.

7. Peak decompression memory is measured. The number of
runs is the same as in steps 5 and 6.

8. The measurements are stored to a file. All compressed and
temporary files are removed.

Measurement methods

Measuring time: wall clock time was measured using Perl’s
Time::HiRes module (gettimeofday and tv interval subroutines).
The resulting time was recorded with millisecond precision.

Measuring peak memory consumption: first, each compres-
sion command was stored in a temporary shell script file.
Then it was executed via GNU Time, as/usr/bin/time -v cmd.sh
>output.txt. ”Maximum resident set size” value was extracted
from the output. Then 1,638 was subtracted from this value and
the result was stored as peak memory measurement (1,638 is the
average ”Maximum resident set size” measured by GNU Time in
the same way for an empty shell script).

Memory consumption and time were measured separately
because measuring memory makes the task slower, especially
for very fast tasks.

Collected measurements

For each combination of compressor and dataset that was
tested, the following measurements were collected:

� Compressed size (in bytes)
� Compression time (in milliseconds)
� Decompression time (in milliseconds)
� Peak compression memory (in GNU Time’s ”Kbytes”)
� Peak decompression memory (in GNU Time’s ”Kbytes”)

In cases where 10 values are collected, the average value is
used by the benchmark website.

Computed values

The following values were calculated on the basis of the mea-
sured values:

� Compressed size relative to original (%) = Compressed
size/uncompressed size ∗ 100

� Compression ratio (times) = Uncompressed size/compressed
size

� Compression speed (MB/s) = Uncompressed size in
MB/compression time

� Decompression speed (MB/s) = Uncompressed size in
MB/decompression time

� Compression + decompression time (s) = compression time
+ decompression time

� Compression + decompression speed (MB/s) = Uncom-
pressed size in MB/(compression time + decompression
time)

� Transfer time (s) = Uncompressed size/Link speed in B/s
� Transfer speed (MB/s) = Uncompressed size in MB/transfer

time
� Transfer + decompression time (s) = Transfer time + decom-

pression time
� Transfer + decompression speed (MB/s) = Uncompressed

size in MB/(transfer time + decompression time)
� Compression + transfer + decompression time (s) = Com-

pression time + transfer time + decompression time
� Compression + transfer + decompression speed (MB/s) = Un-

compressed size in MB/(compression time + transfer time +
decompression time)

Rationale for non-constant number of runs

Variable number of runs is the only way to have both accurate
measurements and large test data (under the constraints of us-
ing 1 test machine and running benchmark within reasonable
time).

On one hand, benchmark takes a lot of time—so much that
some compressors cannot be even tested at all on datasets
>10 MB in reasonable time. Therefore repeating every measure-
ment 10 times is impractical—or it would imply restricting the
test data to only small datasets.

On the other hand, measurements are slightly noisy. The
shorter the measured time, the more noisy its measurement.
Thus for very quick runs, multiple runs allow for substantial
noise suppression. For longer runs it does not make much dif-
ference because the relative error is already small with longer
times. Using a threshold of 10 seconds seems to be a reasonable
compromise between suppressing noise and including larger
test data (and slow compressors).



Kryukov et al. 9

Streaming mode

For compression, each compressor was reading the input data
streamed via unix pipe (”|” in the command line). For decom-
pression, each compressor was set up to stream decompressed
data via pipe. This was done to better approximate a com-
mon pattern of using compressors in a practical data analy-
sis scenario. In an actual sequence analysis workflow, often de-
compressed data are piped directly into a downstream analy-
sis command. Also, when compressing the sequences, often the
data are first pre-processed with another command, which then
pipes processed sequences to a compressor.

Some compressors do not implement the streaming mode,
and only work with actual files. Because we have to benchmark
all compressors on the same task, we added streaming mode to
such compressors via wrapper scripts. For compression, a wrap-
per reads input data from ”stdin” and writes it into a tempo-
rary file, then executes a compressor on that file, and finally
deletes the file. For decompression the reverse process occurs:
The wrapper script executes a decompressor, which writes the
decompressed data into a temporary file; then the wrapper reads
this file and streams it to ”stdout” before deleting the file.

The entire process is timed for the benchmark. Normally
such wrapping has minimal impact on the overall compres-
sion/decompression speed because we use fast SSD storage and
because the actual compression and decompression take com-
paratively much longer time than simply streaming the data
to/from a file.

FASTA format compatibility

Many specialized compressors do not support the full-featured
modern FASTA format, such as the one used in genome
databases. Specifically, modern FASTA files often store masked
sequence (use a mix of upper- and lower-case letters) and in-
clude ambiguity codes. The degree of completeness of FASTA
support varies wildly among compressors. At one end of the
spectrum, there are compressors with comprehensive sup-
port for all FASTA format features. At another end, there are
compressors that only work with a string of capital ACGT
and nothing else, not even sequence names or newlines.
Most sequence compressors fall somewhere between these 2
extremes.

Essentially this means that each sequence compressor per-
forms its own task, different from that of the others. If a com-
pressor does not need to care about upper vs lower-case let-
ters, or about storing sequence names, it can possibly work
faster. Thus comparing compressors each doing their own thing
would not be fair or very useful to the user. Because full-
featured FASTA is in fact commonly used in today’s databases,
we decided to require complete lossless support of full-featured
FASTA files from all benchmarked compressors. In practice this
means that we had to create a custom wrapper for each in-
complete compressor, implementing the missing compatibility
features.

A typical wrapper takes the original FASTA-formatted input
and transforms it into a format acceptable by the compressor be-
ing wrapped. For instance, if a compressor only expects upper-
case nucleotide codes, then the positions of upper- and lower-
case characters are extracted and saved in a separate file. The
original file is converted to all upper case, which is then fed to
the compressor. The separate ”mask” file (storing positions of
lower-case letters) is compressed with a general-purpose com-
pressor. The entire set of files produced in such a way counts

for the compressed data size measured for this particular com-
pressor and dataset, so that the overall compression strength
is comparable to that achieved by other compressors (with or
without their respective wrappers). Also the total time is mea-
sured, including the time taken by all transformations and by
storing/compressing the additional files.

We developed several tools for quickly processing FASTA files
to extract or add various channels of information for the pur-
pose of wrapping the incomplete compressors. We used C and
optimized for speed, so that these steps have maximum speed
and minimap impact on the overall compression. The wrapper
scripts themselves are written in Perl. We used the fast mode
of zstd (”-1”) to compress the additional files, chosen because of
its high speed so that it has minimal impact on measuring the
speed of the wrapped compressor. As for compactness, the im-
pact is minimal as well because the additional files are typically
very small and compress well.

For all such wrapped compressors, we benchmarked not only
the complete wrapped compressor but also the ”wrapper-only”
mode, in which only the wrapper script is executed but not
the compressor itself. Such results are included in the bench-
mark under the ”wrap-NAME” names. This means that it is pos-
sible to compare the speed of the entire wrapped compressor
with its corresponding ”wrapper-only” run, for each dataset.
This allows us to see how much time is used by the wrapper
and therefore how much effect the wrapper has on the overall
results.

Some of the features implemented via wrappers:

� Supporting RNA sequences for DNA-only compressors
� Supporting ”N” in DNA/RNA sequences
� Supporting IUPAC’s ambiguous nucleotide codes
� Saving and restoring line lengths
� Saving and restoring sequence names
� Saving and restoring sequence mask (upper/lower case)
� Supporting FASTA-formatted input
� Supporting input with >1 sequence

FASTQ compressors

Several FASTQ compressors are included in the benchmark. All
of them are tested using wrappers that convert FASTA sequences
into their respective accepted formats. Some need only the ad-
dition of the artificial quality (constant ”A” in most cases). Oth-
ers expect only short reads or reads of identical lengths. These
transformations are done in custom wrappers that we made
for each FASTQ compressor. Because compression and decom-
pression time recorded for benchmark is the total time of all
steps, including wrapper processing, it means that in many
cases the wrapped tool may work faster when used directly on
FASTQ data. Also many FASTQ compressors are designed un-
der additional assumptions typical for FASTQ data, e.g., that all
reads are sampled from an underlying genome with substantial
coverage (which allows meaningful assembly). These assump-
tions often do not hold on our FASTA-formatted benchmark
datasets. Therefore the results of FASTQ compressors shown
in our benchmark should not be taken as indicative of the ac-
tual performance of those compressors on FASTQ data for which
they were designed.

Benchmark code availability

All scripts used for conducting the benchmark are avail-
able at the GitHub repository [70]. The main benchmark



10 Sequence Compression Benchmark (SCB) database

scripts and configuration files are in the ”benchmark” direc-
tory. All wrappers are in the ”wrappers” directory. Additional
tools used by the wrappers are in ”seq-tools-c” and ”seq-
tools-perl” directories. Compression and decompression com-
mands are listed in files ”benchmark/compressors-∗.txt” and
”benchmark/decompressors.txt.” Benchmark data are merged
using the ”benchmark/2-collect-results.pl” script. The result-
ing merged data are visualized using a server-side script in
the ”website” directory. The scripts are provided for reference
only.

Update plan

We plan to continue maintaining Sequence Compression Bench-
mark. This mainly involves benchmarking new or updated com-
pressors when such compressors become available. Because it
is impractical to benchmark every existing compressor, we will
continue to only benchmark compressors selected on the basis
of their performance, quality, and usefulness for sequence com-
pression.

Availability of Supporting Data and Materials

All benchmark data are available at the online SCB database: ht
tp://kirr.dyndns.org/sequence-compression-benchmark/.
An archival copy of benchmark data is also available via the Gi-
gaScience database GigaDB [69].

Availability of Supporting Source Code and
Requirements

All code used for conducting the benchmark is available at the
SCB GitHub repository [70].
Project name: Sequence Compression Benchmark
Project home page: https://github.com/KirillKryukov/scb
Operating system(s): Linux
Programming language: Perl
Other requirements: None
License: Public Domain

Additional Files

Supplementary Data contains the raw results of benchmark
measurements.

Abbreviations

BLAST: Basic Local Alignment Search Tool; CPU: central pro-
cessing unit; CTD-Speed: compression-transfer-decompression
speed; CTD-Time: compression-transfer-decompression time;
GB: gigabyte; GCC: GNU Compiler Collection; IUPAC: Interna-
tional Union of Pure and Applied Chemistry; MB: megabyte; NAF:
Nucleotide Archival Format; NCBI: National Center for Biotech-
nology Information; PC: personal computer; OS: operating sys-
tem; RAM: random access memory; SCB: Sequence Compression
Benchmark; SSD: solid-state drive; SVG: Scalable Vector Graph-
ics; TB: terabyte; TD-Speed: transfer-decompression speed; TD-
Time: transfer-decompression time; UCSC: University of Califor-
nia Santa Cruz; UHT: unbalanced Huffman tree.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was supported by the 2019 Tokai University School of
Medicine Research Aid (to K.K.), JSPS KAKENHI Grants-in-Aid for
Scientific Research (C) (20K06612 to K.K.) and Scientific Research
on Innovative Areas (16H06429, 16K21723, 19H04843 to S.N.), and
Takeda Science Foundation (to T.I.).

Authors’ Contributions

K.K. conceived the study idea and implemented the benchmark.
S.N. provided benchmark hardware. K.K., M.T.U., S.N., and T.I. in-
terpreted the data and wrote the manuscript. K.K. and M.T.U.
prepared figures and tables. All authors read and approved the
final manuscript.

References

1. Walker JR, Willett P. Compression of nucleic acid and protein
sequence data. Comput Appl Biosci 1986;2(2):89–93.

2. Grumbach S, Tahi F. Compression of DNA sequences.
In: Data Compression Conference. Snowbird, UT: IEEE;
1993:340–50.

3. Deorowicz S, Grabowski S. Data compression for sequencing
data. Algorithms Mol Biol 2013;8:25.

4. Hernaez M, Pavlichin D, Weissman T et al. Genomic data
compression. Annu Rev Biomed Data Sci 2019;2:19–37.

5. Karsch-Mizrachi I, Takagi T, Cochrane G. The international
nucleotide sequence database collaboration. Nucleic Acids
Res 2018;46(Database issue):D48–51.

6. Zhu Z, Zhang Y, Ji Z et al. High-throughput DNA se-
quence data compression. Brief Bioinform 2013;16(1):1–15
10.1093/bib/bbt087.

7. Hosseini M, Pratas D, Pinho AJ. A survey on data compression
methods for biological sequences. Information 2016;7(4):56.

8. Sardaraz M, Tahir M. Advances in high throughput DNA
sequence data compression. J Bioinform Comput Biol
2016;14(3):1630002.

9. Biji CL, Achuthsankar SN. Benchmark dataset for whole
genome sequence compression. IEEE/ACM Trans Comput
Biol Bioinform 2017;14(6):1228–36.

10. Bonfield JK, Mahoney MV. Compression of FASTQ and SAM
format sequencing data. PLoS One 2013;8(3):e59190.

11. Numanagic I, Bonfield JK, Hach F et al. Comparison of high-
throughput sequencing data compression tools. Nat Meth-
ods 2016;13(12):1005–8.

12. Squash Compression Benchmark. 2015. https://quixdb.githu
b.io/squash-benchmark/. Accessed 15 July 2019.

13. Sequence Compression Benchmark. http://kirr.dyndns.org/
sequence-compression-benchmark/. Accessed 15 June 2020.

14. Manzini G, Rastero M. A simple and fast DNA compressor.
Softw Pract Exper 2004;34:1397–411.

15. Cao MD, Dix TI, Allison L, et al.. A simple statistical algo-
rithm for biological sequence compression. In: 2007 Data
Compression Conference (DCC’07), Snowbird, UT. IEEE; 2007:
43–52.

16. Mohammed MH, Dutta A, Bose T et al. DELIMINATE—a fast
and efficient method for loss-less compression of genomic
sequences. Bioinformatics 2012;28:2527–29.

17. Pufferfish. 2012. https://github.com/alexholehouse/pufferfis
h. Accessed 23 May 2019.

18. Li P, Wang S, Kim J et al. DNA-COMPACT: DNA COMpression
Based on a Pattern-Aware Contextual Modeling Technique.
PLoS One 2013;8(11):e80377.

http://kirr.dyndns.org/sequence-compression-benchmark/
https://github.com/KirillKryukov/scb
https://quixdb.github.io/squash-benchmark/
http://kirr.dyndns.org/sequence-compression-benchmark/
https://github.com/alexholehouse/pufferfish


Kryukov et al. 11

19. Pinho AJ, Pratas D. MFCompress: A compression tool for
FASTA and multi-FASTA data. Bioinformatics 2014;30:117–8.

20. Al-Okaily A, Almarri B, Al Yami S et al. Toward a better
compression for DNA sequences using Huffman encoding.
J Comput Biol 2017;24(4):280–8.

21. Pratas D, Pinho AJ, Ferreira PJSG. Effi-
cient compression of genomic sequences. In:
Data Compression Conference, DCC-2016, Snowbird, UT.
IEEE; 2016:231–40 10.1109/DCC.2016.60.

22. Pratas D, Hosseini M, Pinho AJ. GeCo2: An optimized tool
for lossless compression and analysis of DNA sequences. In:
Fdez-Riverola F, Rocha M, Mohamad M , et al., eds. Practi-
cal Applications of Computational Biology and Bioinformat-
ics, 13th International Conference. Cham: Springer; 2019:
137–45.

23. Pratas D, Hosseini M, Silva J et al. A reference-free lossless
compression algorithm for DNA sequences using a compet-
itive prediction of two classes of weighted models. Entropy
2019;21:1074.

24. Kryukov K, Ueda MT, Nakagawa S et al. Nucleotide
Archival Format (NAF) enables efficient lossless reference-
free compression of DNA sequences. Bioinformatics
2019;35(19):3826–28.

25. Alyami S, Huang CH. Nongreedy unbalanced Huffman tree
compressor for single and multifasta files. J Comput Biol
2020;27(6):868–76.

26. Altschul SF, Gish W, Miller W et al. Basic Local Alignment
Search Tool. J Mol Biol 1990;215(3):403–10 10.1016/S0022-
2836(05)80360-2.

27. Kent WJ. BLAT - The BLAST-Like Alignment Tool. Genome
Res 2002;12(4):656–64 10.1101/gr.229202.

28. Bauer MJ, Cox AJ, Rosone G. Lightweight BWT construction
for very large string collections. In: Giancarlo R, Manzini
G , eds. Combinatorial Pattern Matching 2011. Springer;
2011:219–31.

29. Jones DC, Ruzzo WL, Peng X et al. Compression of next-
generation sequencing reads aided by highly efficient de
novo assembly. Nucleic Acids Res 2012;40(22):e171.

30. Roguski L, Deorowicz S. DSRC 2—Industry-oriented com-
pression of FASTQ files. Bioinformatics 2014;30(15):2213–5.

31. Benoit G, Lemaitre C, Lavenier D et al. Reference-free com-
pression of high throughput sequencing data with a prob-
abilistic de Bruijn graph. BMC Bioinformatics 2015;16:288
10.1186/s12859-015-0709-7.

32. Nicolae M, Pathak S, Rajasekaran S. LFQC: A lossless
compression algorithm for FASTQ files. Bioinformatics
2015;31(20):3276–81.

33. Zhang Y, Patel K, Endrawis T et al. A FASTQ compressor
based on integer-mapped k-mer indexing for biologist. Gene
2016;579(1):75–81.

34. ALAPY 2017. http://alapy.com/services/alapy-compressor/.
Accessed 2 December 2019.

35. Xing Y, Li G, Wang Z et al. GTZ: A fast compression and cloud
transmission tool optimized for FASTQ files. BMC Bioinfor-
matics 2017;18(Suppl 16):549.

36. Chandak S, Tatwawadi K, Weissman T. Compression
of genomic sequencing reads via hash-based reorder-
ing: Algorithm and analysis. Bioinformatics 2018;34(4):
558–67.

37. Al Yami S, Huang CH. LFastqC: A lossless non-reference-
based FASTQ compressor. PLoS One 2019;14(11):e0224806.

38. Chandak S, Tatwawadi K, Ochoa I, et al. SPRING: A next-
generation compressor for FASTQ data. Bioinformatics
2019;35(15):2674–6.

39. Liu Y, Yu Z, Dinger ME, et al. Index suffix-prefix overlaps by
(w, k)-minimizer to generate long contigs for reads compres-
sion. Bioinformatics 2019;35(12):2066–74.

40. Deorowicz S. FQSqueezer: k-mer-based compression of se-
quencing data. Sci Rep 2020;10:578.

41. Hosseini M, Pratas D, Pinho AJ. AC: A compression tool
for amino acid sequences. Interdiscip Sci Comput Life Sci
2019;11:68–76.

42. BCM. https://github.com/encode84/bcm. Accessed 6 June
2019.

43. BriefLZ - small fast Lempel-Ziv. https://github.com/jibsen/br
ieflz. Accessed 12 May 2020.

44. Alakuijala J, Szabadka Z. Brotli Compressed Data Format.
RFC 7932. 2016, https://tools.ietf.org/html/rfc7932. Accessed
14 April 2019.

45. libbsc. https://github.com/IlyaGrebnov/libbsc. Accessed 22
June 2019.

46. bzip2. https://www.sourceware.org/bzip2/. Accessed 20 Jan-
uary 2019.

47. cmix. https://github.com/byronknoll/cmix. Accessed 25
April 2019.

48. GNU Gzip. https://www.gnu.org/software/gzip/. Accessed 8
November 2019.

49. Lizard - efficient compression with very fast decompression.
https://github.com/inikep/lizard. Accessed 16 June 2019.

50. LZ4 - Extremely fast compression. https://github.com/lz4/l
z4. Accessed 25 April 2019.

51. Lzop. 2017. https://www.lzop.org/. Accessed 6 December
2018.

52. LzTurbo - World’s fastest compressor. https://sites.google.c
om/site/powturbo/. Accessed 11 February 2019.

53. Nakamichi. http://www.sanmayce.com/Nakamichi/index.h
tml. Accessed 12 May 2020.

54. pbzip2. https://launchpad.net/pbzip2/. Accessed 26 April
2019.

55. pigz. https://zlib.net/pigz/. Accessed 26 April 2019.
56. Snzip, a compression/decompression tool based on snappy.

https://github.com/kubo/snzip. Accessed 11 November
2018.

57. XZ Utils. https://tukaani.org/xz/. Accessed 17 December
2018.

58. ZPAQ Incremental Journaling Backup Utility and Archiver.
http://www.mattmahoney.net/dc/zpaq.html. Accessed 7
November 2018.

59. Zstandard - Fast real-time compression algorithm. https://gi
thub.com/facebook/zstd. Accessed 22 May 2020.

60. Clark K, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nu-
cleic Acids Res 2016;44(D1):D67–72.

61. O’Leary NA, Wright MW, Brister JR et al. Reference se-
quence (RefSeq) database at NCBI: Current status, taxonomic
expansion, and functional annotation. Nucleic Acids Res
2016;44(D1):D733–45.

62. Brister JR, Ako-Adjei D, Bao Y et al. NCBI viral genomes re-
source. Nucleic Acids Res 2015;43(D1):D571–7.

63. Bao Y, Bolotov P, Dernovoy D et al. The Influenza virus re-
source at the National Center for Biotechnology Information.
J Virol 2008;82(2):596–601.

64. Quast C, Pruesse E, Yilmaz P et al. The SILVA ribosomal RNA
gene database project: Improved data processing and web-
based tools. Nucleic Acids Res 2013;41(D1):D590–6.

65. Kent WJ, Sugnet CW, Furey TS et al. The human genome
browser at UCSC. Genome Res 2002;12(6):996–1006.

66. Berman HM, Westbrook J, Feng Z et al. The Protein Data Bank.
Nucleic Acids Res 2000;28:235–42.

http://alapy.com/services/alapy-compressor/
https://github.com/encode84/bcm
https://github.com/jibsen/brieflz
https://tools.ietf.org/html/rfc7932
https://github.com/IlyaGrebnov/libbsc
https://www.sourceware.org/bzip2/
https://github.com/byronknoll/cmix
https://www.gnu.org/software/gzip/
https://github.com/inikep/lizard
https://github.com/lz4/lz4
https://www.lzop.org/
https://sites.google.com/site/powturbo/
http://www.sanmayce.com/Nakamichi/index.html
https://launchpad.net/pbzip2/
https://zlib.net/pigz/
https://github.com/kubo/snzip
https://tukaani.org/xz/
http://www.mattmahoney.net/dc/zpaq.html
https://github.com/facebook/zstd


12 Sequence Compression Benchmark (SCB) database

67. Yates AD, Achuthan P, Akanni W et al. Ensembl 2020. Nucleic
Acids Res 2020;48(D1):D682–8.

68. The UniProt Consortium. UniProt: A worldwide hub of pro-
tein knowledge. Nucleic Acids Res 2019;47(D1):D506–15.

69. Kryukov K, Ueda MT, Nakagawa S et al. Supporting data
for ”Sequence Compression Benchmark (SCB) database—A

comprehensive evaluation of reference-free compressors for
FASTA-formatted sequences.” GigaScience Database 2020.
http://dx.doi.org/10.5524/100762.

70. Sequence Compression Benchmark GitHub repository.
https://github.com/KirillKryukov/scb. Accessed 15 June
2020.

http://dx.doi.org/10.5524/100762
https://github.com/KirillKryukov/scb
https://github.com/KirillKryukov/scb
https://github.com/KirillKryukov/scb

