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Abstract: Myelodysplastic syndrome (MDS) is a clonal hematopoietic stem cell disease character-
ized by inefficient hematopoiesis and the potential development of acute leukemia. Among the
most notable advances in the treatment of MDS is the hypomethylating agent, decitabine (5-aza-
2′deoxycytidine). Although decitabine is well known as an effective method for treating MDS
patients, only a subset of patients respond and a tolerance often develops, leading to treatment failure.
Moreover, decitabine treatment is costly and causes unnecessary toxicity. Therefore, clarifying the
mechanism of decitabine resistance is important for improving its therapeutic efficacy. To this end,
we established a decitabine-resistant F-36P cell line from the parental F-36P leukemia cell line, and
applied a genetic approach employing next-generation sequencing, various experimental techniques,
and bioinformatics tools to determine differences in gene expression and relationships among genes.
Thirty-eight candidate genes encoding proteins involved in decitabine-resistant-related pathways,
including immune checkpoints, the regulation of myeloid cell differentiation, and PI3K-Akt signaling,
were identified. Interestingly, two of the candidate genes, AKT3 and FOS, were overexpressed in
MDS patients with poor prognoses. On the basis of these results, we are pursuing development of a
gene chip for diagnosing decitabine resistance in MDS patients, with the goal of ultimately improving
the power to predict treatment strategies and the prognosis of MDS patients.

Keywords: myelodysplastic syndromes; decitabine; resistance; biomarkers

1. Introduction

Myelodysplastic syndrome (MDS) is a hematologic disorder characterized by marrow
failure and a risk of clonal progression. MDS, also known as pre-leukemia, is characterized
by a high risk of transformation to acute myeloid leukemia (AML). The exact cause of MDS
is uncertain in many cases, although preceding exposure to radiation therapy, chemother-
apy, poisonous solvents, tobacco, or agricultural chemicals are risk factors in some cases [1].
Apart from allogeneic hematopoietic stem cell transplantation (HSCT), effective therapies
are absent; thus, MDS has long been considered a difficult to control disease. Although allo-
geneic HSCT can be a curative treatment option for MDS, high treatment-related mortality
limits the universal application of allogeneic HSCT in all patients with MDS. This has led to
the development of the International Prognostic Scoring System (IPSS), a risk stratification
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strategy for predicting prognosis and selecting appropriate patients who might benefit
from allogeneic HSCT.

The IPSS classifies patients into four risk categories: low, intermediate-1, intermediate-2,
and high. In line with EMEA (Europe, the Middle East, and Africa) policy, IPSS is still
used to obtain drug approval in some European countries and is widely used in clinics [2],
but it often lacks the ability to accurately discriminate between lower-risk patients (low
vs. intermediate-1) and higher-risk patients (intermediate-2 vs. high). For this reason,
a revised classification has been introduced that includes a refined cytogenetic classification
and definition of cytopenia, and an improved classification according to bone marrow
blastosis [3]. The revised IPSS (IPSS-R) stratifies patients into five subgroups: very low,
low, intermediate, high, and very high risk. Treatment intent for patients with MDS differs
according to the risk stratification. In lower-risk patients, treatment is usually focused on
improving the quality of life of patients by decreasing transfusion needs and preventing
leukemic transformation. In higher-risk patients, the treatment goal is to prolong survival
by preventing transformation into AML [4].

The most notable progress in the treatment of MDS is the development of the hy-
pomethylating agents (HMAs) 5-azacytidine (AZA) and 5-aza-2′deoxycytidine (decitabine),
which were licensed by the US Food and Drug Administration (FDA) in 2004 and 2006,
respectively. The mode of action of HMAs is to inhibit DNA methyltransferases (DNMTs),
especially at lower doses [5–7]. Objective outcomes, including complete responses (CRs)
and partial responses (PRs), are reported in approximately 15% to 20% of patients, and
an additional 20% to 30% of patients achieve hematologic improvement [8–10]. Moreover,
a minority of patients on long-term HMA treatment can achieve progression-free survival
for several years. However, most patients experience disease progression owing to the
development of resistance to HMA agents during treatment [11]. In such cases, there is
no standard therapeutic alternative [12]. Thus, elucidating the mechanisms underlying
resistance to HMAs, which are currently incompletely understood [13], is essential for the
development of effective targeted therapies.

Decitabine (DEC) is known to exert an inhibitory effect on DNA methylation as
well as block DNA replication and the induction of apoptosis [14,15]. Several studies
confirmed that DEC targets 14,000 regulatory regions of genes in different cancer cell
types as a DNA methyltransferase inhibitor (DNMTi) [16]. DEC demonstrates broad
effects across most patient subgroups in various risk categories. A recent study also
revealed that DEC shows efficacy in patients with TP53-mutated MDS [17]. The labeled
usage of DEC is more convenient than that of AZA because the duration of treatment per
cycle is shorter for DEC (5 days) than AZA (7 days). Despite these benefits of DEC over
AZA, no second-line therapy has been established for patients who are resistant to DEC.
The prognosis is still poor after the failure of DEC treatment, with a median survival of
about 4–5 months [18,19]. Recent findings demonstrated that molecular data represent
a biological opportunity for improving patient response rates and outcomes, as clinical
variables and patient characteristics do not consistently predict response to DEC [20–22].

The aim of this study is to identify genetic profiles that can be translated to potential
approaches or biomarkers for the diagnosis and therapy of MDS patient with resistance to
DEC. In this study, we established a DEC-resistant cell line (F-36P/DEC) from the F-36P
human leukemia (MDS) cell line, and investigated the mechanism of resistance to DEC
using gene expression profiling. In addition, we confirmed major deregulated genes and
pathways through our experimental and analytic system. Our findings shed light on
the mechanism of resistance to DEC and provide insights into the development of novel
strategies for the prognostic prediction and personalized therapy of MDS patients.

2. Materials and Methods
2.1. DEC-Resistant Cell Selection and Culture

The DEC-resistant F-36P cell line, F-36P/DEC, was established from the parental F-36P
cell line [23] (European Collection of Authenticated Cell Cultures (ECACC), Salisbury, UK)
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by continuously exposing parental F-36P cells to gradually increasing concentrations of
DEC (Sigma-Aldrich, St. Louis, MO, USA). The initial DEC concentration was 1 µmol/L
and was then increased exponentially in steps until reaching 32 µmol/L. Selected cells
were cultured in DEC-free medium for at least 2 weeks prior to experiments. F-36P and
F-36P/DEC cells were incubated in RPMI-1640 medium (GenDEPOT, Katy, TX, USA)
containing 5% fetal bovine serum (GenDEPOT), 1% penicillin (GenDEPOT), 5 ng/mL
interleukin (IL)-3 (Sigma-Aldrich), and 2 mM glutamine (Sigma-Aldrich) at 37 ◦C in
a humidified, 5% CO2 atmosphere.

2.2. Cell Morphology and Measurement of Drug Sensitivity

F-36P and F-36P/DEC cells were observed under an inverted light microscope (Nikon,
Melville, NY, USA) equipped with a 10× eyepiece and both 10× and 40× objective lenses.
Images of each cell type were acquired using Motic Images Plus 2.0 software (Motic Inc.,
Xiamen, China). Cells were seeded into 96-well plates at 1 × 104 cells/well in 0.1 mL of
complete medium. The proliferation and cytotoxicity of DEC were investigated using WST
assay kits (LPS Solution, Daejeon, Korea). After incubation in 96-well plates, F-36P and
F-36P/DEC cells were incubated without or with different concentrations of DEC (1.75, 3.5,
7.5, 15, and 30 µmol/L) for 72 h. Cell proliferation was measured by adding 20 µL of WST
reagent to each well and then incubating for 1 h in a 37 ◦C incubator. The absorbance of
wells at 450 nm was read using a Multiskan FC instrument (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), and the percentage growth was calculated. Proliferation was assessed
at 24, 48, and 72 h in wells without DEC. The method for measuring cell cytotoxicity at
72 h following the seeding of cells was identical to that used to measure cell proliferation.
The concentration of DEC required to inhibit growth by 50% (half-maximal inhibitory
concentration) at 72 h was used for calculation of IC50. The degree of resistance was scored
relative to the IC50 value. The IC50 value of DEC was analyzed by probit analysis using
SPSS software version 26.0 (IBM Inc., Armonk, NY, USA).

2.3. Fluorescence-Activated Cell Sorting (FACS) Analysis

A cell-cycle analysis was conducted using a BD Accuri C6 Plus flow cytometer (BD
Biosciences, Franklin Lakes, NJ, USA). Briefly, cells were seeded into six-well plates at
2 × 104 cells/well in 2 mL. After 72 h, cells were harvested by centrifugation at 1000× g
for 5 min at room temperature, washed with PBS, fixed overnight at 4 ◦C with ice-cold 75%
ethanol, and incubated with 10 µg/mL RNase A (Sigma-Aldrich) and 20 µg/mL propidium
iodide (Sigma-Aldrich) for 15 min at room temperature in the dark. Cells in G1, S, and
G2/M phases were identified based on fluorescence intensity, and the cell-cycle distribution
was analyzed using BD Accuri C6 Plus software version 1.0.23.1 (BD Biosciences).

2.4. RNA Isolation

Total RNA was isolated using QIAzol reagent (Qiagen, Hilden, Germany). RNA
quality was assessed with an Agilent 2100 bioanalyzer using an RNA 6000 Nano Chip
(Agilent Technologies, Amstelveen, Netherlands), and RNA quantity was determined using
a NanoDrop 2000 Spectrophotometer (ND-2000; Thermo Fisher Scientific Inc., Waltham,
MA, USA).

2.5. NanoString Targeted Gene Expression

Total RNA samples were analyzed using the NanoString nCounter PanCancer Path-
ways Panel Analysis System (NanoString Technologies, Seattle, WA, USA). For each hy-
bridization reaction, 100 ng total RNA (or any quantity that was present in a 5 µL aliquot of
purified RNA if less than 100 ng) was used. nCounter raw data (RCC files) for each sample
were imported into nSolver Analysis Software version 4.0 (NanoString Technologies) for
review of quality control metrics (all passed). The spike-in positive control geometric
mean normalization factor (without negative control background subtraction) was deter-
mined for each sample using nSolver. Raw counts from these genes, together with spike-in
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positive controls, were then used to perform both positive control and reference gene
normalization of the raw data in nSolver. These data were then exported in CSV format
for gene expression analyses. Count data were converted into counts per million mapped
reads (CPM) using the fpm function in DESeq2. A pseudo count of 1 was added to all
counts before calculating the log2 value and the log2 fold-change was calculated. Data
mining and graphic visualization were performed using nCounter Advanced Analysis
software (NanoString Technologies).

2.6. Gene and Pathway Enrichment Analyses of Differentially Expressed Genes (DEGs)

DAVID (Database for Annotation, Visualization and Integrated Discovery; https:
//david.ncifcrf.gov/, accessed on 13 November 2020), an online biological information
database, was used for the pathway enrichment analysis of DEGs. The Gene Ontology
(GO) term enrichment analysis annotated by the DAVID database is composed of three
attributes: molecular function (MF), biological process (BP), and cellular component (CC).
Pathway enrichment analyses were conducted using the DAVID website tools, Kyoto
Encyclopedia of Genes and Genomes (KEGG), and REACTOME; p-values < 0.05 were
considered statistically significant.

2.7. Protein–Protein Network and Module Analysis

Protein–protein interaction (PPI) networks were mapped using Cytoscape (version
3.8.2; https://cytoscape.org/, accessed on 11 November 2020), a public-access software
that can graphically edit, display, and analyze the network. Significant modules in PPI
networks were identified using Molecular Complex Detection (MCODE), a plug-in app of
Cytoscape designed to analyze densely connected regions by clustering a given network.
Hub genes were identified using the cytoHubba analysis in Cytoscape. Analyses with
ClueGO, a Cytoscape plug-in, were performed using databases updated in May 2021.

2.8. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted using QIAzol reagent (Qiagen), then reverse transcribed into
cDNA using amfiRivert reverse transcriptase (GenDEPOT) according to the manufacturer’s
instructions. cDNA was amplified by PCR on a Mic Real-Time PCR system (Bio Molecular
Systems, Upper Coomera, QLD, Australia) using Luna Universal qPCR master mix (New
England Biolabs Inc., Ipswich, MA, USA) and primer pairs specific to target genes (Table
S1). Expression data were normalized to the geometric mean of the housekeeping gene,
GAPDH, to control the variability in expression levels and analyzed using the ∆CT and
2−∆∆CT quantification method.

2.9. Validation of Genetic Alterations in Candidate Genes

Genetic alterations in candidate genes in the myeloid neoplasm dataset were analyzed
using cBioPortal (http://cbioportal.org/, accessed on 1 October 2021), an online analysis
platform for multidimensional cancer genomic data that provides a collective visualization
of genes, samples, and data types.

2.10. Patient Enrollment and Treatment–Bone Marrow Samples

Bone marrow-derived blood samples were obtained from four MDS patients diag-
nosed at Seoul National University Hospital (SNUH). Patient samples were collected with
each patient’s informed consent after receiving approval from the Institutional Review
Board of SNUH. MDS subtypes were classified according to the revised World Health
Organization classification of myeloid neoplasm [24]. Patients were treated with DEC
(20 mg/m2/d for 5 days every 4 weeks), and response to treatment and clinical outcome
were evaluated according to revised International Working Group (IWG) response criteria.
The patients used for the analysis were classified into two groups: (1) Patients 1 and 2, bone
marrow samples obtained at initial diagnosis, pre-DEC treatment; and (2) Patients 3 and 4,
samples obtained in complete response (CR) status after four cycles of DEC treatment.

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://cytoscape.org/
http://cbioportal.org/
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2.11. Statistical Analysis

All experiments were performed in at least triplicate (n ≥ 3), and data are presented
as means ± standard deviation (SD). Differences between two sample means were deter-
mined with a Student’s t-test for independent samples using SPSS software version 26.0.
Differences with p-values < 0.05 were considered statistically significant.

3. Results
3.1. Establishment of the DEC-Resistant Cell Line, F-36P/DEC

To study the mechanism of resistance to DEC, we established an in vitro DEC-resistant
cell line model from the parental cell line F-36P (Figure 1A). The morphological differences
between F-36P cells and the derived DEC-resistant F-36P/DEC cells were surveyed using
an inverted light microscope at magnifications of 100× and 400×. As shown in Figure 1B,
F-36P cells were detected as single cells under the light microscope, whereas F-36P/DEC
cells were observed to aggregate. We further found that F-36P/DEC cells stably proliferated
over 72 h (Figure 1C). The IC50 value for DEC was 17.27 µmol/L in F-36P cells and more
than 30 µmol/L in F-36P/DEC cells. However, although we used DEC at concentrations
up to 1000 µmol/L in the F-36P/DEC cell line, we were unable to accurately calculate
an IC50 value for these cells (Figure 1D). To further explore the biological properties of
F-36P/DEC cells, we compared the cell-cycle properties of F-36P/DEC cells with those
of F-36P cells, finding that the proportion of cells in the G2/M phase of the cell cycle was
significantly increased in F-36P/DEC cells (Figure 1E). Collectively, these results indicate
that the F-36P/DEC cell model generated for these studies is significantly resistant to DEC
and has characteristics that differ from those of F-36P cells.

3.2. Identification of Genes That Are Differentially Expressed between F-36P/DEC and F-36P Cells

To identify genes associated with DEC resistance, we screened for candidate genes
that were differentially expressed between F-36P and F-36P/DEC cells using a NanoString
analysis [25]. The 189 differentially expressed genes (DEGs) obtained as a result of this
analysis were expressed as a cluster heatmap [26] using nSolver (Figure 2A and Table S2).
For a cluster heatmap, hierarchical clustering using average linkage and a Euclidean
distance metric was used. A volcano plot used to display the distribution of DEGs in
F-36P/DEC relative to F-36P (Figure 2B and Table S3) shows −log10 (p-value) values and
log2 fold changes in DEGs. Statistically significant genes (p-value ≤ 0.05) are located at the
top of the plot above the horizontal lines, with strongly differentially expressed genes falling
on either side. Using a scatter plot to show the distribution of F-36P/DEC DEGs, we found
that the larger the difference in expression level, the more the trend line deviated from a
linear function (Figure 2C). Collectively, these data allowed us to select more specific DEGs
between F-36P/DEC and F-36P cells. We also performed a gene ontology (GO) analysis [27]
of significantly enriched genes to obtain overview information about the function of protein
products of our DEGs (Table 1). The regulation of transcription, cell cycle, and proliferation
pathways (biological process), nucleus and extracellular region (cellular compartment),
and transcription factor binding and protein kinase activity (molecular function) were the
GO properties most frequently associated with identified DEGs.
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Figure 1. Validation of DEC resistance in the F-36P/DEC cell line. (A) Schematic showing how pa-
rental F-36P cells were used to create cells DEC-resistant F-36P/DEC cells. (B) Morphological obser-
vations of F-36P and F-36P/DEC cells. Magnification, 100× and 400×. Black scale bar, 250 μm; white 
scale bar, 50 μm. (C) The proliferation of F-36P and F-36P/DEC cells was analyzed by cell counting 
using WST assay kits and compared. (D) The viability of DEC-treated F-36P and F-36P/DEC cells 
was measured at 72 h using a WST assay and compared. (E) The cell-cycle distribution of F-36P and 
F-36P/DEC cells was measured by flow cytometry using propidium iodide (PI) and the G2/M phase 
ratio was determined and compared. Results are presented as means ± SD (error bars) (n = 3; * p < 
0.05, ** p < 0.01, *** p < 0.001 compared to the control). 

Figure 1. Validation of DEC resistance in the F-36P/DEC cell line. (A) Schematic showing how parental F-36P cells were used
to create cells DEC-resistant F-36P/DEC cells. (B) Morphological observations of F-36P and F-36P/DEC cells. Magnification,
100× and 400×. Black scale bar, 250 µm; white scale bar, 50 µm. (C) The proliferation of F-36P and F-36P/DEC cells was
analyzed by cell counting using WST assay kits and compared. (D) The viability of DEC-treated F-36P and F-36P/DEC
cells was measured at 72 h using a WST assay and compared. (E) The cell-cycle distribution of F-36P and F-36P/DEC cells
was measured by flow cytometry using propidium iodide (PI) and the G2/M phase ratio was determined and compared.
Results are presented as means ± SD (error bars) (n = 3; * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the control).
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Figure 2. Analysis of DEGs between F-36P/DEC and F-36P cells. (A) Heatmap illustrates significant DEGs between F-36P
cells and F-36P/DEC cells. Representations of genes were processed using the general linear model likelihood ratio test
(p < 0.05 and absolute log2 fold change > 1). (B) Significant DEGs between F-36P cells and F-36P/DEC cells, in the form of
log10 (p-value) versus log2 (fold change), are presented graphically as volcano plots. The horizontal lines indicate statistical
significance at p < 0.05. (C) Scatter plot of DEGs in F-36P/DEC cells compared with those in F-36P cells. DEGs were selected
on the basis of (logFC) ≥ 1.5 and p < 0.05.

3.3. Functional Classification of DEGs Associated with DEC Resistance of the Cell Line,
F-36P/DEC

Protein–protein interaction (PPI) networks can reveal physical contacts between pro-
tein pairs and identify biological pathway clusters [28]. Using this approach, we generated
a PPI network from 66 DEGs that contained 54 nodes and 198 edges (Figure 3A and
Table S4). The resulting network was still very complex; thus, we subsequently performed
a minimal common oncology data elements (MCODE) analysis with specific modules [29].
The networks were also confirmed by cytoHubba analysis [30], which generated similar
hub networks (Figure 3B–E). This subnetwork analysis identified STAT3 (signal transducer
and activator of transcription 3), RELN (reelin), IL11RA (interleukin-11 receptor, alpha sub-
unit), and WNT3 (proto-oncogene protein Wnt-3), among others, as hub genes. A ClueGO
and module analysis, which can improve biological interpretation by organizing separate
GO pathway term networks [31,32], revealed various additional processes linked to DEC
resistance, including immune cell activation, regulation of myeloid cell differentiation,
transcriptional misregulation, PI3K-Akt signaling, and JAK-STAT signaling (Figure 4).
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Table 1. GO analysis of DEC resistance-related DEGs.

Category Term Description Count p-Value

BP

GO:0045893 Regulation of transcription,
DNA-templated 15 5.89 × 10−7

GO:0045944 Regulation of transcription from RNA
polymerase II promoter 18 1.01 × 10−5

GO:0008285 Negative regulation of cell proliferation 9 3.59 × 10−5

GO:0043066 Negative regulation of apoptotic process 9 9.52 × 10−5

GO:0007165 Signal transduction 12 1.00 × 10−3

GO:0007411 Axon guidance 5 0.0017
GO:0007050 Cell cycle arrest 4 0.0105
GO:0007568 Aging 4 0.0160
GO:0016055 Wnt signaling pathway 4 0.0223
GO:0071425 Hematopoietic stem cell proliferation 2 0.0441

CC

GO:0005654 Nucleoplasm 25 0.0000
GO:0005634 Nucleus 29 0.0005
GO:0008305 Integrin complex 3 0.0029
GO:0009925 Basal plasma membrane 3 0.0036
GO:0009986 Cell surface 7 0.0052
GO:0005829 Cytosol 19 0.0055
GO:0005576 Extracellular region 12 0.0068
GO:0005886 Plasma membrane 20 0.0241
GO:0005925 Focal adhesion 5 0.0285
GO:0005737 Cytoplasm 23 0.0377

MF

GO:0005515 Protein binding 46 0.0000

GO:0003700 Transcription factor activity,
sequence-specific DNA binding 13 0.0000

GO:0008134 Transcription factor binding 6 0.0021

GO:0001205
Transcriptional activator activity, RNA

polymerase II distal enhancer
sequence-specific binding

3 0.0029

GO:0003682 Chromatin binding 6 0.0081
GO:0003677 DNA binding 12 0.0155
GO:0046982 Protein heterodimerization activity 6 0.0162
GO:0019903 Protein phosphatase binding 3 0.0173
GO:0004672 Protein kinase activity 5 0.0276
GO:0019901 Protein kinase binding 5 0.0320

3.4. Validation of Candidates Identified by RNA-Seq Analysis

We next verified gene expression profiles using quantitative RT-PCR (qRT-PCR) anal-
ysis, selecting the top 38 genes with the highest fold-changes for validation. These top
genes included those encoding proteins involved in immune cell activation (GFI1, IL12B,
NFKB1, FOS), the regulation of myeloid cell differentiation (ETS1, ID2, KMT2E), transcrip-
tional misregulation (BCL2A1, MLF1, RUNX1T1), PI3K-Akt signaling (AKT3, MET, RELN),
and the JAK-STAT signaling pathway (BCL2, EGF, STAT3). The molecular properties of
these gene products are summarized in the Supplementary Data (Table S5). As shown in
Figure 5A, qRT-PCR analyses confirmed upregulation of our candidates in F-36P/DEC
cells. Using the cBioPortal for cancer genomics, originally developed for interactive explo-
ration of multidimensional cancer genomic datasets [33], we extracted a dataset from the
clinical expression dataset of myeloid neoplasms containing 11 studies and 6940 patient
samples (Figure 5B). The majority of our candidates were found in the extracted dataset,
consolidating the credibility of our candidate list. Thirty-eight genes have been shown to
be associated with different types of alterations, most of which have been associated with
mutations. In particular, 24 genes were associated with amplification (red bars). Therefore,
these results suggest that most of our candidate genes are clinically relevant and allow
reliable discovery.
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Figure 3. PPI network and subnetworks generated from DEGs. (A) The PPI network was processed using the STRING
plug-in of the Cytoscape program (version 3.8.2). Each circle represents a gene (node), and connections between circles
(edges) represent direct or indirect interactions. Of the 66 genes that were differentially expressed between F-36P cells and
F-36P/DEC cells, 54 were functionally linked with 198 edges. PPI enrichment p-values < 0.04 were considered significant.
(B–E) Module analyses. Module clusters were extracted using MCODE and cytoHubba analyses. Hub genes are indicated
in red, and co-expressed genes are indicated in orange, yellow, or blue according to their degree of importance. Module 1
(B) contains 8 nodes and 20 edges. Module 2 (C) contains 8 nodes and 13 edges. Module 3 (D) contains 6 nodes and 8 edges.
Module 4 (E) contains 7 nodes and 16 edges.
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3.5. Comparison of Gene Expression in Bone Marrow from Patients with MDS

Four patients with MDS were enrolled in this study. The median age of patients at the
time of diagnosis of MDS was 64 years (range, 46–74). MDS subtypes were MDS-EB1 and
MDS-EB2, and IPSS risk categories at baseline were intermediate-2 and high risk (Table 2).
Patients were treated with a median of nine cycles of DEC (range, 2–16), and all patients
achieved an objective response (complete remission in three patients and partial remission
in one patient). The duration of the response was less than 1 year in two patients (9 months
in Patient 1 and 11 months in Patient 3); another patient (Patient 4) proceeded to HSCT
after five cycles of DEC, but expired due to pneumonia 17 months later. In contrast to the
relatively shorter survival of these patients, Patient 2 showed a significantly longer survival
(52 months). IPSS-R was well correlated with the time to progression, with two patients
with very high risk by IPSS-R progressing within 1 year, and two patients with intermediate
and high risk by IPSS-R showing continued response to DEC after 2 years and more than 4
years, respectively. However, IPSS and the MDS subtypes MDS-EB1 and MDS-EB2 were
not predictive of prognosis. We next performed qRT-PCR to assess gene expression in
patient bone marrow samples, using bone marrow-derived samples before DEC treatment
for Patients 1 and 2 and samples obtained after four cycles of DEC treatment for Patients 3
and 4. For this analysis, qRT-PCR results for each bone marrow sample, quantified using
the 2−∆∆CT method, were normalized to those of 10 normal bone marrow samples (defined
as 1). This analysis confirmed differences in mRNA expression of DNA methyltransferase
(DNMT) genes in patient bone marrow samples, specifically showing a slightly higher
expression of DNMT1 and DNMT3A in Patient 2 compared with normal bone marrow, but
no difference in DNMT3B. In other patients, the expression of DNMT genes was decreased
compared to that of normal controls (Figure 6A). Surprisingly, a comparison of the mRNA
levels of 38 genes in bone marrow samples from patients showed that expression levels of
AKT3 and FOS genes were similar to normal in Patient 2 but increased in the other patients
(Figure 6B and Table S6).
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Figure 6. Comparison of gene expression in MDS patients with and without DEC treatment. (A) Comparison of DNMT1,
DNMT3A, and DNMT3B mRNA expression levels by patient. (B) Confirmation of differences in mRNA expression of AKT3
and FOS for each patient. All differences in expression are significant at the p < 0.05 level. Error bars indicate SD (n = 3).
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Table 2. Clinical characteristics of the MDS patients treated with DEC.

Sample No. 1 2 3 4

Sex Female Male Male Female
Age (years) 46 73 74 61
Weight (kg) 60 66 76 55
Height (m) 1.56 1.6 1.63 1.47

BMI (kg/m2) 24.7 25.8 28.6 25.5

Underlying disease

History of allogeneic
HSCT due to aplastic
anemia, paroxysmal

nocturnal
hemoglobinuria

Diabetes mellitus Diabetes mellitus None

Baseline clinical characteristics
WBC (×106/L) 3370 6700 2970 3490
ANC (×106/L) 135 1100 535 733

Hb (g/dL) 9.7 8.7 7 10.4
Platelets (×109/L) 11 37 32 200

BM blasts (%) 10.3 20 6 12.5
Cytogenetic abnormalities Complex karyotype 1 None Complex karyotype 2 del (20q)

IPSS 3.0 2.0 2.0 1.5
IPSS risk category High Int-2 Int-2 Int-2

IPSS-R 9.5 6.0 9.0 4.5
IPSS-R risk category Very high High Very high Int

MDS subtypes (WHO) MDS-EB2 MDS-EB2 MDS-EB1 MDS-EB2
Treatment cycle of DEC 2 16 11 5

Best response CR PR CR CR
Progression

(Leukemic transformation) Yes Yes Yes Yes

PFS (month) 9 46 11 24
Allogeneic HSCT Yes No No Yes

Time to HSCT (month) 4 None None 7
F/U period (month) 11 52 11 24

F/U result Dead Dead Dead Dead
Cause of death Leukemia Leukemia Leukemia Pneumonia

Alterations were found in 0% to 0.8% of the respective analyses and are depicted graphically. Many candidate genes exhibited amplification
alterations. Abbreviations: BMI, Body mass index; WBC, white blood cell count; ANC, absolute neutrophil count; Hb, hemoglobin; BM,
bone marrow, IPSS, International Prognostic Scoring System; IPSS-R, Revised International Prognostic Scoring System; Int, intermediate;
MDS-EB, MDS with excess blasts; CR, complete remission; PR, partial remission; PFS, progression-free survival; HSCT, hematopoi-
etic stem cell transplantation; F/U, follow-Up. 1 41X, -Y, add(5)(q11.2), der(7;17)(p10;q10), -16, -18, -20, add(22)(q13), dup(1)(q12q42),
add(4)(p14), add(4)(q21), add(6)(q13), add(7)(p13), -8, -add(12), +12, -13. 2 44~45XY, add(1)(p32), -5, i(14)(q10), -17, 18, -21, +add(22)(q13)×2,
+mar1, +mar2.

4. Discussion

Clinical outcomes of patients with MDS who experience HMA treatment failure are
poor [34,35]. Thus, elucidating the resistance mechanism is important for overcoming this
problem. Drug-resistant cell line models can be useful in vitro tools for understanding
the mechanisms underlying clinical anticancer drug resistance, enabling the discovery of
molecular alterations between a drug-resistant cell line and its drug-sensitive counterpart.
Furthermore, acquired-resistance cell line models can play an important additional role in
revealing the mechanisms of action of new anticancer drugs [36]. It has also been shown
that the expression levels of certain cancer-related genes can be altered in DEC-resistant
cell lines and that the regulation of gene expression levels can influence resistance [37].
To date, most research on DEC resistance has focused on resistant cells derived from a
few cell lines originating from acute promyelocytic leukemia (HL-60) or chronic myeloid
leukemia (K562 cells) [11,13,37]. However, DEC is not used to treat acute promyelocytic
leukemia or chronic myeloid leukemia. Accordingly, data obtained from HL-60 or K562
cells cannot be expected to accurately represent the phenomenon of DEC resistance in
actual MDS patients.
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The DEC-resistant MDS cell line developed for this study was produced by contin-
uously exposing F-36P cells to staged increases in DEC concentration. DEGs associated
with DEC resistance were determined by biological and bioinformatic analyses of the gene
expression profiles of parental F-36P and F-36P/DEC cells. On the basis of this expres-
sion profiling, we selected 38 candidate DEGs, including those involved in immune cell
activation, the regulation of myeloid cell differentiation, transcriptional misregulation,
PI3K-Akt signaling, and the JAK-STAT signaling pathway, for further analysis. These
analyses identified pathways that overlap with previously reported pathways; however,
the individual genes were quite different.

A number of genetic studies performed to date have identified groups of mutated
genes that contribute to the pathogenesis of MDS and resistance to HMAs [20,38]. These
genes were categorized according to a limited number of cellular processes, including
epigenetic, RNA splicing and traditional transcriptional regulation, and signal transduc-
tion. Several large studies have evaluated the prognostic value of MDS-associated gene
mutations across a broad cross-section of patients [39–41]. Somatic mutations in certain
genes reproducibly predict patient prognosis. Across studies, mutations in genes encoding
ETV6, RUNX1, TP53, EZH2, ASXL1, FLT3-ITD, and SRSF2 predict poor overall survival,
whereas mutations in SF3B1 are associated with better clinical outcomes [40,42]. It is
also known that mutations in TP53 and TET2 affect the prognosis of patients undergoing
DEC therapy [17]. Considering the high incidence of mutations, it can be assumed that
mutations play a role in MDS pathogenesis and resistance to HMAs. However, many such
studies did not distinguish specific mutations that were closely related to an incomplete
response to treatment. Therefore, it is reasonable to suggest that the decision to treat MDS
patients with HMAs should not be based solely on the basis of mutation information.

We next looked for possible regulatory mechanisms governing the expression of these
genes, focusing on FOS, a component of transcription factor AP-1 (activator protein 1), and
PI3K-AKT signaling pathways, which play essential roles in hematological malignancies.
We found that FOS transcriptionally induced the expression of genes encoding the co-
inhibitory immune checkpoint proteins PD-1 (programmed cell death protein-1) and PD-L1
(ligand for PD-1) through binding to enhancer regions of the respective gene promoters. It
has additionally been shown that blockade of the FOS-mediated induction of PD-1 could be
harnessed therapeutically to restore T cell-mediated antitumor responses [43]. Impairment
of AKT3, a member of the AKT protein family, has also been linked to multiple myeloma,
and mutations in the AKT3 gene have been frequently reported in de novo Philadelphia
chromosome-positive AML. Accordingly, the presence of a mutated AKT3 gene is cor-
related with, and predicts, a poor clinical response in MDS patients [44]. Interestingly,
another study confirmed that AKT3 protein levels are overexpressed in the plasma of MDS
patients [45]. In DEC-induced DNA reprogramming, chimeric antigen receptor T (CAR T)
cells, compared to the control group, differentially expressed genes including AKT3, and it
is expected that this can enhance antitumor effects or reduce tumor recurrence [46]. We
found that AKT3 and FOS genes were overexpressed in F36P/DEC cells, and clinical data
even showed overexpression of these genes in MDS patients with poor prognosis.

In the current study, a bioinformatics analysis was used to identify biological net-
works, and in vitro experiments were conducted to verify bioinformatics findings. Our
examination of the roles of certain molecules and the demonstration of the involvement
of specific signaling pathways in the current study is expected to expand our understand-
ing of the molecular mechanism of DEC resistance. However, our study is not without
limitations, including the need to validate our findings in a larger group of patients and
to perform in-depth experiments to confirm that the tendency toward the increased ex-
pression of genes identified in vitro is recapitulated in vivo. Future advances should yield
more accurate data from bioinformatics analyses, confirming pathways that are significant
for DEC resistance in MDS and potentially achieving a comprehensive understanding of
this process.
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In conclusion, we successfully established a good in vitro model with potential utility
in understanding the molecular mechanisms and origin of DEC resistance. Using this
model, we observed the increased expression of select genes from among 38 DEGs identi-
fied, including AKT3 and FOS, in F-36P/DEC cells and showed that they were associated
with several pathways with potential involvement in DEC resistance, consistent with the
results of our bioinformatics analysis. Our findings can serve as a reference for other
researchers involved in investigating the development of resistance to DEC and provide
tools that could aid in the application of combination therapeutics and biomarkers as
therapies for MDS patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10123494/s1, Table S1: qRT-PCR primer sequences for the verification of candidate
DEGs. Table S2: A cluster heatmap showing 189 differentially expressed genes. Table S3: The 30 most
differentially expressed genes from the volcano plot. Table S4: DEGs between F-36P and F-36P/DEC
cells. Table S5: Functional roles of module genes. Table S6: Expression levels of 38 genes in bone
marrow from MDS patients.
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