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Abstract: In this study, the quasi-static and dynamic compressive mechanical behavior of a rolled Fe-
28Mn-10Al-1.2C steel (low-density) was investigated. X-ray diffraction, optical microscopy, electron
backscattered diffraction and transmission electron microscopy were conducted to characterize the
microstructure evolution. The results displayed that the steel has remarkable strain rate sensitivity
and strong strain hardenability under high strain rate compression. Most specifically, the deformation
behavior was changed with the increase in the strain rate. A feasible mathematical analysis for
the calculation of stacking fault energies and the critical resolve shear stresses for twinning was
employed and discussed the nucleation of the twinning. The microband-induced plasticity and
twinning-induced plasticity controlled the deformation under high strain rate compression and
provided a strong strain hardening effect. The higher mechanical response can increase the broad use
of low-density steel in automobile applications.

Keywords: low-density steel; dynamic compression; strain hardenability; planar glide; mechanical
twinning; temperature rise

1. Introduction

Low-density steel is a promising structural material and seeking the great attention
of researchers due to its high strength and high elongation to failure (EF) [1–3]. Hitherto,
the mechanical behavior and microstructure features of Fe-Mn-Al-C steels were exten-
sively reported. For example, Kim et al. [4] reported that the deformation was mediated
by the interaction of twinning and dislocation in Fe-30Mn-1Al-0.3C steel. Sato et al. [5]
proposed that the addition of aluminum (Al) in Fe-20Mn steel suppressed the marten-
sitic transformation and promoted the formation of mechanical twinning. Frommeyer
et al. [6] investigated the mechanical behavior of different incorporated Al, manganese
(Mn) and carbon (C) in iron (Fe) and reported an excellent combination of high strength
(~700–1100 MPa) and elongation (60%). According to their analysis, the presence of
κ-carbides was responsible for high strength and large ductility. Yoo et al. [7,8] recom-
mended that microband-induced plasticity (MBIP) was responsible for high strength and
large plasticity in Fe-28Mn-9Al-0.8C steel.

Notably, the stacking fault energy (SFE) is a significant parameter that determines the
mode of deformation (martensitic transformation, twinning or dislocation gliding plastic
deformation) during plastic deformation [9]. Transformation-induced plasticity (TRIP)
associated with martensitic transformation can control the deformation when the SFE of the
austenitic steel is less than 18 mJ/m2 [10]. In addition, twinning-induced plasticity (TWIP)
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is the dominant deformation mode when the SFE is between 18 mJ/m2 and 35 mJ/m2 [10].
Contrary, the deformation mechanism changes from TWIP to dislocation gliding for the
SFE > 35 mJ/m2. Park et al. [7,8] revealed that the dominant deformation mechanism is
planar gliding if the SFE > 70 mJ/m2. Byun [11] presented the theoretical values of critical
resolved shear stresses (CRSS) for mechanical twinning, which increases with the increase in
SFE. Park et al. [9] reported the experimental validation of the theoretical calculation of Byun
in a high alloyed Mn steel (full austenitic). Therefore, different deformation mechanisms
lead to different strengthening factors for high Mn steels [12–15]. The superior mechanical
properties of TWIP steels with strong strain hardenability are mainly due to the fact that
mechanical twins reduce the effective mean free path of dislocations [16]. In addition, the
microstructure of deformed high Mn steel is mediated by planar gliding, which also causes
high strain hardenability. The high-density dislocation wall structures formed by planar
gliding are considered to be effective barriers to dislocation movement [15].

The deformation behavior of materials and mechanical response under high strain rate
compression is different than quasi-static compressive mechanical behavior [17,18]. The
components of the low-density steel can be subjected to high strain rate compression under
stringent environments such as the collision of the vehicles (cars, busses, etc.) at high speed
can produce a strain rate of 103 to 105 s−1. These components must endure the high strain
rate compression, and their complex deformation behavior should be studied. However, best
of our knowledge, the reports on the deformation behavior under dynamic compression of
low-density steel are very few [19,20]. Moreover, the temperature rise can lead to different
SFEs (either increase or decrease) during high strain rate compression [19–21], which can
change the deformation behavior and strain hardening of the low-density steel. Therefore, it
is needed to study the mechanical response and deformation behavior of the low-density steel
under high strain rate compression.

In this work, the mechanical behavior of a rolled Fe-28Mn-10Al-1.2C steel (hereinafter
referred to as low-density steel) was studied under quasi-static (0.001 s−1) and high strain
rate compression (3030 s−1 to 5950 s−1). The quasi-static compression can provide the refer-
ence values, which can further assist in evaluating the difference between the stress–strain
behavior at low (0.001 s−1) and high strain rate compression (3030 s−1 to 5950 s−1). The
low-density steel provided high strain hardenability under both quasi-static compression
and dynamic compression. The high strain hardenability and complex deformation be-
havior under high strain rate compression were further evaluated. The microstructure of
the as-received specimen was studied through X-ray diffraction (XRD), optical microscopy
(OM), electron backscattered diffraction (EBSD), transmission electron microscopy (TEM)
and deformed specimens were studied by TEM.

2. Experimental

Firstly, the ingot of low-density steel was fabricated in a vacuum induction furnace.
The composition is presented in Table 1. Then, it was homogenized in a furnace at a
temperature of 1150 ◦C for 60 min. Further, it was subjected to a hot rolling process, and
a plate of thickness ~12 mm was achieved. The area reduction ratio was ~80%. Finally, it
was annealed at a temperature of 1100 ◦C for 60 min. The whole fabrication was carried
out in Central Iron and Steel Research Institute, Beijing, China. Specimens of dimensions
φ = 4 mm × 4 mm were machined along the normal direction (ND) of the sheet. The
quasi-static compression tests were performed on an (Instron-5985, Norwood, MA, USA) at
ambient temperature under a strain rate of 0.001 s−1. The flow stresses at true strains of
5%, 10%, 15%, 20% and 25% under a strain rate of 0.001 s−1 were considered as reference
values. The dynamic compression tests in the strain rate range 3030 s−1 to 5950 s−1 were
performed on a (split Hopkinson pressure bar (SHPB), Beijing, China). For accuracy, three
tests were conducted for both quasi-static and dynamic compression.
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Table 1. Chemical composition (wt.%) and density of Fe-28Mn-10Al-1.2C steel.

Composition (wt.%)
Density (g cm−3)

C Mn Al Fe

Fe-28Mn-10Al-1.2C 1.20 28.00 10.00 Bal. 6.92

For microstructure evolution, the rolled specimen was conducted on scanning electron
microscopy (SEM, Fei Quanta 450F, Hillsboro, OR, USA) equipped with an EBSD system.
The data acquisition was performed using (HKL, Channel-5 software, version 3.1). The step
size and grid size for EBSD were set at 0.5 µm and 405 × 404, respectively. XRD, (Almelo,
The Netherlands) analysis of as-received specimen was also conducted. For microstructure
evolution of high strain rate compressed specimens, the TEM was conducted on Tecnai
G2 F20 S-TWIN, Barcelona, Spain. For the preparation of specimens, initially, the samples
with a diameter of 3 mm and a thickness of 1 mm were machined from the as-received and
deformed specimens. Later, they were grounded by SiC abrasive papers and reduced the
thickness to 30 µm. Further, the electro-polishing of deformed specimens was carried out
by using a solution (perchloric acid and ethanol). Finally, the specimens were thinned by
ion-milling (Leica RES 101, Barcelona, Spain) under the current 1 mA and time of 30 min.

3. Results and Discussions

Figure 1 displayed the OM, IPF map and XRD of rolled low-density steel along RD-ND
plane. It can be seen that the morphology of the grains is heterogeneous, i.e., comprised of
coarse grains, equiaxed grains, some small grains and grains annealed twinning, as shown
in Figure 1a,b. The average grain size is ~10 µm, as shown in Figure 1c.
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Figure 1. (a) OM of low-density steel along RD-ND plane; (b) IPF map of low-density steel along RD-
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Figure 1d represents the XRD of the as-received low-density steel. Notably, the peaks
revealed that the microstructure is consisted of fully austenitic. The potential reason for
fully austenitic formation is the addition of high content of Mn, which stabilized the
austenite.

The mechanical response under quasi-static and dynamic compression is provided in
Figure 2a. It can be seen that low-density steel exhibited a superior combination of com-
pressive yield strength (CYS) ~580 MPa, ultimate compressive strength (UCS) ~1400 MPa
and EF 0.69. In contrast, the results of dynamic compression exhibited different mechanical
behavior. The CYS, UCS and EF tend to increase with an increase in strain rate. Notably,
the CYS of the high strain rate compressed specimens are higher than the quasi-static
compressed specimen. The UCS reached 1450 MPa at a strain rate of 5950 s−1, which is
slightly higher than the quasi-static UCS.
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Figure 2. (a) Stress–strain curves under given conditions; (b–f) strain hardening exponent graphs at
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In order to evaluate the stress–strain behavior under both conditions, we have evalu-
ated the strain hardening exponent (n-value), strain rate sensitivity (m-value) and adiabatic
temperature rise. For evaluating the n-value, the following equation was employed.

σ = Kεn (1)

Here, σ and ε represent true stress and true strain, respectively, K represents the strain
hardening coefficient, and n is the strain hardening exponent. By taking the logarithm (ln)
of Equation (1), we are arrived at;

ln σ = n ln ε + ln K (2)

The value of n can be calculated by making a linear regression analysis of lnσ and lnε.
After thorough analysis, the n-values were evaluated and are shown in Figure 2b–f. The
results provided that the n-value ~0.30 is highest in quasi-static compression compared to
higher strain rates compression. This is well-matched with stress–strain curves. However,
n-values are≥0.19 and approach 0.24 under high strain rate compression, which also assists
in understanding the high strain hardenability.

The strain rate sensitivity (m-value) [22] can be evaluated by using Equation (3) at
different strains.

m = (
∂ ln σ

∂ ln
.
ε
) = (

∂ ln σ
σ0

∂ ln
.
ε.
ε0

) ∼=
ln( σ

σ0
)

ln(
.
ε.
ε0
)

(3)

Here σ and
.
ε are defined as the normalized stress and normalized strain rate, re-

spectively; σ and
.
ε represent flow stress and strain rate, respectively; σ0 and

.
ε0 represent

reference stress and strain rate, respectively. The results of m-values are shown in Figure 3a.
It can be inferred that the strain rate sensitivity declines slightly with the increase in the
strain and displays a negligible difference at a strain of 0.25 under higher strain rates
except for 3030 s−1. This behavior is common in metals and can be correlated with thermal
softening due to adiabatic temperature rise in the specimen [23]. It is obvious that the
temperature rise can dissipate quickly under quasi-static compression, whilst it cannot
diffuse into the surrounding environment under high strain rate compression. Thereby, it
has a significant impact on mechanical behavior. The temperature rise can be calculated
through the following Equation (4).

∆T =
η

ρc

εi+1∫
εi

σ(εi,
.
εi, Ti)dε (4)

where ρ represents the density (6.92g cm−3), and c represents the specific heat (0.5 Jg−1K−1)
at room temperature, η is the fraction of the plastic work converted into heat and can be
estimated to be 1.0 at high strain rates [24]. The estimated converted heat and temperature
rise after dynamic compression are listed in Table 2.

Table 2. The estimated converted heat (∆Q), the temperature rise (∆T), and the stacking fault energy
(SFE) increment for different strain rates after dynamic compression.

Strain Rate/s−1 ∆Q (J/cm3) ∆T (K) ∆SFE (mJ/m2)

3030 258 75 17
4083 432 125 47
4900 559 162 60
5950 780 226 81
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Figure 3. (a) Strain rate sensitivity at various strain rates as a function of true strain; (b) as-received
and deformed specimens; (c) temperature rise under different strains.

In addition, the as-received and deformed specimens and temperature rise as a func-
tion of strains are shown in Figure 3b,c. The specimens were not broken until the strain rate
was 4900 s−1. The heat and the temperature rise lead to the thermal softening and take part
in overcoming the significant increase in UCS. This is the potential reason for decreasing
the n-value under dynamic compression compared to quasi-static compression.

For analyzing the microstructure and its correlation with the stress–strain response,
TEM analysis was conducted, as shown in Figure 4. The long and straight dislocations
aligned along two particular directions were observed at a strain rate of 3030 s−1 (Figure 4a),
which is the characteristic of planar gliding. The spacing of dislocation structures was about
120 nm (Figure 4b). The low energy dislocation structure was also observed as marked
‘A’ in Figure 4a. Additionally, Figure 4c revealed single-walled TL domain boundaries
(DBs). The formation of DBs is attributed to the misorientation increased by the rotation of
TL domains [25].

With an increase in the strain rate up to 4083 s−1, the highly-dense dislocation walls
(HDDWS) were formed by a large number of dislocations, as shown in Figure 4d. The
spacing of dislocation was 30–80 nm, as shown in Figure 4e. In addition, we have also
observed HDDWS terminated at the grain boundary (Figure 4f), which is the characteristic
of planar slip [25–27]. Similar results were reported in the refs. [28–30].

Microbands (MBs) formed by a couple of dislocation walls were observed at the strain
rate of 4900 s−1. These bands have subdivided the grains [28] and increased the strength of
the steel, as shown in Figure 5a. In addition, the mechanical twins also appeared (Figure 5b).
The magnified view of Figure 5b is shown in Figure 5c, which confirms that the mechanical
twinning controlled the deformation with an increase in the strain rate. The SAED pattern
(in Figure 5b) also confirmed the existence of mechanical twinning.
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Figure 5. TEM representative micrographs of deformed specimens of low-density steel at various
strain rates of (a–c) at 4900 s−1; (d) 5950 s−1; (e) as-received specimen.

Multiple slips occurred under a strain rate of 5950 s−1, as shown in Figure 5d. The TL
domains were further subdivided by increasing the number of either DB or MB intersections.
For comparison, we conducted a TEM of the as-received specimen, which shows a low
dislocation density (Figure 5e). The morphologies of both figures reveal that the dislocation
was accumulated at grain boundaries or at coherent interfaces of twins under high strain
rate compression.
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In short, it can be concluded that the deformation mode was changed with the change
in the strain rate. The main deformation mode is the combination of both planar gliding
and mechanical twinning under high strain rate compression [7,8].

It is worth noting that the deformation mechanism of austenitic steels depends on
the SFE, which is further related to composition and temperature [31]. A regular solution
model [10,11,30–32] was employed, and the values of SFE and ∆G γ→ ε of low-density
steel at ambient temperature were calculated, which were found to be ~66 mJ/m2 and
~858 J/mol, respectively. Most specifically, the SFE can be varied for different strain rates
due to temperature rise under dynamic compression; therefore, based on the regular
solution model, we calculated the values of SFE (listed in Table 2). The value of SFE is
much higher than 35 mJ/mol, which assists in understanding that the deformation mode is
governed by the dislocation gliding [10] and is well consistent with this study. However,
we also observed mechanical twinning. The CRSS for mechanical twinning is the stress
required to separate the Shockley partials infinitely on the slip plane [11], which can be
expressed as the following Equation (5).

σT = 2
Γ
b

(5)

where Γ represents the SFE, b is the magnitude of the Burgers vector (0.147 nm) [11]. The
SFE increased due to temperature rise during the dynamic loading. Therefore, based on
Equation (5), it can be deduced that the CRSS for mechanical twinning would increase.
The calculated value of SFE energy is 126 mJ/m2 at the strain rate of 4900 s−1, and the
corresponding CRSS is ~1718 MPa. The flow stress at the strain rate of 4900 s−1 is lower
than the corresponding CRSS, but the mechanical twins still appeared in the microstructure
at the strain rate of 4900 s−1. The possible reasons for the nucleation of the mechanical
twinning are the followings: (1) Equation (5) was derived without taking into account
the strain rate effect. The CRSS for mechanical twinning decreases with the increase in
the strain rate [30]. (2) Park [9] reported that the Fisher interaction (dislocation-short
range order) decreases the CRSS for mechanical twinning in the FCC metals. Similarly,
we observed the short-range order dislocation, which reduced the CRSS of mechanical
twinning. Therefore, mechanical twinning is likely to occur when the stress is lower than
the CRSS evaluated by Equation (5). The SFE increased due to temperature rise under
dynamic compression, and the CRSS for mechanical twinning should further increase.
However, dislocation gliding and an extremely short time of compression promoted the
occurrence of mechanical twinning under high strain rates.

TL DBs, HDDWS and MBs are the characteristics of planar gliding and play an
important role in the strain hardening of high Mn steels [7,8,29–33]. These fine dislocation
substructures make the glide plane spacing very narrow. The dislocations, DBs and MBs,
terminate at grain boundaries or twin boundaries, resulting in grain subdivision. The grain
subdivision is another hardening factor that causes an excellent combination of strength
and ductility of the present low-density steel [8]. In addition, the interaction of twinning
and dislocation also increases the strength of the material [17,18,34–36]. Therefore, the
synergistic effect of all these factors increased the UCS under high strain rate compression.

4. Conclusions

The microstructure evolution of high strain rate compressed low-density steel was
studied, and it was further correlated with the quasi-static and dynamic mechanical behav-
ior. The interesting outcomes are as follows:

1. The stress–strain curves revealed a positive strain rate sensitivity under all strain rates.
The flow stresses were continuously increased with an increase in the strain rate at a
fixed strain;

2. The low-density steel showed a strong strain hardening effect under quasi-static and
dynamic compression. The strain hardening exponent decreases under dynamic
compression due to the thermal softening effect caused by temperature rise;
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3. The microstructure evolution of deformed specimens showed the highly-dense dislo-
cation walls, domain boundaries and microbands under a high strain rate of 4083 s−1.
With the increase in strain rate up to 4900 s−1, mechanical twinning was also nucleated.
The dominant deformations at each strain rate are well consistent with the stacking
fault energies calculations;

4. The strong strain hardening originated from plasticity induced by microbands and
twins. The microband-induced plasticity and twinning-induced plasticity enhanced
the mechanical properties of the steel under dynamic compression.
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