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The human lung is a vital organ, which is vulnerable to outside insults and injuries.
Nothing else matters when you cannot breathe. The pharmacological management of
chronic lung disease is a rapidly growing field. Some advances have been made in unravel-
ling the mechanisms underlying the pathogenesis of asthma, COPD, and other chronic lung
disorders, such as interstitial lung diseases (ILD). However, there is still a lack of clinical
translation of various in vivo and in vitro studies. There is a serious need to understand
the nature and mechanism of action of the current pharmacological therapy for chronic
lung disease. Many could be repurposed, but it is vital to understand mechanisms both
at a disease and therapy level to establish a targeted approach. What are the challenges
in the treatment of patients with COPD and asthma? Which disease mechanisms respond
to current therapeutics, and which do not? How can we optimize drug therapy in COPD
and asthmatic patients? Managing these patients has become even more challenging as
COVID-19 continues its grasp in 2022, although vaccine development has been helpful in
improving immunity and protecting the community. Considering these important research
questions, the Journal of Clinical Medicine (JCM) recently launched a Special Issue targeting
these areas, titled Pharmacology and Therapeutic of Asthma and COPD. The issue has
been a great success since being released and has published five manuscripts so far with
others in the pipeline. These include four original research articles and one review article.
In this Editorial, I would like to share insights from these articles with the readership in the
setting of the current literature in the field.

Jung et al. reported, using a large Korean cohort of 4066 COVID-19 patients, that
neither mild nor severe asthma was associated with the severity or mortality of COVID-19,
even after adjusting for variables [1]. A subgroup analysis with smoking history or current
smoking showed that mild asthma was associated with COVID-19, which may reflect
asthma–COPD overlap (ACO). For patients with COPD, however, a severe form of disease
was a significant risk factor for developing severe COVID-19 and mortality. In underweight
patients, mild COPD was associated with COVID-19. The study has limitations though,
as asthma and COPD were not defined by the international standards; hence, it is hard to
tease out the relationship between asthma, COPD and COVID-19 based on the information
provided by the authors. Smoking has been suggested as one of the major risk factors for
the development of COVID-19 in smokers and COPD [2,3]. The current study could not
provide detailed analysis highlighting such associations, which might be partly due to the
availability of accurate smoking status or patients being on inhaled corticosteroids or other
medications. There are certainly smokers and ex-smokers in the cohort but there is no clear
information provided in the analysis. However, the UK Biobank Cohort study indicated
a causal effect of smoking in the risk of severe COVID-19 [4]. There is now substantial
evidence available from clinical pathological studies using human samples from smokers
and patients with COPD, providing mechanistic links between smoking and COVID-19. In
some parts of the world, especially India, mucormycosis, also known as the black fungus,
has been reported [5]. Authors suggested that the excessive use of corticosteroids in the
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treatment of COVID-19 and immunosuppression by the virus has led to such opportunistic
infections [6].

In March 2020, our research group was first to provide the evidence that the SARS-CoV-2
receptor ACE2 is elevated in the airway epithelium, type-2 pneumocytes and alveolar
macrophages of smokers and patients with COPD [7], which, since then, has been con-
firmed by several studies in the literature [8–10]. We further reported, in another study,
that in addition to ACE2, cofactors, such as TMPRSS2 and Furin, are also highly expressed
on the small airway epithelium, alveolar macrophages and type-2 pneumocytes [11]. We
found similar expression in the primary small airway epithelial cells too. Interestingly,
there was a significant increase in type-2 pneumocytes in smokers and patients with COPD
compared to normal never-smoking controls. Increased type-2 pneumocytes suggest that
these patients are vulnerable to developing post-COVID-19 interstitial pulmonary fibrosis
or fibrosis in general. We found similar changes in patients with ILD, such as lymphangi-
oleiomyomatosis and idiopathic pulmonary fibrosis (IPF) [12,13]. There could be a silently
developing interstitial pathology in smokers and patients with COPD. This was the first
study to report an increase in type-2 pneumocytes in these patients [11]. Further, we
also reported that endocytic vacuoles, such as early endosome antigen-1, late endosome
marker RAB7, cathepsin-L and lysosomal-associated membrane protein-1, as lysosome
markers, also increase in the airways of smokers and patients with COPD [14]. This study
indicated that smoking not only upregulates ACE2 for viral binding but also creates a
highly conducive environment for the virus to thrive. The inflammatory environment
created by M1/M2 macrophages in smokers and COPD further exaggerate this lethal
microbial pathogenesis [15,16]. In line with this, a recent study by Hönzke and colleagues
reported that severe lung injury in COVID-19 likely results from a macrophage-mediated
immune response rather than direct viral injury of the alveolar areas [17]. This suggests that
smokers and patients with COPD are already primed for COVID-19-related lung damage.
In patients with asthma, Wark and colleagues reported lower levels of ACE2 but it was
positively associated with older age and male gender [18]. COPD still had higher ACE2
levels compared to asthmatics [19]. This may be the reason for the lack of representation of
asthmatics with COVID-19 complications, as observed by Jung et al. in a Korean cohort [1].

Like smoking, vaping has also been suggested as a major risk factor for increas-
ing susceptibility to SARS-CoV-2 and development of COVID-19 [20–23], as reported by
McAlinden et al. in this Special Issue [24]. In this study, we observed that condensates
generated from electronic cigarettes increased the ACE2 expression on both BEAS2-B and
primary small airway epithelial cells in a similar manner to smoking. We also observed
that vaping increased cytotoxicity and compromised membrane integrity, as measured by
CCK-8 and LDH assays. The study also suggested that e-liquids with and without flavours
or nicotine are toxic to cells; with flavour, toxicity increases though. Cell death was ob-
served for nicotine-treated cells. This is the first study to utilize electronic-cigarette aerosol
condensates, novel and developed in our laboratory, for investigating the effects of vaping
on human airway epithelial cells. We previously reported electronic cigarettes and the
heat-not-burn device IQOS increases inflammation (CXCL8), extracellular matrix release
(collagen 1 and fibronectin) and mitochondrial dysfunction [25,26]. A recent study also
showed that vaping leads to dysfunctional immunity, as we see in smokers and patients
with COPD [27,28].

The next study, by Cerdán-de-las-Heras and colleagues, takes a rehabilitation therapy
angle for the management of COPD [29]. In a randomized, non-inferiority study, authors
evaluated the effect of a tele-rehabilitation program compared to standard rehabilitation
on COPD. They screened 95 COPD patients in total. The tele-rehabilitation included
physiotherapist video/chat consultations and workout sessions, with a virtual autonomous
physiotherapist agent. Data were collected at baseline, 8 weeks, 3 and 6 months. The
authors observed that there is better adherence, safety, and patient satisfaction in the
tele-rehabilitation intervention arm. In COVID-19 times, this has become a promising
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alternative for patients with COPD and a better alternative in the long run. However, more
studies with larger cohorts and severity of disease are needed.

Continuing the therapeutic theme, Huang and colleagues investigated the long-term
efficacy of an anti-IgE antibody, Omalizumab, in a cohort of patients with severe allergic
asthma [30]. Omalizumab comes under the class of medications called monoclonal antibod-
ies [31–33]. A number of studies has investigated the long-term benefits of Omalizumab but
hardly any studies comparing booster dose versus maintenance dose over time and clinical
benefits [34–36]. The authors monitored this for 12 months, with a boost of Omalizumab
treatment for the first 4 months, in a cohort of 124 patients with severe allergic asthma.
This was the first study to compare the long-term efficacy between continuous use and
4-month boosts of Omalizumab in adult patients with severe allergic asthma. Their study
demonstrated that continuous use of Omalizumab is beneficial compared to a short-term
booster dose and long-term outcomes are worse on a short-term treatment. This study
also found that small airway dysfunction decreased, and exacerbations increased at the
12-month follow-up when Omalizumab was boosted for 4 months. However, studies with
larger cohorts, small airway dysfunction measuring techniques, such as forced oscillation
technique [37], and a comparison to a paediatric population are needed. Mechanistic
studies are also needed to validate these interactions.

The final article in this Issue raises the role of adjunct therapy in COPD [38]. The
authors discussed the benefits and limitations for adding other therapies to routine COPD
management. These included therapeutic modalities, such as roflumilast, macrolides, mu-
colytics, vitamin D supplementation, oral corticosteroids, n-acetylcysteine and nebulized
hypertonic saline. Roflumilast is a phosphodiesterase-4 inhibitor, which has some anti-
inflammatory properties. However, inflammation in COPD is a true paradox and there is
huge variability with severity of disease [39,40]. We showed that mild to moderate COPD is
associated with a lack of key immune cells in the airway wall, with macrophages and CD8
cells as the prominent cell types [15,41]. Milara J et al. showed that roflumilast can inhibit
the process of epithelial to mesenchymal transition (EMT) in smokers with COPD [42];
the same group further reported that the addition of simvastatin enhanced the ability of
roflumilast to inhibit EMT activity [43]. Hence, statins could be another adjunct therapy that
could be added to COPD management, which may protect these patients from lung cancer
development [44] or small airway fibrosis [45] by inhibiting EMT [46]. In 2010, I was first to
report that EMT is an active process in smokers and patients with COPD [47,48] and inhaled
fluticasone propionate has the potential to inhibit such changes [49]. However, reticular
basement membrane hypervascularity did not change post-treatment [50]. Roflumilast and
statins along with inhaled corticosteroids may have beneficial effects for COPD patients,
especially for EMT-related changes [51]. Hybrid EMT has also been suggested in COPD
and patients with IPF [52]. Endothelial-to-mesenchymal transition (EndMT) is a similar
process to EMT, and these drugs may have similar effects on EndMT as well, but further
work is warranted [53–60]. Oral corticosteroids are yet to be tested for their efficacy for
such effects. Azithromycin, in addition to its efficacy as a macrolide and anti-inflammatory
agent [61–64], has also been shown to prevent EMT changes [65–69].

Chronic bacterial colonization is a major issue in smokers and patients with COPD [70].
They can also be affected with viral infections, such as Rhinovirus, and more recently,
SARS-CoV-2 (COVID-19) [71–73]. From an infection point of view, it is important to un-
derstand how these microbes get access to the lungs [74–76]. Highlighting this association,
Grigg et al. showed that platelet-activating factor receptor (PAFR) is upregulated in re-
sponse to cigarette smoking and is responsible for the adhesion of Streptococcus pneumoniae
to lower airway cells [77]. The same group also reported similar changes in response to
electronic-cigarette exposure or vaping [78]. We have further shown that PAFR increases
in the small and large airways of both smokers and patients with COPD [16,70,71,79].
Similar observations were made for the Rhinovirus adhesion receptor, intercellular adhe-
sion molecule-1 (ICAM-1) [16,70,71,79]. Inhaled corticosteroids could increase the risk for
pneumonia, so a careful management is needed when prescribing these [80].
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Overall, there is urgent need for new drugs and therapeutic targets for asthma and
COPD, otherwise we will be treating only disease symptoms, with very limited ability to
change disease trajectory [11,69,81,82]. Further, more research is needed on how we can
decrease the risk of lung cancer and small airway destruction in smokers and patients with
COPD [83]. Better management of COVID-19 in these patient populations is crucial [75,84].
Great caution is required with electronic cigarettes and other heat-not-burn tobacco prod-
ucts, as they are detrimental to lung health [85]. As Pulmonology Section Editor-in-Chief, I
am very thankful to the authors, our reviewers and the JCM team for their support. I hope
you will continue to consider JCM as the preferred home for your manuscripts.
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