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London, United Kingdom

The tumour microenvironment (TME) presents a major block to anti-tumour immune
responses and to effective cancer immunotherapy. The inflammatory mediators such as
cytokines, chemokines, growth factors and prostaglandins generated in the TME alter the
phenotype and function of dendritic cells (DCs) that are critical for a successful adaptive
immune response against the growing tumour. In this mini review we discuss how tumour
cells and the surrounding stroma modulate DC maturation and trafficking to impact T cell
function. Fibroblastic stroma and the associated extracellular matrix around tumours can
also provide physical restrictions to infiltrating DCs and other leukocytes. We discuss
interactions between the inflammatory TME and infiltrating immune cell function, exploring
how the inflammatory TME affects generation of T cell-driven anti-tumour immunity. We
discuss the open question of the relative importance of antigen-presentation site; locally
within the TME versus tumour-draining lymph nodes. Addressing these questions will
potentially increase immune surveillance and enhance anti-tumour immunity.

Keywords: tumour microenvironment (TME), inflammatory cytokines, dendritic cells, anti-tumour immunity,
draining lymph nodes, Tertiary Lymphoid Structures (TLS), immune infiltration
INTRODUCTION

Anti-tumour immunity is the ability of the body’s immune system to recognise and eliminate
tumour cells. This phenomenon has the potential to cure cancer even if cells are widely disseminated
through multiple metastatic sites and has been harnessed to develop different immunotherapy
drugs. With increased understanding of immune surveillance process by innate immune cells and
discovery of T cell immune checkpoints, such as PD-1, PD-L1, and CTLA-4; cancer
immunotherapy has significantly improved patient survival and quality of life (1–5). Treatments
aim to promote successful infiltration and activation of antigen presenting cells and boost T-cells
cytotoxic activity to promote anti-tumour immunity. However, despite promising results, not all
tumour types or patients respond equally to immunotherapy (6–8). The major reasons for failure of
immunotherapy are (1) reduced antigenicity (9–11) and (2) immunosuppressive tumour
microenvironment (TME) (12–15). The TME is highly heterogeneous; consisting of tumour cells,
stromal cells, extracellular matrix (ECM) and immune cell types including macrophages, dendritic
cells, T and B lymphocytes, Natural killer (NK) cells, mast cells, myeloid derived suppressor cells
Abbreviations: APC, Antigen Presenting cells; LNs, Lymph nodes; TDLN, Tumour draining lymph node; TME, Tumour
microenvironment; DCs, Dendritic cells; PGE2, Prostaglandin E2; ECM, Extracellular matrix; CAF, Cancer associated
fibroblasts; TLS, Tertiary lymphoid structures.
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(MDSCs) and neutrophils (16–20). The anti-tumour immune
response relies on the antigen presenting cells (APCs) to prime
naïve T cells. Tissue resident macrophages can activate T cells
locally in the tumour; whereas dendritic cells (DCs), the
professional APCs, are thought to migrate into the tumour
draining lymph nodes (TDLNs) to prime T cells (21).
However, immune surveillance by APCs and T-cell infiltration
can be impaired by dynamic changes within the tumour
microenvironment such as induction of chemokines, cytokines,
growth factors, inflammation, ECM modulators and immune
checkpoint proteins (22–27). This review focuses on the
immunosuppressive properties of the TME and how these
mechanisms alter activation, maturation and trafficking of
dendritic cells to enable immune escape and tumour progression.

DC Maturation and DC Gene Signatures
in Tumours
DCs are the professional APCs responsible for activation and
maintenance of tumour-specific cytotoxicity by T cells (28, 29).
Tumour infiltrating conventional DCs (cDC1 and cDC2) scan
and phagocytose tumour antigens (30–32); and subsequently
migrate to secondary lymphoid tissues to prime naïve CD8+ and
CD4+ T cells (33–39). The phenotype and function of highly
motile DCs is influenced by co-stimulatory molecules (CD80,
CD86), chemokine receptors such as CCR7 and cell adhesion
molecules (integrins, ICAM-1 and VCAM-1) (40–43). It has
been well established that the interaction between CC chemokine
receptor 7 (CCR7) upregulated on activated DCs and its ligand
CC chemokine ligand 21 (CCL21) expressed by lymphatic
endothelial cells (LECs) is essential for directional DC
migration towards the lymph nodes (44–46). Upon entry to
the LN, DCs use the C-type lectin CLEC-2 to migrate through
the fibroblastic reticular network to reach the paracortex to
stimulate the T cells (47–50). Secondary lymphoid tissues are
structurally specialised to facilitate effective adaptive immune
responses; however, the microenvironment of the tumour-
draining lymph nodes (TDLNs) can be immune-suppressed in
cancer patients and can display low DC count, defects in DC
development, low levels of costimulatory molecules or
accumulation of immature T cells (51, 52). DCs evaluated
from TDLNs of an immunized B16F10 melanoma-bearing
mice showed decreased functionality and expressed higher
CD86 and lower CD206 levels (53). Similarly, in a study by
Caronni et al., LNs draining lung tumours exhibited DCs with
reduced antigen presentation due to downregulation of the
SNARE VAMP3 and failed cytokine (IL12 and IFN-I)
secretion. They reported lactic acid formation in the TME to
be the main cause of DC function impairment (54). In addition,
damage-associated molecular patterns (DAMPs) released from
dying cells in the TME can also influence dendritic cells and
other immune cells by interacting with toll-like receptors (TLRs)
contributing to immunosuppressive phenotype (55). Lack of
mature, migratory DCs in tumours correlates with poor
prognosis in cancer patients and failure of immunotherapies
(56–58). Recent development of single cell transcriptome
profiling of tumour infiltrating DCs has proven to be a very
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powerful tool to map tumour-driven immune changes and to
design future immune therapies leveraging DC biology. scRNA-
seq studies on various human tumours, including non–small cell
lung cancer (NSCLC) (59–62), head and neck squamous cell
carcinoma (63), hepatocellular carcinoma (64), melanoma (65,
66), cutaneous squamous cell carcinoma (67), colorectal cancer
(61, 68), ovarian cancer (61), and breast cancer (61) have
identified tissue-specific DC subsets as well as those conserved
across cancer types. By comparing tumour infiltrating DC states
across various tumour studies, five major DC subsets have been
defined that are conserved in most tumour types (69, 70)
(Table 1). Four major ones are cDC1, cDC2, migratory DC3
(mDC3) and plasmacytoid DC (pDC); and the DC subset (DC5)
that were less conserved, mostly contained cDC2 state (CD1C+)
but additionally either expressed Langerhans cell-specific
markers (CD201, CD1A) or monocyte markers (CD14,
CD11b) such as in case of NSCLC (61, 62, 69, 70). DC5 were
also referred as inflammatory DCs as these have phenotypic
similarities to monocytes but are functionally different due to
their cDC2-specific antigen presentation properties (71). On the
other hand, classical monocytes (CD14+ CD16-) play a key role
in tissue homeostasis and inflammation (72). Like monocytes,
inflammatory DCs are also capable of releasing TNF-a and
inducible nitric oxide synthase (iNOS) upon pathogen
recognition. In addition, there is a subset of cDCs that induce
antigen-specific tolerance in dLNs; known as regulatory DCs
(DCregs) (73, 74). These are characterized by low MHC
expression and therefore weaker antigen presentation
capability to effector T cells. Instead, they can induce
proliferation of regulatory T cells (Tregs) resulting in immune
tolerance. These properties have led the use of DCregs in organ
transplantations (75).

Overall cDC2 phenotype is the most abundant, while the
other DC subtypes vary in each cancer type (61, 76). Single cell
sequencing and clustering analysis have identified transcription
factors underlying each DC phenotype, including BATF3 for
cDC1s, CEBPB for cDC2s, NFKB2 for migratory cDCs and
TCF4 for pDCs (61, 77). Another study reports differential
expression of costimulatory molecules and immune
checkpoints on different DC subsets present in the TME (78).
Although these phenomena are tightly regulated, heterogeneity
of TME can influence the transcriptional factor activity,
expression of costimulatory molecules and hence DC
maturation and/or migration (78–82). This new in-depth
knowledge of DC gene signatures can facilitate the design of
a favourable antitumour response or identification of response
biomarkers for targeted therapies (83).
TABLE 1 | Tumour infiltrating DC subsets detected in various human solid
tumours – Liver, Ovarian, Lung, Breast and Colorectal (69, 70).

DC subsets Markers

cDC1 XCR1, CLEC9A, CADM1, CD141, CD103
cDC2 CD11b, SIRPa, CLEC10A, FCER1A, CD1c
mDC3 MARCKS, CCL19, LAMP3, BATF3, CCR7, CD40
pDC TCf4, CXCR3, LILRA4, CLCEC4C, IRF7
DC5 or inflammatory DCs CD1c, CD201, CD1A, CD14
March 2022 | Volume 13 | Article 733800
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TME FACTORS AFFECTING DC
DEVELOPMENT IN TUMOURS

Pro- and Anti-Inflammatory Factors
The immunosuppression of tumour-infiltrating DCs can be
facilitated by various soluble factors secreted in the TME such as
IL-6, IL-10, IDO, M-CSF, transforming growth factor-b1 (TGF-
b1), PGE2, VEGF (Figure 1) (84–91); although promisingly some
of these defects in DC development or function have been proven
to be reversible in pre-clinical models and clinical trials (27, 91–
94). Mature DC numbers or functions were improved leading to
better immune control of the tumour in several mouse models: IL-
6 KO mice (95); tumours treated with anti-VEGF antibody (96,
97); and treatment with anti-IL-8 monoclonal antibody (98, 99).
On the other hand, pro-inflammatory cytokines such as IFN-a,
IL-2, IL-15, IL-21 and GM-CSF are also present in the TME
(Figure 1) that contribute to enhanced antigen priming, improved
DC maturation and increased immune infiltration in tumours
(100–103). Therefore, the complex balance of inflammatory
signals in the TME is an area of intense research interest but is
not trivial to target currently. One of the recent studies on human
melanoma reported the correlation of pro-inflammatory cytokine
FLT3L production (by NK cells) with abundant intratumoral
stimulatory DCs, improved patient responsiveness to anti-PD-1
therapies and better overall survival (104).

The inflammatory factors described above can be derived from
tumour cells, immune cells or stromal cells such as fibroblasts
surrounding tumour (61, 88, 105, 106). Various subtypes of
fibroblasts based on different tissue specific identity, localization,
function, transcription factor expression, collagen factors, cancer
hallmark genes etc. make up the total tumour mass. CAFs or
cancer associated fibroblasts represent a major population in the
TMEofmany solid tumours, however their origin and role in tumour
progression is complex and they can generate pro-tumourigenic and
anti-tumourigenic secretory factors. Phenotypically and functionally
different CAF subtypes based on cell-surface markers such as
podoplanin (PDPN), a-smooth muscle actin (aSMA), fibroblast-
activated protein (FAP), fibroblast-specific protein-1 (FSP-1/
S100A4), THY1 (also known as CD90), and platelet-derived
growth factor receptor-a, and b (PDGFRa and PDGFRb) have
been associated with different tumour types, stages and patient
survival (107–111). Recently, the ability of CAFs to modulate the
immune responses has been discovered and is being explored to
improve cancer therapies. CAFs also share some properties with
fibroblasts in lymphnodes that already have awell-established role in
DC migration (47, 112, 113); and therefore, parallels can be drawn
between the two to better understand theDC trafficking in the TME.
For example, PDPN present in fibroblasts interacts with CCL21 and
promotesCCL21/CCR7 axismediatedDCmigration in lymphnode.
This knowledge was exploited to study the role of PDPN+ CAFs
under the influence of hypoxia in tumour progression (114). The
study reportedPDPNoverexpression due tohypoxia in fact favoured
invasionofCCR7+tumour cell intoCCL21+peripheral lymphnodes
leading tometastasis (114,115).Tumoursassociatedwithhypoxiaare
immunosuppressive and lack high expression of CCL21 and
therefore therapeutic use of recombinant chemokines (such as
Frontiers in Immunology | www.frontiersin.org 3
CCL21) to stimulate immune cell recognition in tumours is being
considered as a novel treatment approach (116, 117). Also, more
research is required to understand the transition of a ‘normal’
fibroblast into an immunosuppressive phenotype such as S100A4+

PDPN+ CAFs as reported in breast cancer patients (109) or into an
inflammatory CAF (iCAF) phenotype producing IL-6, IL-10, and
IDO (118, 119) linked to poor patient survival. Authors of Fang et al.
(118) have shown the role of the urokinase-type plasminogen
activator, PLAU in conversion of fibroblasts to iCAFs in esophgeal
cancer (118), but much is still unknown about fibroblast
differentiation in TME.
TERTIARY LYMPHOID STRUCTURES (TLS)

TLS are established at sites of chronic inflammation and can
structurally and functionally resemble secondary lymphoid organs
(120–122). Recent studies onmurine models of TLS have shown the
role of PDPN+FAP+ immunofibroblasts indriving thedevelopment
and expansion of TLSs (123, 124). These form part of the TME and
can benefit from quick surveillance and locally primed immune
response against tumour antigens (Figure 2). Occurrence of TLS
correlatedwithhighnumber ofmatureDCs, strongT-cell infiltration
and long-term survival in human primary lung, breast, colorectal,
melanoma andother tumours (120, 125–128).However, factors such
as TLS location, tumour stage, tumour mutations, treatment history
can affect immune cell infiltration and anti-tumour response (128,
129). The cells residing in TLS in tumours are known to express Th1,
CD4, CD8, CD31, CD23, FOXP3, chemokines (CCL19, CCL21) and
clusters of DC-Lamp+ mature dendritic cells (120, 130, 131)
providing an immune-supportive niche (132–134). Typically, TLS
at the periphery of the tumour havemore organised and distinctDC/
T-cell and B-cell zones than intratumoral TLS which containmostly
B cells (133). Future research understanding the immunological
features of extratumoral versus intratumoral TLS will be useful to
predict responsiveness to immunotherapy and overall survival.
IMMUNE CHECKPOINT GENES

Theothergroupofmolecules responsible for causingdysfunction in
tumour-infiltrating DCs are immune checkpoint proteins PD-L1,
PD-1, ILT2, CTLA4, TIM3 expressed by tumour cells or other
immune cells (135–141). As mentioned before, expression of these
inhibitory molecules is variable among DC subsets. For example,
PD-1 and TIM-3 are mostly expressed on cDC1s; PD-1 expression
specifically has been shown to inhibit NF-kB activation which is
critical for DC functions including costimulatory molecule
expression, antigen presentation and cytokine release leading to T
cell inactivation (78, 135, 137, 139, 140). On contrary, ILT2 is
expressed on pDCs and cDC2s, but not on cDC1s (78). The central
goal of immunotherapies is inhibition of immune checkpoint genes
and the expansion of mature cDCs and cytotoxic CD8+ T cells
within tumours. It is associated with positive patient outcomes in
multiple cancer types when combined with chemotherapy or
radiotherapy treatments (28, 135, 142, 143). Despite this, many
patients still fail to respond to immune checkpoint blockade. A
March 2022 | Volume 13 | Article 733800
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better understanding of the role of inflammatory mediators in
determining tumour progression will also provide therapeutic
avenues to improve immunotherapy outcomes (144–147).

Different labs have reported direct inhibition of pro-
tumourigenic inflammation in combination with immune
Frontiers in Immunology | www.frontiersin.org 4
checkpoint blockade as a powerful strategy to improve the patient
survival rates (27, 148–150). One such example is the use of aspirin
that blocks the COX-2/PGE2 pathway and has shown promising
results in preclinical melanomamodels (27, 149). Prostaglandin E2
(PGE2), catalysed by the enzyme COX-2 is elevated in many
FIGURE 1 | Cancer inhibitory and cancer-promoting signals within the tumour microenvironment (TME). Anti-tumour response is initiated by antigen recognition and
trafficking by mature DCs to the tumour draining lymph node (TDLN) which involves upregulation of chemokine receptors (CCR7), MHC class II, co-stimulatory
molecules (CD80 and CD86), inflammatory molecules (IL-12, INF-1) and adhesion molecules (ICAM-1) (listed in green). Having said that, immunosuppressive nature
of TME secretes tumour promoting inflammatory mediators (listed in red) such as prostaglandin E2, cytokines (IL-10, IL-6, TGFß), chemokines (CXCL1) and growth
factors (VEGF) that impede anti-tumour response by altering DC phenotype, T-cell infiltration and ECM remodelling. These differences result in poor surveillance by
DCs and lower infiltration of T cells in tumours with immunosuppressive molecules (red).
FIGURE 2 | Alternate sites of antigen presentation and T-cell priming. Three different sites for presentation of tumour associated antigens have been described:
Tumour draining lymph node (TDLN), Tertiary lymphoid structures (TLS) and Tissue resident memory T cells. A population of memory precursor cells are believed to
differentiate into CD103+ tissue resident memory T cells. These cells reside in the tumour and can recognize tumour antigens followed by killing the target tumour
cell. In addition, tertiary lymphoid structures (TLS) also present a potential site for T cell priming. TLSs are organised cell aggregates formed within or at tumour
margins in response to local inflammation and numerous cell-cell interactions occurring within the TME. Since these contain various immune cell types, TLSs can
activate local immune response against the tumour, however the mechanism for T-cell priming within the TLSs is unknown.
March 2022 | Volume 13 | Article 733800
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tumours (151) and plays a role in tumour evasion by directly
inhibiting cytotoxic immune responses and subsequently
mediates expression of other inflammatory molecules such as
CXCL9, CXCL10, CXCR4, CXCL12, IDO1 and interferon (IFN)-
g (27, 144, 148, 150, 152–154). Induction of CXCL12, CXCR4 and
IDO1 in tumours have been associated with accumulation of
myeloid derived suppressor cells (90, 155). Moreover, direct
interaction of EP2/EP4 receptors (present on DCs) with the
available PGE2 can modulate DC maturation, metalloprotease-
drivenDCmotility, and immune response in tumours (27, 149, 152,
156–158). Thus, targeting the inflammatory environment of the
tumour is important to restore DC function to harvest the full
potential of immunotherapy.
LEVERAGING DC BIOLOGY IN CANCER
THERAPIES

Anti-tumour immunity relies on cross-presentation of tumour
antigens by DCs to elicit a CD8+ T cell response. Among various
DC subsets, cDC1s (XCR1+, CD103+) play a critical role in anti-
tumour immunity. CLEC9A, (also known as DNGR1) is highly
expressed on cDC1s and binds necrotic cell debris and promotes
antigen processing in tumours (159–161). One of the reasons for
checkpoint blockade failure is poor antigen presentation due to
absence of co-stimulatory molecules and therefore modulation of
DC function could increase responses to these therapies. One
method to address this issue is the development of DC vaccines
for cancer treatment, bypassing the need to activate and mature
DCs within the tumour. DC-based cancer vaccines work by
recruiting ex-vivo generated dendritic cells (or monocyte derived
patient DCs) that are genetically engineered, matured, and
loaded with tumour-specific antigens (162–164) or by
reprogramming endogenous DCs by injecting biomaterial-
based scaffolds providing favourable microenvironment for the
recruitment of activated DCs (165, 166). An ideal DC vaccine
must be able to increase cross-presentation by DCs, express high
levels of co-stimulatory molecules, induce tumour-specific T cells
with high migratory and cytolytic capabilities. Furthermore, the
use of dendritic growth factor Flt3L in combination with
checkpoint inhibitors or DC vaccines has improved number of
activated intratumoural cDC1s and enhanced anti-tumour
immunity to BRAF and checkpoint blockade in preclinical
models (167–170).

Presence of co-inhibitory signals (e.g., IL-10, IL-6, PGE2,
TGF-b) or absence of co-stimulatory molecules (e.g. CD80 and
CD86) can result in inefficient antigen presentation by DCs and
poor induction of antigen-specific CD8+T cells. Therefore,
inflammatory cytokines secreted by tumour cells and tumour-
associated stroma have been identified as promising candidates
to potentiate current immunotherapies including immune
checkpoint blockade and CAR-T therapy (149, 171–173).
Stroma present around most tumours can also magnify
inflammation and impede DC phenotype (174–177) and hence
manipulating stroma/DC crosstalk in the TME could help
improve DC function.
Frontiers in Immunology | www.frontiersin.org 5
DISCUSSION

It is now established that tumours can exploit their surroundings
to create an immunosuppressive microenvironment to control
DC function within both the TME and TDLNs (178, 179). These
signals including cytokines, chemokines, prostaglandins, growth
factors, immune checkpoint genes, etc., may target different DC
subsets infiltrating tumours and influence DC maturation,
antigen uptake and DC migration (53, 180). Although the
success of immunotherapy relies on enhanced T cell activity,
activation of tumour-specific T cells cannot be achieved without
prior antigen presentation by professional DCs. To overcome
immunosuppressive signals, personalized vaccines loaded with
patient-derived engineered DCs or delivery of innate stimulus
such as TLR3 ligand or a STING agonist to DCs at the tumour
site are being developed and have shown promising results (181,
182). Repurposing of existing anti-inflammatory drugs such as
aspirin along with DC vaccines or immunotherapies has also
been successfully tested in pre-clinical models (149).

This review also addresses the importance of local versus TDLN
priming of anti-tumoural T cell responses. Tissue resident memory
CD103+ CD8+ T cells residing in the non-lymphoid tissues have
shown to provide local immunosurveillance and enhanced immune
responses in melanoma, lung and breast tumours (183–187).
Moreover, melanoma patients with higher resident T cell population
respondedbetter toanti-PD-1 immunotherapywith improvedsurvival
(188, 189). However, what is still unclear is how are tissue resident
memoryCD8+Tcellsprimed(Figure2) andwhether there is adistinct
population of DCs required to activate them. Although the exact
regulatory mechanisms remain to be explored further, it is
hypothesized that crosstalk between tissue resident memory T cells,
tumour cells, stromal cells and DCs within the TME potentiate
secondary T-cell responses against tumours (Figure 2). This also
opens discussion on the role of tumour associated tertiary lymphoid
structures (TLSs) in intra-tumoural DC maturation; and sourcing T
cells andB cells to the tumour (190). AlthoughTLShas been positively
correlated with anti-tumour responses, there are still many questions
remain to be answered such as TLS composition andTLS induction at
tumour site before TLS can be adopted as a predictive tool or as a
therapeuticoption.Ourdiscussiondemonstrates the importanceof site
of antigen presentation in DCmaturation and trafficking which must
be exploited therapeutically to enhance immune response
against cancer.
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