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Any reports and responses or comments on the
article can be found at the end of the article.

Abstract
We report on the activities of the 2015 edition of the BioHackathon, an
annual event that brings together researchers and developers from around
the world to develop tools and technologies that promote the reusability of
biological data. We discuss issues surrounding the representation,
publication, integration, mining and reuse of biological data and metadata
across a wide range of biomedical data types of relevance for the life
sciences, including chemistry, genotypes and phenotypes, orthology and
phylogeny, proteomics, genomics, glycomics, and metabolomics. We
describe our progress to address ongoing challenges to the reusability and
reproducibility of research results, and identify outstanding issues that
continue to impede the progress of bioinformatics research. We share our
perspective on the state of the art, continued challenges, and goals for
future research and development for the life sciences Semantic Web.

Keywords
BioHackathon, Bioinformatics, Semantic Web, Web Services, Ontology,
Visualization, Databases, Linked Open Data, Metadata, Workflows
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Abbreviations
Miscellaneous
API, Application Programming Interface; BH15, BioHacka-
thon 2015; CUI, Concept Unique Identifier; CV, Controlled 
Vocabulary; DOID, DO IDentifier; DPA, Disease-Phenotype 
Association; EHR, Electronic Health Records; FAIR, Findable, 
Accessible, Interoperable and Reusable; GDA, Gene-Disease  
Association; GPM, General Process Model; LIMS, Labo-
ratory Information Management System; MSEA, Metabo-
lite Set Enrichment Analysis; ORCID, Open Researcher and  
Contributor ID; NLP, Natural Language Processing; NMR,  
Nuclear Magnetic Resonance; VG, genomic Variation Graph.

Ontologies and vocabularies
BAO, BioAssay Ontology; CDAO, Comparative Data Analy-
sis Ontology; ChEBI, Chemical Entities of Biological Inter-
est; CHEMINF, CHEMical INFormation ontology; DC, DCT, 
Dublin Core, Dublin Core Terms; DO, Disease Ontology; 
EFO, Experimental Factor Ontology; EpSO, Epilepsy and Sei-
zure Ontology; ERO, Eagle-i Resource Ontology; EXACT, 
Experiment ACTions ontology; EXPO, Ontology of scientific  
experiments; FMA, Foundational Model of Anatomy; FOAF, 
Friend Of A Friend; GO, Gene Ontology; HPO, Human Pheno-
type Ontology; IAO, Information Artifact Ontology; LABORS, 
LABoratory Ontology for Robot Scientists; MOD, Metadata for 
Ontology Description; MP, Mammalian Phenotype ontology;  
OA, Open Annotation ontology; OBAN, Ontology of Bio-
medical AssociatioN; OBI, Ontology for Biomedical Investiga-
tions; OMV, Ontology Metadata Vocabulary; ORDO, Orphanet 
Rare Disease Ontology; ORTH, ORTHology ontology; PATO, 
Phenotypic quality ontology; PICO, Patient Intervention  
Comparison Outcome; PIERO, Partial Information of chemical 
transformation; RO, Relations Ontology; SIO, Semanticscience 
Integrated Ontology; SIRO, Sample, Instrument, Reagent, 
Objective; SMART Protocols, SeMAntic RepresenTation for 
experimental protocols; UMLS, Unified Medical Language  
System.

Organizations
BTMG, Biomedical Text Mining Group at the NIH; DBCLS, 
Database Center for Life Science; EBI, European Bioinfor-
matics Institute; GA4GH, Global Alliance for Genomics and 
Health; HGNC, HUGO Gene Nomenclature Committee; jPOST, 
Japan Proteome Standard Repository/Database; LOV, Linked 
Open Vocabularies; NBDC, National Bioscience Database 
Center; NCBI, National Center for Biotechnology Information;  
NCBO, National Center for Biomedical Ontology; NESCent, 
National Evolutionary Synthesis Center; NIH, National Insti-
tutes of Health; OBO Foundry, Open Biomedical Ontologies 
Foundry; Open PHACTS, Open Pharmacological Concept 
Triple Store; PDBj, Protein Database Japan; RDA, Research  
Data Alliance.

Project
CWL, Common Workflow Language; DisGeNET, Disease 
Gene Network; GEO, Gene Expression Omnibus; HUPO-
PSI, Human Proteome Organization Proteomics Standards 
Initiative; KEGG-OC, Kyoto Encyclopedia of Genes and  

Genomes – Orthologous Clusters; LSDB Archive, Life Science 
Database Archive; MBGD, Microbial Genome Database; MeKO, 
Metabolite profiling database for Knock-Out mutants in Ara-
bidopsis; OLS, Ontology Lookup Service; OMA, Orthologous 
MAtrix; OMIM, Online Mendelian Inheritance in Man; ORKA, 
Open, Reusable Knowledge graph Annotator; PASSEL, Peptide  
AtlaS SRM Experiment Library; PMR, Plant and Microbial 
Metabolomics Resource; PRIDE, PRoteomics IDEntifications 
database ; QfO, Quest for Orthologs; SADI, Semantic Auto-
mated Discover and Integration; SIDER, SIDe Effect Resource;  
SWIT, Semantic Web Integration Tool.

Technologies
BED, Browser Extensible Data; HPC, High Performance Com-
puting; HTTP, HyperText Transfer Protocol; JSON, JavaScript 
Object Notation; JSON-LD, JSON – Linked Data; LOD, Linked 
Open Data; OWL, Web Ontology Language; RDF, Resource 
Description Framework; RDFa, RDF in Attributes; RML, RDF 
Modeling Language; SAM/BAM, Sequence Alignment/Map,  
Binary Alignment/Map; SHA, Secure Hash Algorithm; SPARQL, 
SPARQL Protocol and RDF Query Language; TPF, Triple Pat-
tern Fragments1; URI, Universal Resource Identifier; VCF,  
Variant Call Format; YAML, YAML Ain’t Markup Language; 
XML, eXtensible Markup Language.

Background
The past few years have yielded considerable progress in the 
development and application of fundamental digital technologies  
that support research in the life sciences2, including ontologies 
and Linked Open Data (LOD), semantic web services, natural 
language processing, and tooling for workflows and virtualiza-
tion. While these technologies are useful for life sciences research,  
key to their long-term success lies in community agreements 
that foster standardization and interoperability2. In an effort to 
coordinate the social and technological aspects of in silico life 
sciences research, the authors convened at the 2015 edition of 
the BioHackathon (BH15), an event that aims to create a highly 
collaborative environment to explore, evaluate, and implement 
solutions to the problems of data publication, integration, and  
reuse3–6. A hackathon is a type of software development lifecycle 
model featuring problem-focused development via inten-
sive, time-limited, self-organized group activities, typically 
involving programmers and various types of collaborators7. 
The hackathon methodology has been shown to be produc-
tive in a variety of biomedical fields, including rehabilitative  
healthcare8, biological data science9, neuroscience10, computer- 
aided differential diagnosis11, stroke detection12, standards  
specification in systems and synthetic biology13, data science for 
knowledge discovery in medicine14, medical device innovation15, 
enrichment of biodiversity data16, and teaching genomics17.  
BH15 was held in Nagasaki, Japan, over the period of  
September 14th to 18th 2015, and was hosted by the National  
Bioscience Database Center (NBDC,18) and the Database  
Center for Life Science (DBCLS,19) to promote interoperabil-
ity of life sciences databases in Japan. Researchers and develop-
ers from around the world participated by invitation. BH15 was  
preceded by a public symposium featuring new research and  
updates from the participants. BH15 involved 80 individuals 
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from 12 countries and a wide variety of backgrounds, including 
computer programmers, bioinformaticians, biocurators, ontolo-
gists, biological scientists, systems biologists, data scientists, and  
linguists.

Here, we present selected outcomes from BH15, self-organized 
by the participants in projects around different topics, which 
we discuss in the following sections. At the highest level, the 
contours of these topics are, broadly, i) life sciences data,  
including genotypes and phenotypes, orthology and phylogeny, 
proteomics, metabolomics, and biochemical molecular; 
and ii) research methods, i.e. the technologies that support  
in silico analysis in the life sciences, including data retrieval 
and querying, natural language processing, reproducibility, 
and semantic metadata. Under these broad topics, we identify  
various themes within which specific activities took place. 
These topics and themes are illustrated in Figure 1. The activi-
ties and their scopes were identified by the participants through  
self-organization following Open Space technology20. As such,  
the commitment of the participants to any particular activ-
ity was somewhat free-wheeling, and so we report the out-
comes collectively, rather than subdivided by participant teams.  
The results of the work reported here are relevant both to evalu-
ate the current state of the relevant technologies and problem 
areas in the life sciences, and to help the field understand the 
potential and problems of future research and development  
efforts.

Life sciences data
Genotypes and phenotypes
Variation graph construction. In the context of the Glo-
bal Alliance for Genomics and Health (GA4GH,21) there is a  

challenge to build genomic variation graphs (VG). A genomic 
variation graph represents all “common” genetic variation, pro-
viding a means to stably name and canonically identify each 
variant. At BH15, we modeled such graphs using RDF semantics.  
Taking the 1000 Genomes project phase 3 Variant Call For-
mat (VCF) files and the GRCh37 human reference genome we 
built a variant graph using the VG tool22. Such a VG graph cor-
responds to just fewer than 2 billion triples. It was loaded 
inside 67 minutes on a server from 2013 that had 64 AMD 
X86_64 cores, 256 GB ram, and 3 TB of consumer-quality SSD  
storage without specific tuning. The SPARQL database disk 
footprint with indexes was 49 GB, i.e. double the disk space 
consumed by the raw VG tool files. This shows that a modern 
SPARQL database does not require exorbitant resources to be 
able to index and load a variant graph of interest to the medical 
community. We also demonstrated that a number of queries on the  
graph executed within reasonable times. This work was con-
tributed to the VG development team and incorporated into 
the VG release 1.4.0. At BH15, the standard API developed  
by the core API team of the GA4GH was implemented as a  
service running on top of a SPARQL endpoint.

Variant call transformation. VCF is a standard for text files 
that store gene sequence variations and is used for large-scale  
genotyping and DNA sequencing projects. Converting a sin-
gle high-throughput sequence dataset, e.g. a VCF file but more 
so a very large database such as the Ensembl Variation Data-
base, into RDF results in a number of triples that may be  
unmanageable for a small bioinformatics lab, even if backed 
by current hardware. However, data can also be consid-
ered in a more dynamic way, if we abstract the concept of data 
generation to, for instance, some bioinformatics analysis or  

Figure 1. Main themes and topics of the BioHackathon 2015.
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pipeline, where new data can be generated on the fly as a result 
of some computation over existing information or files. To 
this end we prototyped a real-time system to transform VCF 
into RDF and query it by SPARQL. With JRuby we could use 
the original samtools/htsjdk libraries for manipulating VCF, 
BED, SAM/BAM files. With this approach, we could quickly  
prototype our solution and defer the development of proper 
Java libraries sharable by alternative approaches and/or 
applications. Our approach allows generating virtual end-
points over multiple VCF files, combining the simplicity of 
native file formats with the power of the SPARQL language,  
significantly improving the way we link and query heterogeneous  
information. An implementation of such a system was con-
ceived during the 1st RDF summit in 2014 at the DBCLS in 
Tokyo and further developed during BH15. The system23 was 
based on de facto standard frameworks, such as Ruby RDF24 and  
OpenSesame25, which facilitate the generation and transfor-
mation of RDF based data and the processing of SPARQL  
algebra and queries.

Phenotype ontology translation. Precision medicine aims to pro-
vide patient-tailored diagnostics, prognostics, treatments, and 
prevention. Part of the strategy to precision medicine involves 
more precise clinical phenotyping. The Human Phenotype Ontol-
ogy (HPO) is an ontology of abnormal phenotypes associated 
with human disease26. Originally aimed to describe Mendelian 
genetic diseases, it has since been expanded to cover pheno-
types associated with rare and common diseases. The avail-
ability of phenotype terms expressed in the Japanese language is  
key to its application in text mining Electronic Health Records 
(EHR) in Japan.

The development project of HPO-Japanese was initiated prior to 
BH15 in cooperation with the HPO teams (Dr. Peter Robinson, 
Dr. Melissa Haendel, Dr. Nicole Vasilevsky, and Dr. Tudor 
Groza). We translated English terms into Japanese by exact 
matches to existing English-Japanese dictionaries, including the  
Elements of Morphology – Standard Terminology (Japanese 
ed.), the Japanese Association of Medical Sciences Medical 
Term Dictionary, the Life Science Dictionary (LSD), and gen-
eral dictionaries. The total number of terms translated is 11,425. 
Elements of Morphology – Standard Terminology (Japanese 
ed.) covers ~400 terms (3.5%), the Japanese Association of  
Medical Sciences Medical Term Dictionary covers 1,807 terms 
(15.8%). The remaining terms need to be curated by experts. 
We are now compiling several translated terms as curated HPO-
Japanese. Once completed, HPO-Japanese will be open and 
available so that precise and standardized phenotyping can be 
undertaken using Japanese EHR text and which can be directly  
linked to the international resources and research systems through 
HPO identifiers.

Orthology and phylogeny
Orthology ontology development and application. Orthologs 
are defined as genes derived from a common ancestral gene by 
speciation. Orthology information can play a central role in pre-
dicting gene function in newly sequenced genomes and can also 
help unravel the evolutionary history of genes and organisms. 

Orthology resources have been represented in a variety of for-
mats, including the OrthoXML27 that is used by several orthol-
ogy databases such as InParanoid28, Orthologous MAtrix  
(OMA,29), and TreeFam30. The interest in exchanging orthol-
ogy data with other communities has provided the impetus 
for research on applying the Semantic Web and using com-
mon ontologies for making the meaning of the content explicit. 
Thus, on the basis of previous studies on the semantic represen-
tation of orthology31,32, we made efforts during BH15 towards  
semantic standardization of orthology content33.

We developed the Orthology Ontology (ORTH,34 and35) to  
capture essential concepts pertaining to orthology, includ-
ing clusters of orthologs derived from speciation events. ORTH 
was designed following best practices in ontology engineering,  
i.e., reusing related ontologies such as the Semanticscience Inte-
grated Ontology (SIO,36), the Relations Ontology (RO,37), and 
the Comparative Data Analysis Ontology (CDAO,38). We used  
the Semantic Web Integration Tool (SWIT,39 and40), a generic tool 
for generating semantic repositories from relational databases 
and XML sources, to convert InParanoid, OMA, and TreeFam 
datasets in OrthoXML format into RDF. More details and sam-
ple queries for the datasets using ORTH are on the source code  
repository41,42.

Although the standard mapping and transformation by SWIT 
was largely able to transform the content of the three databases, 
though a few resource-specific rules were necessary because: 
(1) OrthoXML offers generic tags that are used by orthol-
ogy databases in a heterogeneous way, e.g. for describing the 
taxonomic range of a cluster of orthologs; and (2) different  
orthology resources use identifiers of genes or proteins from dif-
ferent databases, so the corresponding prefixes for URIs had to 
be adapted. The next steps include: (1) evaluation of the results 
by the Quest for Orthologs (QfO,43) community, which could 
lead to the development of a QfO semantic infrastructure for 
sharing orthology resources; (2) examining the interoperability 
of semantic orthology datasets using additional databases such  
as UniProt44, KEGG OC45, and the Microbial Genome Data-
base (MBGD,46); and (3) developing applications and tools for  
comparative analysis of genomes/proteomes utilizing the ORTH.

Molecular evolutionary process calibration. Not only qualita-
tive but also quantitative representation of evolutionary events, 
i.e. on a time axis, among organisms is important for evolution-
ary biology. However, the adoption of Semantic Web technolo-
gies is lagging behind in domains of the biological sciences  
outside of the conventional scope of BH15. For example, in 
recent years several hackathons and other meetings have been 
held to address challenges of data mobilization47 and integration 
in phyloinformatics48,49 and biodiversity informatics16 that uncov-
ered a paucity of web services that deliver ontologized, or even 
machine-readable, data on fossil specimens. Although expected 
waiting times between speciation events can be modeled50,  
fossils are needed for calibrating phylogenies to absolute time 
axes49,51,52, e.g. to detect nucleotide substitution rate shifts coincid-
ing with evolutionary events such as speciations, which generate  
orthology, and gene duplications, which generate paralogy.
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Recently, a working group at the National Evolutionary Syn-
thesis Center (NESCent,53) initiated a project to address this54 
and to establish a database of reference fossils with a web serv-
ice API55. To evaluate whether this new resource can indeed 
be usefully applied in the analysis of molecular data we  
developed a proof-of-concept pipeline55 (based on Bio::Phylo56 
and SUPERSMART57) that includes a reconciliation between 
fossil taxa from the FossilCalibrations database and extant 
taxa from in the TreeFam orthology database. The steps are as  
follows:

1.    Download a data dump release from TreeFam.

2.    For each TreeFam gene family, fetch fossils from  
FossilCalibrations through the API. This was done by  
querying for the taxonomic names, e.g. “Mammalia”, that 
are applied to internal node labels in gene family trees.

3.    Apply the fossil ages as calibration points for a  
penalized likelihood analysis using r8s58.

4.    Using the produced ‘ratogram’ (a phylogenetic tree 
whose branch lengths are proportional to inferred sub-
stitution rates, one of the results produced by the r8s  
analysis), calculate the substitution rate as a function of 
time since the most recent gene duplication event.

The rationale for this pipeline was that the general model of 
gene duplication followed by neo- or subfunctionalization59 
suggests that reconstructed substitution rates (which are  
retrospective, and based on accumulated fixed mutations) 
should be elevated in novel gene copies that are either under 
relaxed or under directional selective pressure. Hence, we 
would expect to see elevated substitution rates following a 
duplication event, which should taper off over time. Given that  
baseline substitution rates differ between lineages we performed 
an assessment of whether this prediction could be detected 
confined to a single lineage, that of C. elegans. Figure 2 sug-
gests that this is indeed the case (this is in essence a different  
way of obtaining, roughly, some of the findings of60). As a proof 
of concept to test whether it is possible to include fossil data 
from this new resource we conclude that this is indeed possible,  
but we note several drawbacks:

•    The FossilCalibrations database makes its data avail-
able as simple JSON. This is convenient for programmers 
but it also means that certain concepts used in the  
JSON are ambiguous as they are not linked to any  
controlled vocabulary or ontology.

•    The distinction between stem and crown fossils is made 
using magic numbers whose values and their meanings are 

Figure 2. Substitution rates as a function of evolutionary distance since the age of the most recent gene duplication observed in 
Caenorhabditis genomes.

Page 8 of 34

F1000Research 2020, 9:136 Last updated: 08 APR 2020



poorly documented (we could only discover their semantics 
by inspecting the source code of FossilCalibrations).

•    Some of the taxon names used by FossilCalibrations are 
not scientific names from any explicitly identified tax-
onomy. For example, some fossil calibration points have 
names such as “Chimpanzee-Human”, or “Humanity”.  
Such names are difficult to resolve using taxonomic name 
resolution services.

•    There are large biases in taxon sampling in the data-
base. In fossil databases this is nearly inevitable as some 
taxa fossilize much better than others, but even where 
a relatively rich fossil record is known to exist, e.g. in 
the sea urchins (Takeshi Kawashima, pers. comm.), no  
records were available in the database.

The first three drawbacks we identified can all be traced back 
to poorly defined semantics, which we therefore character-
ize as the key current issue in LOD representation of fos-
sil specimens. To fill this gap, firstly we need to semantically  
curate FossilCalibrations data manually, which of course 
may take time, then export curated information in RDF so 
that analyses proposed in this section can be integrated in the  
automated pipeline.

Proteomics
Protein semantic representation. Many datasets on the Seman-
tic Web are available as RDF, but often lack the explicit model-
theoretic semantics provided by languages such as OWL. For 
complex datasets, the additional semantics of OWL, which 
includes assertions of disjointness, i.e. the explicit seman-
tic distinction between classes and their instances, and axi-
oms restricting the use of classes and object properties, may be  
particularly beneficial. The main limitation of languages such 
as OWL is that querying them is often highly computation-
ally intensive and therefore not feasible for large datasets. Our 
aim was to evaluate how well formal languages like OWL 
scale in representing very large datasets. We chose the UniProt  
database44, as it currently constitutes one of the larger RDF 
datasets, is used throughout biology, and has rigorous quality 
checks. Our aim was to find a representation of proteins and their  
functions using OWL. As automated reasoning over OWL  
knowledge bases is highly complex (2-NEXPTIME com-
plete), we limited ourselves to the OWL 2 EL profile. However, 
widely used ontology design patterns for representing functions 
are not expressible in OWL 2 EL, as certain types of restric-
tions (in particular universal quantification) do not fall within  
the OWL 2 EL expressivity. As a consequence of these  
limitations, we decided to develop a novel representation pat-
tern for asserting that proteins have a function that would fall 
in OWL 2 EL and would enable us to convert all of UniProtKB  
into OWL (though for testing purposes we converted only a 
subset on the order of 105 OWL axioms). Specifically, given  
proteins XYZ, we generate the following classes:

•    Class XYZ (instances of this class are individual proteins)

•    Class XYZ_all (instances are the sets of all XYZ pro-
teins in the universe; intuitively, only one instance of this  
class can ever exist)

•    Class XYZ_isoform for all isoforms of XYZ

•    Class XYZ_generic (the 'generic' form of the protein,  
i.e., a group of orthologous proteins)

•    We also generate the following axioms (here expressed in 
Manchester OWL Syntax):

•    XYZ SubClassOf: XYZ_generic

•    XYZ_isoform SubClassOf: XYZ

•    XYZ_isoform SubClassOf: isoform-of some XYZ

•    XYZ SubClassOf: member-of some XYZ_all

•    XYZ_all SubClassOf: { xyz } i.e., XYZ_all is a single-
ton class, and lower-case xyz is a new constant symbol  
that is newly introduced for each axiom of that type

•    XYZ_all SubClassOf: has-member only XYZ (XYZ_all  
is homogenic)

Of these axioms, only the last axiom (XYZ_all is homogenic) 
is not expressible in OWL 2 EL, while all other axioms can be 
expressed in the OWL 2 EL profile. We have converted sev-
eral types of proteins from UniProtKB using this approach 
and evaluated queries and query time. However, a thorough  
analysis on how well this approach scales to ontologies of 
the size of UniProtKB is left for future work. The source 
code developed for this project is available at our source code  
repository61,62.

Proteome assay annotation. In proteomics, expressed proteins 
are usually identified by mass spectrometry. In most  
common workflows, proteins are digested into peptides with a 
protease. The peptides are ionized and then fragmented. Their 
precursor mass-to-charge ratios and fragment ion spectra are  
experimentally measured and compared with theoretical masses 
and fragmentation patterns of peptides calculated from a pro-
tein database. Information about experimental protocols and 
data analysis methods is thus important for understanding the 
raw and processed data. An identified protein list has substan-
tial amounts of metadata such as labels used for quantification,  
e.g. iTRAQ,63, or SILAC,64, protease used for protein diges-
tion (most commonly trypsin), pre-separation method (LC, 
2D-gel electrophoresis, etc.), ionization and ion detection 
method of the mass spectrometer (MALDI-TOF-TOF, etc.), 
peak-processing software (ProteoWizard,65; MaxQuant,66; etc.), 
protein database used for theoretical peptide mass calculation  
(UniProt,44; Ensembl,67; etc.), database search software for pep-
tide-spectral matches (Mascot,68; X!Tandem,69; MaxQuant,66; 
etc.), and parameters and thresholds of the software. These 
experimental protocol- and data analysis method-related terms  
are necessary metadata for submissions to proteome  
databases/repositories.

To describe these metadata, the Human Proteome Organiza-
tion Proteomics Standards Initiative (HUPO-PSI) has developed 
the PSI-MS controlled vocabulary70 and ProteomeXchange71,  
which is a consortium of mass spectrometry proteomics 
data repositories including PRIDE, the Peptide Atlas SRM  
Experiment Library (PASSEL,72), and MassIVE73, has established  
a core set of metadata for dataset deposition using PSI-MS.
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The Japanese proteome community is now developing the 
Japan Proteome Standard (jPOST) repository74, which is a 
mass spectrometry proteomics data repository. The salient fea-
ture of jPOST is the ability to re-analyze data from deposited 
raw data; by using raw data and a jPOST-original re-analysis 
workflow, the community plans to integrate data from various  
experiments to construct a standardized proteome database  
(jPOST database). Original analytical results from submitters 
are not suitable for integration because they were performed  
using various different protein databases and peak-identification/
database search software with various different parameters.

For re-analysis, it is necessary to describe detailed informa-
tion about experimental procedures. However, current controlled 
vocabularies (CVs) such as PSI-MS are insufficient for metadata 
description, and so we have attempted to reorganize and extend 
the current CVs for jPOST. At BH15, we enumerated required  
categories of metadata, such as Instrument mode and Quan-
tification platform, and collected vocabularies with the coop-
eration of experimental proteomics scientists. The collected 
vocabularies were mapped to existing CVs where possible, and 
we began to develop an ontology for unmapped vocabularies75.  

We also developed an RDF schema based on the CVs and ontol-
ogy (Figure 3) for jPOST datasets. Constructing an ontology 
that is compatible with existing CVs such as PSI-MS is impor-
tant for integrating jPOST data with other proteomics data 
stored in the databases of the ProteomeXchange Consortium71.  
In addition, by using common ontologies/CVs such as Taxon-
omy and disease name and a standardized data model like RDF, 
the proteomics datasets can also be linked and integrated with 
datasets derived from other technologies such as transcriptomics  
and epigenomics.

Metabolomics
Tools for metabolite identification and interpretation. Metab-
olomics is the biochemical analysis of all low-molecular-
weight metabolites in a biological system, i.e. the metabolome. 
Owing to the chemical diversity and complexity of the metabo-
lome, no single analytical platform can detect all metabolites 
in a sample simultaneously. Current state-of-the-art approaches  
for measuring metabolites and maximizing metabolite cover-
age require integration of multiple analytical platforms, data 
pre-processing methods, effective metabolite annotation, and 
data interpretation76,77. Given that the most commonly used  

Figure 3. RDF schema for jPOST metadata.
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analytical and data pre-processing methods have been com-
prehensively reviewed78–80, we will not discuss them here, but  
rather focus on downstream analyses such as pathway analysis,  
and effective data interpretation.

Scientists in natural products chemistry use the accurate mass  
and chemical shifts in Nuclear Magnetic Resonance (NMR) 
spectra to elucidate the structure of unknown natural chemical 
compounds. In contrast, researchers in metabolomics com-
monly try to provisionally identify chromatographic peaks by 
comparing their retention time (or retention indices), and/or the  
mass spectra, with those present in a mass spectral library 
database generated from the data of authentic standards81. 
The Metabolomics Standards Initiative defined four levels of 
reporting metabolite identification and annotation: identified  
metabolite (Level 1), putatively annotated metabolites (Level 
2), putatively annotated metabolite classes (Level 3), and 
unknown compounds (Level 4)82. This indicates that the con-
fidence levels of metabolite identification reported in metabo-
lomics studies can vary largely, because of different extraction 
protocols, different instruments and measurement parameters,  
different pre-processing methods, and the diversity of anno-
tation expertise83. This hampers the reusability/reanalysis of 
published metabolomics datasets, although there are public 
repositories for metabolomics data such as MetaboLights84 and  
MetabolomeExpress.org85.

Biological interpretation of changes in metabolite levels 
is very important and is still challenging, because such 
metabolite pools are the resulting output of many biological  
processes. To facilitate biological interpretation by existing bio-
logical knowledge, e.g. biochemical pathways, pathway-based 
analysis like Metabolite Set Enrichment Analysis (MSEA,86) is 
available. This approach highly depends on predefined biological 
pathways such as KEGG87, Pathway Commons88, BioCyc89, and  
WikiPathways90. Molecular interactions can be regarded as 
a network by calculating association between molecules in 
omics data. Correlation-based approaches are behind for con-
struction of association networks such as gene co-expression  
networks in transcriptomics (for example, see 91,92).

There are many software tools for pathway visualization and 
integration of different omics data (for example, see 93). Exam-
ples include KEGG Mapper94, KEGGViewer95, PathVisio96, 
WikiPathways App97, and KEGGScape98. Metscape is a  
Cytoscape App for network analysis and visualization of gene- 
metabolite associations99. MetaMapR100 can be used for inte-
grating biochemical reaction with chemical structural and mass 
spectral similarity to analyze pathway-independent associations 
including unknown metabolites. MetaboAnalyst101 provides a 
user-friendly, web-based analytical platform for metabolome 
data pre-processing, normalization, statistical analysis, and 
metabolite annotation. DeviumWeb102 is also a user-friendly web  
application for integrating statistical multivariate analysis 
with biochemical domain knowledge using R-Shiny103, a web  
application framework for R.

Plant metabolome database development. Unlike compound 
and mass spectral databases such as KEGG87 and MassBank104, 

metabolite-profile oriented databases still remain rela-
tively undeveloped and under-used in plants81. The data and  
metadata for more than 140 mutants of Arabidopsis thaliana, 
an important model plant, are archived at the Plant and Micro-
bial Metabolomics Resource (PMR,105). It is a flexible database  
that is designed for data sharing in metabolomics and imple-
ments data analysis tools106. Information on phenotypic screening 
of Arabidopsis chloroplast mutants using assays of amino acids 
and fatty acids of more than 10,000 T-DNA insertion mutants  
using mass spectrometry are stored in Chloroplast 2010107–109.

We recently developed a new database, the Metabolite profil-
ing database for Knock-Out mutants in Arabidopsis (MeKO,110), 
to facilitate improvement of gene annotation. The MeKO  
database111 can be used to browse and visualize metabolomic 
data, containing images of mutants, data on differences in  
metabolite levels, and the results of statistical data analyses. 
As mentioned above, the metabolomics community is working 
towards the setup of sharing metabolome data, while mining 
publicly available information and demonstrating the richness 
of integration of multiple metabolome datasets that remain 
largely unexplored. At present we are constructing our database,  
called AtMetExpress112, to store this information. It is freely 
available and contains detailed information about metabo-
lites detected in Arabidopsis. It has a small and simple GUI 
tool for performing meta-analyses, allowing easy metabolome  
meta-analysis for plant biologists using R-Shiny.

Plants produce a diversity of compounds through second-
ary metabolic pathways. In these secondary compounds, the 
flavonoids and glucosinolates are useful as herbal medicines 
to maintain human health. However, a lot of them are still  
undescribed in public pathway databases. It is therefore impor-
tant to construct the infrastructure to integrate such metabo-
lites with their pathways in a cross-database manner. Hence,  
compounds IDs need to be linked rationally for this purpose.

To address the above challenge, we focused on the following 
things at BH15. We tried to implement several web applications 
with R-Shiny to improve visualization tools in our metabolome 
database, AtMetExpress. To reconstruct secondary metabolite 
pathway maps on WikiPathways we curated metabolite name, 
database identifiers of metabolites and reactions (KEGG, 
KNApSAcK, PlantCyc, and PubChem) in Arabidopsis metabo-
lome data. We focused on flavonoids, which is a well-studied  
secondary metabolite group in Arabidopsis. We developed 
the following web applications and tools: a webapp called 
the Prime Visualization Tool using the R-Shiny framework; 
an integrated “pathview” Bioconductor package with the 
Prime Visualization Tool113; an R package for the linkdb RDF  
client114 to integrate multiple identifiers of major compound  
databases like PubChem CID, KEGG, and KNApSAcK.

In addition, we examined the SummarizedExperiment  
container115 in Bioconductor to use assay, and we discussed the 
possibility of using the SummarizedExperiment in RDF for-
mat. We integrated several Arabidopsis metabolome datasets and 
partly finished data curations. These curation efforts continue  
after BH15. Even in the model plant Arabidopsis, the main target 
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of existing large-scale metabolic models was primary metabo-
lism (for example, see 116–119). Our effort to construct curated 
Arabidopsis flavonoid dataset will help to expand metabolic  
models of Arabidopsis and lead to a better understanding of the 
production of flavonoids.

Biochemical molecules
Chemical database integration. Small molecules are stud-
ied across a broad set of research areas. They are important as 
a vital component of living systems and are also used in the  
formulation of pharmaceutical products. Therefore, access to 
information collected about molecules is key to research and 
product development. During BH15, we discussed strategies for  
cooperation between chemical databases. For instance,  
participants discussed the role of InChIKey120 in their own data-
bases as a primary key for chemical structure. Other discus-
sions focused on increasing interoperability in two ways: First 
by including additional database cross-references, and second by 
harmonizing the RDF representation of chemical data. Chemi-
cal databases such as PubChem121, Nikkaji122, GlyTouCan123,  
and the Protein Database Japan (PDBj,124) store data in atomic 
level formats such as Molfile125, mmCIF126, InChI120, and 
InChIKey. Participants agreed to use ontologies such as SIO, 
the Chemical Information ontology (CHEMINF,53), and the  
Simple Knowledge Organization System (SKOS,127). The RDF 
data of Nikkaji, KNApSAcK128 and GlyTouCan were modi-
fied to use these ontologies. Increased adoption of the ontology- 
based RDF representation of small molecules will facilitate 
their integration and reduce the cost of reuse of data from each  
of the databases.

Chemical transformation annotation. We previously developed 
an ontology for annotating biochemical transformations called 
Partial Information of chemical transformation (PIERO,129). 
PIERO provides vocabulary to describe transformations and 
their attributes along with sets of possible reactions. The vocab-
ulary enables the examination of similar enzymatic reac-
tions, which is particularly important for reactions for which no 
enzyme has been identified yet. Such reactions are common in  
secondary metabolism found only in limited organisms. In 
most cases, they are just putative substrate-product rela-
tionships and the reaction equations are not characterized  
completely. During BH15, we augmented PIERO in a number of 
ways, including improved RDF interoperability, data curation  
(adding/correcting more terminology), and reviewing the  
classification criteria for transformations. One of the most 
important developments was in the definition of a classification 
based on reaction characteristics, including the gain or loss of  
groups, opening or closing the ring structures, intermolecular  
transfer of groups, formation/digestion of groups, transfer/exchange 
of groups, and the steps of the reactions.

Glycomics ontology development. Carbohydrates, often referred 
to as glycans, differ from other biopolymers such as proteins or 
nucleic acids in the large variety of different building blocks, 
i.e., monosaccharides, and in the possibility of linking these 
building blocks in several ways, which often results in branched 
structures. Furthermore, experimental techniques for glycan  

identification often yield underdetermined structures with 
varying degrees of uncertainties. Many providers of glycoin-
formatics databases and tools have developed individual and  
non-compatible formats to store all these properties of glycan  
structures, such as LINUCS130, LinearCode®131, KCF132,  
GLYDE133, GlycoCT134, or WURCS135. This variety of nomen-
clature formats is a major reason for a lack of interoper-
ability and data exchange between various glycoinformatics 
resources136,137. To overcome this situation, development of the  
glycomics standard ontology (GlycoRDF,138,139) was started  
during BioHackathon 20124.

GlycoRDF can represent glycan structure information 
together with literature references or experimental data.  
MonosaccharideDB140 provides GlycoRDF descriptions 
of monosaccharides generated from various carbohydrate 
nomenclature formats. During BH15, participants developed  
routines to generate GlycoRDF data from WURCS 2.0 nomen-
clature, which is used by the GlyTouCan structure repository123. 
Thus, glycomics data can now be retrieved as GlycoRDF from 
GlyTouCan, GlycoEpitope75, GlycoNAVI141 and WURCS using  
database guidelines142.

The group also discussed possible extensions to GlycoRDF 
that would offer relations between individual monosaccha-
rides. Lactose, for example, is a disaccharide composed of  
β-D-galactopyranose (1-4)-linked to D-glucose. The latter can 
be of any ring form or anomeric state due to mutarotation. 
With relations such as “β-D-glucopyranose is_a D-glucose” 
or “α-D-glucofuranose is_a D-glucose”, the definition of  
lactose given above can be used to identify disaccharides with 
β-D-galactopyranose (1-4)-linked to β-D-glucopyranose or to  
α-D-glucofuranose as lactose as well. Options to derive such 
relations from WURCS 2.0 nomenclature have also been dis-
cussed. The encoding of these relations in RDF uses existing 
chemistry definitions such as SIO as much as possible. A first 
implementation of creating such relations automatically has 
been added to MonosaccharideDB. The resulting representation 
will enable (sub-)structure searches with different levels of 
information in query and target structures, and will also help  
to assign relations between oligosaccharides.

Glycoinformatics is at the intersection of bioinformatics 
and chemoinformatics. In the past there have mainly been 
attempts to establish cross-links between glycan databases and  
bioinformatics resources, e.g. between UniCarbKB143 and  
UniProtKB44, which makes sense from the point of view of 
glycoproteins and protein-carbohydrate complexes. From the 
small molecules perspective it is coherent to also cross-link  
with chemoinformatics databases such as PubChem121 or Nikkaji 
(now subsumed by J-Global,122). Glycan structures coopera-
tion was discussed at BH15. As part of this process several 
possible formats for data exchange were discussed, such as  
SMILES144, InChI, mmCIF, WURCS, or mol file. A focus was 
subsequently put on the conversion of glycan structures to 
SMILES, and routines to generate SMILES codes from mon-
osaccharide names were developed in a cooperation between  
PubChem and MonosaccharideDB developers. This will  
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provide an important bridge between glycoinformatics and  
chemoinformatics and will make it easier for people outside the  
glycoscience community to access glycomics data. For coop-
eration between GlyTouCan and PubChem, RDF triples were  
developed with GlycoRDF, SIO, CHEMINF, DCT, and  
SKOS.

The large variety of monosaccharides is mainly caused by the 
fact that the basic building blocks such as glucose or galac-
tose are often modified by substituents that replace hydrogen 
atoms or hydroxyl groups, or by introduction of double bonds, 
deoxy modifications, etc. Currently, no explicit rules exist to  
define how many modifications can be made to a stand-
ard monosaccharide so that it can still be considered as a 
monosaccharide. Some possible criteria for discrimination  
between carbohydrate and non-carbohydrate residues were  
discussed at BH15. We developed a new approach for detect-
ing carbohydrate candidate backbone skeleton. An algorithm for  
automatic detection of candidate carbon chains of monosaccharide 
was discussed.

Research methods
Data retrieval and querying
OpenLifeData to SADI deployment. The Bio2RDF project145 
is now well known within the life sciences LOD community. 
Recently, OpenLifeData146 completed an effort to provide a dis-
tinct view over the Bio2RDF data, with deeper and more rigor-
ous attention to the semantics of the graph, and these views were 
provided through a distinct set of SPARQL endpoints, with each 
endpoint acting as a query-rewriter over the original Bio2RDF  
data147. With these richer and more uniform semantics, it 
became possible to index each endpoint and automate the  
construction of SADI Semantic Web Services148 providing dis-
coverable, service-oriented access to all OpenLifeData/Bio2RDF  
data149—a project that was named OpenLifeData2SADI.

Prior to BH15, the OpenLifeData endpoints were fur-
ther consolidated into a single endpoint, which caused the  
OpenLifeData2SADI services to fail. At BH15, the SADI and 
OpenLifeData project leaders took the opportunity to rewrite 
the OpenLifeData2SADI automated service deployment code-
base. This was originally written as an interdependent mix of 
Java and Perl scripts, which often took several days to com-
plete. The new codebase is entirely Perl-based, and with the  
exception of the OpenLifeData indexing step, which is highly 
dependent on the size of the available OpenLifeData end-
points, runs in less than one hour, deploying tens of thousands 
of SADI Semantic Web Services over the refactored data. The 
speed of this new code makes it reasonable to rerun the serv-
ice deployment dynamically as the underlying OpenLifeData  
expands or changes, or perhaps automate the re-deployment  
of services on, for example, a nightly basis. In an ongoing activ-
ity since BH15, re-indexing of OpenLifeData has made it  
possible to capture sample inputs and outputs for each of the  
resulting SADI services. This information will be added to the 
SADI service definition documents, allowing for automated 
service testing and/or more intuitive service registry browser  
design with, for example, pre-populated “try it now” functionality.

SPARQL query construction. SPARQL150 has emerged as 
the most widely used query language for RDF datasets. RDF  
datasets are often provided with web interfaces, called SPARQL 
endpoints, through which SPARQL queries can be submitted. 
However, constructing a SPARQL query is a relatively complex 
task for inexperienced users. SPARQL Builder151 is a web appli-
cation that assists users in writing SPARQL queries through a 
graphical user interface. The SPARQL Builder system inter-
actively generates a SPARQL query based on a user-specified  
path across class-class relationships. At BH15, we worked on the 
display of candidate paths from metadata, including hierarchical 
information of the SPARQL endpoint, graphs, classes, properties,  
class-class relationships, and their statistics, such as the num-
bers of triples and instances. To be time efficient, we found 
that it was necessary to pre-compute and store those metadata 
for fast retrieval. This suggests that it would be ideal that every 
SPARQL endpoint provides such metadata. We tested our system 
on datasets drawn from the EBI RDF Platform and Bio2RDF, 
and our approach could be extended to other RDF datasets.  
We also developed a prototype152 of a search interface using 
SPARQL Builder system for 439 datasets contained in the 
Life Science Database Archive (LSDB Archive,153). The LSDB 
Archive is a service to collect, preserve and provide data-
bases generated by life sciences researchers in Japan. Using the  
interface, we can now search for data in the LSDB Archive  
without knowing the data schema for each dataset.

LODQA integration with DisGeNET and Bio2RDF. LODQA154 
is another service being developed to provide a natural  
language interface to SPARQL endpoints. Users can begin 
their search with a natural language query, e.g. What genes are  
associated with Alzheimer’s disease?, from which the system  
automatically generates corresponding SPARQL queries. 
LODQA also features a graph editor that allows users to  
compose queries in a graph representation. While the sys-
tem is developed to be highly adaptable to any RDF datasets, 
it does require lexical terms, e.g. labels, of data sets to be  
pre-indexed.

During BH15, we explored the use of the LODQA system with 
DisGeNET and Bio2RDF. As a result, we found that LODQA 
could generate effective SPARQL queries for some natu-
ral language questions like “Which genes are involved in cal-
cium binding?” The LODQA interface to Bio2RDF is publicly  
available155, while the LODQA interface to DisGeNET is  
discontinued due to major revisions to DisGeNET.

Crick-Chan query parsing. While LOD and the Semantic 
Web are rapidly adopted in the biology domain, the major-
ity of biological knowledge is still only available in the form of 
natural language text, for example in manuscripts on PubMed 
or in textbooks on the NCBI Bookshelf. The ability to make 
use of this ocean of data would facilitate knowledge discovery  
and help bridge the current data retrieval process and the Seman-
tic Web. The success of IBM Watson in the quiz show Jeop-
ardy highlighted the potential of state-of-the-art cognitive  
computing in answering natural language questions. IBM  
Watson, however, does not rely so much on semantics or  
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machine learning, but is rather based on queries on unstruc-
tured data, with statistical identification of answer domains  
(Lexical Answer Type). The software for IBM Watson  
(DeepQA) uses a system to answer a “word” that matches the 
natural language query by searching through millions of pages  
of documents, including the entire text of Wikipedia. A  
scientific fact, or indeed any knowledge, is almost always  
written in natural language in the form of a manuscript, use of  
which is relatively less explored in the Semantic Web con-
text. Therefore, at BH15 the G-language Project team aimed  
to develop a software system, designated “Crick-chan”, that mim-
ics DeepQA to find the most relevant “sentence” (as opposed  
to a “word” in Watson) from millions of scientific documents. 
Crick-chan mimics the architecture, and works as follows:

1.    The question text first undergoes morphological analy-
sis using Enju156 to extract objective nouns and key 
verbs. Using a dictionary search, proper nouns are  
identified.

2.    Queries are extended using the Bing search engine 
(which allows for the largest number of free queries 
among search engines). At the same time, the question is  
checked to see whether it belongs to the biology domain.

3.    Full text searches are performed for the entire OMIM, 
PubMed, PubMedCentral, NCBI Bookshelf, Wikipedia, 
and the entire WWW, via queries to NCBI EUtils and  
Bing searches.

4.    Relevant sentences are extracted from the most relevant 
matches.

5.    Extracted sentences, i.e. the answer hypothesis, are 
checked for grammatical completeness and are scored  
according to keywords.

6.    Answer confidence is scored according to the data  
sources and the completeness of key terms.

7.    The resulting “answer” is presented in a user interface 
with an artificial character to assist the natural language  
query process.

For other general conversation, Crick-chan embeds the AIML 
bot (ProgramV 0.09) for cases when the question is not consid-
ered to belong to the biology domain, and for when there are 
fewer than two keywords. Crick-chan is publicly accessible157  
and it can answer natural language questions such as  
“What genes are associated with Alzheimer disease?” (Figure 4).

Natural language processing
Clinical phenotype text mining. Clinical phenotypes, i.e. 
symptoms and signs, are key for diagnosis and treatment  
decision-making, particularly for rare or complex disorders158.  
Delayed or inaccurate diagnosis incurs high economic costs 
in addition to heavy psychological burden on patients and 
their families. Deep clinical phenotyping in combination with  
genotyping are increasingly seen as important components of 

Figure 4. The graphical interface of Crick-chan as it answers which genes are associated with Alzheimer’s disease.
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a vision for precision medicine159. However, vast amounts of  
phenotypic data available from social media, EHR, biomedical 
databases, and the scientific literature, are largely inaccessible 
to direct computation because they are solely available in a  
narrative form.

Natural Language Processing (NLP) involves the automatic 
extraction of relevant information from unstructured text 
and represents it in the form of structured concepts and rela-
tionships amenable to further computational analysis. The  
acquisition of phenotype data is particularly challenging 
due to the complexity of textual descriptions. Several efforts 
have explored the extraction of phenotypes from text. For  
example160, assessed the contribution of feature spaces and 
training data size on support vector machine model perform-
ance for mining phenotypic information on obesity, atheroscle-
rotic cardiovascular disease, hyperlipidemia, hypertension, and  
diabetes from clinical documents. In the domain of conges-
tive heart failure161, developed automated methods for extracting 
phenotypic information from clinical documents and from pub-
lished literature. With the goal of matching phenotypic find-
ings to their correlated anatomical locations as described in 
clinical discharge summaries162, developed a named entity rec-
ognition method based on the Epilepsy and Seizure Ontology  
(EpSO,163). In fact, a review of studies describing systems 
or reporting techniques developed for identifying cohorts 
of patients with specific phenotypes found that 46 out of 97 
papers on this topic used techniques based on natural language  
processing164. In addition, several phenotype-annotated data-
sets have been recently extracted from journal articles and  
EHR by using BioNLP and text mining methodologies158,165–169.

The large-scale acquisition of phenotypic relationships from the 
literature enable a more complete view on the current knowl-
edge, and thus, more efficient science. The use of text-mined 
data, i.e. information that is programmatically processed,  
aggregated and mined, shows much promise for some  
current challenges such as phenotype definition, hypothesis 
generation for research, understanding disease and pharma-
covigilance. Therefore, their representation as linked data using  
Semantic Web and LOD approaches and the linking of the 
annotated literature with the linked data open new avenues for 
knowledge discovery to advance research and improve health  
care.

The curation of biomedical information extracted from scientific 
publications by text mining is an important current bottleneck 
for knowledge discovery of new and original solutions for a 
better health and quality of life. Manual approaches for data  
curation become more and more time demanding and costly, so 
that computer assistance in screening (document retrieval) and 
preparing data (information extraction) is unavoidable. Crowd-
sourcing approaches have been recently applied with high  
accuracy170. Therefore, biocuration over the LOD will give a 
new opportunity to validate knowledge and adding evidence at 
the same time. The integration of curated and text mined data 
in the LOD opens new challenges for evidence and provenance  
tracking. Recent use of the nanopublication approach gives 

a mechanism for evidence, provenance and attribution  
tracking171,172. 

BH15 offered an opportunity to address different challenges 
related to the capture and analysis of human phenotype data. 
The text mining group focused its effort in the primary domains 
for deep phenotyping: acquisition of phenotype associations 
from journal articles, integration and alignment of annotation 
BioNLP tools, evaluation of secondary use of text mining cor-
pora for knowledge discovery, semantic integration of text mined  
and curated data in the LOD, and curation of text mined 
data. All these tasks were pursued with a clear emphasis on  
standardization and interoperability between life sciences  
databases, text mined datasets and BioNLP tools, with the further 
aim to linking to the LOD.

Natural language processing of drug effects and indications. 
Structured drug labels have been used as a source to collect 
rich representations of drug effects and indications173–175,  
and these text mined representations have been used in drug 
repurposing and identification of new targets for known 
drugs. The Side Effect Resource (SIDER,176) contains a col-
lection of text mined drug effects and indications, using the  
Unified Medical Language System (UMLS,177) to represent the  
phenotypes. While the UMLS covers a wide range of  
clinical signs and symptoms, it does not cover the full set of  
phenotypes described in non-UMLS biomedical ontologies  
such as the human Disease Ontology (DO,178) and the Mammalian 
Phenotype ontology (MP,179).

During BH15, we developed an NLP pipeline that identifies 
the phenotypes occurring in structured drug labels. As vocab-
ularies, we use the phenotype ontologies for mammals, in  
particular the the Human Phenotype Ontology (HPO,26,166), MP, 
and the DO. Furthermore, we also use the phenotypic quality 
ontology (PATO,180), and the Foundational Model of Anatomy  
(FMA,181), an ontology of human anatomy, as additional 
vocabularies. Text processing is performed using Lucene, 
which includes basic text normalization such as stop-word 
removal and normalization to singular forms. The resulting 
text-mined annotations of the structured drug labels are freely  
available182. In the future, these annotations of drugs need to be  
further evaluated and integrated in linked datasets.

Data analysis of text-mined corpora. The combination of high-
throughput sequencing and deep clinical phenotyping offers 
improved capability in pinpointing the underlying genetic  
etiology of rare disorders. The accuracy of hybrid diagnosis  
systems is challenged by the vast number of associated vari-
ants, many of which lack phenotypic descriptions. At BH15,  
we sought to learn possible genotype-phenotype relationships 
from text mining. Specifically, we aimed to use text-mined  
corpora to learn associations between biological processes  
disrupted by gene mutations with externalized phenotypes. To 
do so, we combined two PubMed datasets: i) a dataset gener-
ated by the Biomedical Text Mining Group (BTMG) at NIH,  
comprised of automatically extracted named entities (MeSH 
terms, genes and mutations); and ii) a second one, generated  
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by the Phenomics team at the Kinghorn Centre for Clinical 
Genomics (KCCG). The latter covered structured PubMed meta-
data, i.e., MeSH terms, keywords, etc., as well as HPO annota-
tions. The consolidation of the two datasets, via common MeSH 
terms, resulted in a final corpus of 6.5M abstracts. To learn  
biological process – phenotype associations, we added biologi-
cal process annotations from the Gene Ontology (GO,183). Using  
the underlying diseases as latent variables (via MeSH terms) 
and summation as aggregation function, we produced an asso-
ciation matrix between 7,666 HPO terms and 10,438 GO  
Biological Process terms. The actual use of the matrix has 
been left for future experiments. Such experiments may cover  
various aggregation functions (e.g., instead of summation, to use  
a linear interpolation of the term frequency inverse document  
frequency (TF-IDF) values of the HPO terms) as well as its 
application to discovering dense networks of phenotypes –  
biological processes. The latter could be achieved via some of the 
following mechanisms:

•    Hierarchical clustering and singular value decomposition 
(SVD) for ranking HPO - GO BP associations.

•    Pre-clustering of HPO terms based on the HPO  
top-level abnormalities.

•    Pre-clustering of GO BP terms using higher-level  
common ancestors.

Integration of text-mined and curated disease-phenotype 
data. DisGeNET-RDF contributes to LOD with Gene-Disease 
Associations (GDAs) obtained from Medline by text mining 
and integration with associations from different authoritative 
sources in human genetics184. From release 3.0.0, DisGeNET-
RDF also integrates curated Disease-Phenotype Associations 
(DPAs) to HPO terms for diseases in OMIM, Orphanet, and  
DECIPHER185 from the HPO project26. In order to examine what 
are the challenges to integrate text mining with curated DPAs 
in LOD, we analyzed the DPAs in DisGeNET-RDF (v3.0.0) 
and the DPAs text-mined from the scientific literature by  
Hoehndorf et al.167.

•    Hoehndorf2015: This text-mining DPAs dataset contains 
6,220 diseases identified by DO identifiers (DOIDs), 
9,646 phenotypes identified using the HPO and the  
MP, and 124,213 DPAs.

•    HPO2015: This curated DPAs dataset contains 113,203 
DPAs between 7,841 diseases and 6,838 phenotypes 
from OMIM, Orphanet and DECIPHER data sources 
in which diseases are identified by the corresponding  
database identifier of provenance, and phenotypes are  
uniformly identified by HPO identifiers.

We normalized 6,220 diseases from the Hoehndorf2015 data-
set to 5,194 UMLS CUIs by DOID-UMLS cross-references 
extracted from DO version 2015-06-04 with which only 75% 
(4,648) of DOIDs can be mapped to UMLS concepts. This is 
because 17% (1,088) of diseases are described with obsolete  
DOIDs and 8% (484 DOIDs) do not map to UMLS. Addition-
ally, not all are 1:1 mappings, some N:1 DOID-CUI mappings  

exist. Therefore, phenotype annotations for different diseases will 
collapse in a unique UMLS concept.

The integration of the HPO2015 and Hoehndorf2015 data-
sets (9,067 and 5,194 UMLS CUIs, respectively) covers 13,596 
UMLS concepts of the disease spectrum, of which only 3.2% 
(665 UMLS CUIs) are in both datasets. This low overlap is due 
to the fact that each project mainly focuses on covering dif-
ferent disease areas. Whilst the HPO annotation is intended to 
annotate Mendelian and rare genetic diseases, Hoehndorf et al.’s  
large-scale literature extraction was focused on broadening the 
disease class landscape to infectious, environmental, and com-
mon diseases. To characterize the disease coverage yielded 
only by text mining; in Figure 5 we show the top-level DO  
categories where these novel diseases fall. As can be seen, these 
novel findings mostly fall in ‘Disease of anatomical entity’  
(DOID:7) and ‘disease of cellular proliferation’ (DOID:14566).

In summary, the analysis of aggregation and integration of 
text mined and curated disease-phenotype associations in Dis-
GeNET highlights the potential value of text mining in data 
completeness, annotation, integration, and network biology, 
which can be used for instance for disease-phenotype ontol-
ogy construction and curation, knowledge base population, and 
document annotation. The large-scale integration and publication  
of text mining DPAs in DisGeNET-RDF opens inference 
opportunities to grasp potential novel gene-phenotype asso-
ciations from the current knowledge that promotes our under-
standing about disease etiology and drug action. However, it  
is important to keep track of machine-readable provenance and 
evidence at relationship level for computational analysis and 
credible knowledge discovery using LOD. Finally, the increase 
of disease/phenotype terminology and ontology mapping  
is crucial to foster semantic interoperability and data coverage.

Assessing interoperability of disease terminologies. One ben-
efit of improving the interoperability of disease terminologies 
is to facilitate translational research and biomedical discov-
ery. Phenotype information is represented using terminologies, 
vocabularies, and ontologies, but the diverse phenotype spec-
trum poses serious challenges for their interoperability. For one,  
phenotypes span from the molecular to the organismal. In addi-
tion, while phenotypes in the biological domain are recorded 
as results from biological experiments, phenotypes in the clini-
cal domain are used to report the state condition of patients186. 
Furthermore, in current clinical nomenclatures for phenotypes 
such as MeSH, the 10th revision of the International Statisti-
cal Classification of Diseases and Related Health Problems  
(ICD-10), the nomenclature of the National Cancer Institute 
(NCI), SNOMED Clinical Terms (SNOMED CT), and UMLS, 
concepts are covered inconsistently and incompletely186. All these 
issues affect ontology interoperability, and thus, the quality of 
their applications. The systematic ontological coding of pheno-
typic and molecular information in databases and their linking  
facilitates computational integrative approaches for identify-
ing novel disease-related molecular information187, prioritizing 
candidate genes for diseases188–191, as well as predicting novel 
drug-target interactions, drug targets, and indications192,193. The  
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quality of the phenotypic descriptions of a resource will have 
implications for the quality of their interoperability, and thus, 
the quality of computational data analyses performed for  
translational research and knowledge discovery.

In DisGeNET-RDF (v3.0.0), diseases are normalized with the 
UMLS CUIs, and are mapped to several disease vocabular-
ies/ontologies with different coverage (see 194 to see disease 
mapping coverage statistics). Much of the disease data in the 
data sources of the European Bioinformatics Institute (EBI) is  
annotated with EFO, such as BioSamples, which aggregates 
sample information for reference samples and samples used in 
multi-omics experiments, and the Gene Expression Atlas, which 
collects gene expression experiments. EFO disease terms have 
mappings to UMLS, DOID, MeSH, SNOMED CT, OMIM, 
HPO and ICD-10. EFO also includes and reuses terms from  
external terminologies such as disease/phenotype terms from 
the DO, the HPO, and rare disease terms from the Orphanet 
Rare Disease Ontology (ORDO,195) that include some additional 
mapping to OMIM and UMLS. In this regard, during BH15, 
we aimed to increase the integration of DisGeNET and EBI  
data, by way of its RDF platform.

We assessed the coverage of EFO concepts against UMLS; from 
a total of 5,260 terms, only 52 map to the UMLS (see Table 3). 
Some disease terms do not have cross-references to UMLS 
concepts. For instance, cancer (EFO_0000311) does not have 
UMLS CUIs associated, even though it is a general disease term. 
Nevertheless, the EFO contains over 2000 UMLS mappings  

from other ontologies, most of them from ORDO, which are 
manually curated. We suggest that an increase in the mapping 
between EFO and the UMLS terminologies will benefit data 
integration and interoperability between RDF datasets such 
as DisGeNET and other databases that are part of EBI RDF  
platform.

Semantic haiku generation. Natural language generation is the 
longstanding problem of generating textual output from textual 
or non-textual sources196–200. The field has a number of poten-
tial applications in the life sciences201–205. One of the projects 
of BH15 included the construction of a “semantic” haiku 
generator. Realizing the potential of language generation in  
communicating information both to scientists and to the pub-
lic in a way that is acceptable to readers requires the ability to 
generate text that meets user expectations regarding discourse 
cohesiveness, genre-appropriate characteristics of word struc-
ture, e.g. length, and the like. Poetry generation has been an 
active area of research in computational linguistics and natural  
language processing for some time. Here we extend the task 
definition to the use of LOD, and to the haiku structure, 
which has not previously been treated in the language gen-
eration literature42,206–210. A haiku is a type of poem traditional to  
Japan; it consists of three verses with five, seven, and five  
syllables. In light of the work on semantic resources, in par-
ticular RDF datasets available through SPARQL, the idea arose 
to generate a haiku from a SPARQL query by identifying a  
connected subgraph in which the labels of the resources, or the  
properties linking them, follow the 5-7-5 syllable pattern of a  

Figure 5. Disease coverage for top-level categories in DO of the diseases only annotated in the Hoehndorf2015 DPA dataset in 
comparison to the HPO2015 annotation.
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haiku. Using the CELEX2 dictionary211, which maps English  
words to their syllables, we wrote a small haiku generator that 
can be initialized with a SPARQL endpoint and a start node (a 
resource) from which a search is started to identify a subgraph 
with the haiku pattern. The prototype code is available at our 
source code repository62,212. An initial test of the script using the 
UniProt SPARQL endpoint together with the human Amyloid  
beta213 protein, which resulted in the following haiku:

Amyloid beta 
protein classified with blood 

Coagulation

To the best of our knowledge, this is the first “semantic” haiku. 
Although it follows the haiku pattern, additional work is still 
required to generate haikus that have additional haiku qualities,  
in particular the occurrence of a word related to one of the four 
seasons, as tradition requires.

Reproducibility
Extending the Common Workflow Language. Computational 
genomics faces challenges of scalability, reproducibility, and 
provenance tracking. Larger datasets, such as those produced 
by The Cancer Genome Atlas214, are now petabyte-sized, while 
procedures for read mapping, variant calling, genome assem-
bly, and downstream imputation have grown impressively 
sophisticated, involving numerous steps by various programs.  
In addition to the need for reproducible, reusable, and trust-
worthy data, there is also the question of capturing reproducible 
data analysis, i.e. the steps that happen after raw data retrieval. 
Genomics analyses involving DNA or RNA sequencing are 
being used not just for primary research, but now also within  
the clinic, adding a legal component that makes it essential that 
analyses can be precisely reproduced. We formed a working 
group on the challenges of creating pipelines for reproducible  
data analysis in the context of semantic technologies.

With the advent of large sequencing efforts, pipelines are  
getting wider attention in bioinformatics now that biologists  
regularly have to deal with terabytes of data215. This data can 
no longer be easily analyzed on single workstations, requiring 
that analysis is executed on computer clusters and analysis steps 
are run both serially and in parallel on multiple machines, using  
numerous software programs. To describe such a complex  
setup, pipeline runners, or engines, are being developed. 

One key insight from this development is that versioned soft-
ware is a form of data and can be represented with a unique hash 
value, e.g., a Secure Hash Algorithm (SHA) value can be cal-
culated over the source code or the binary executables. Also, 
the steps in a pipeline can be captured in scripts or data and can  
be represented by a unique hash value, such as calculated by 
git. This means that the full data analysis can be captured in 
a single hash value that uniquely identifies a result with the 
used software and executed analysis steps, together with the  
raw data.

We worked on the Common Workflow Language (CWL,216), 
which abstracts away the underlying platform and describes 

the workflow in a language that can be used on different com-
puting platforms. To describe the deployed software and make  
reproducible software installation a reality we also worked on  
virtualization (Docker) and software packaging and discovery 
(GNU Guix).

The CWL is an initiative to describe command line tools and 
connect them together to create workflows. The original idea 
of CWL is that a workflow can be described in a ‘document’ 
and this workflow, once described, can be rerun in different 
environments. CWL has roots in “make” and similar tools that 
determine order of execution based on dependency graphs of  
tasks. Unlike “make”, CWL tasks are isolated and the user 
must be explicit about its inputs and outputs thereby creat-
ing a (hopefully reproducible) document of the workflow. 
The benefits of explicitness and isolation are flexibility, port-
ability, and scalability: tools and workflows described with CWL  
can transparently leverage software deployment technolo-
gies, such as Docker, be used with CWL implementations 
from different vendors, and are well suited for describing  
large-scale workflows in cluster, cloud, and high-performance 
computing environments where tasks are scheduled in parallel  
across many nodes.

At BH15, CWL support was added for the Toil workflow engine217 
and work was done on Schema Salad, which is the module 
used to process YAML CWL files into JSON-LD linked data  
documents. A tutorial was given on the Common Workflow  
Language to interested participants. CWL also added the  
ability to pipe-in JSON objects containing the parameters  
necessary to run a CWL-wrapped tool218. This allowed CWL 
to be more easily used with Node.js Streams and thus with the  
Bionode.io project.

Docker container registry development. One challenge is the 
creation of standard mechanisms for running tools reproduc-
ibly and efficiently. Container solutions, such as Docker, have 
gained popularity as a solution to this problem. Container tech-
nologies have less overhead than full virtual machines (VMs) 
and are smaller in size. At BH15, we started a registry of  
bioinformatics Docker containers, which can be used from the 
CWL, for example. From this meeting evolved the GA4GH 
Tool Registry API219 that provides ontology-based meta-
data describing inputs and outputs. Work was also done on  
an Ensembl API in Docker220.

To facilitate access to triple stores, we developed a pack-
age called Bio-Virtuoso based on Docker. The virtuoso-goloso  
container runs an instance of the Virtuoso triple store221. This 
container also receives Turtle, RDF/XML, and OWL for-
mat files via the HTTP Post method and internally put them 
into Virtuoso speedy using the isql command. Graph-feeding  
containers download data from sources, convert them into RDF  
if necessary, and send them to virtuoso-goloso. Multiple graph-
feeding containers can be combined on demand. To date, we 
have supported data sources such as the HPO, HPO-annotation,  
Online Mendelian Inheritance in Man (OMIM,222), OrphaNet223, 
the HUGO Gene Nomenclature Committee (HGNC,224), OMIM 
Japanese translation by Gendoo225, and MP179. Bio-Virtuoso  
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is expected to lower barriers to learn SPARQL using real dataset 
and develop SPARQL-based applications. The project has a  
GitHub repository226.

GNU Guix extension and deployment. One problem of 
Docker-based deployment is that it requires special permis-
sions from the Linux kernel, which are not given in many HPC 
environments. More importantly, Docker binary images are  
‘opaque’, i.e., it is not clear what is inside the container—and 
its state is affected by what time the container was created and 
what software is installed, i.e., an intermediate apt-update may 
generate a different image. Distributing binary images can be 
considered a security risk—users have to trust the party who 
created the image227. An alternative to using Docker is using  
the GNU Guix packaging and deployment system228, which 
takes a more rigorous approach towards reproducible software 
deployment. Guix packages, including dependencies, are built 
from source and generate byte-identical outputs. The hash value 
of a Guix package is calculated over the source code, the build 
configuration (inputs), and the dependencies. This means that 
Guix produces a fully tractable deployment graph that can be  
regenerated at any time. Guix also supports binary installs 
and does not require special kernel privileges. As of October 
2016, Guix has fast growing support for Perl (473 packages), 
Python (778), Ruby (153), and R (277). Guix already includes  
182 bioinformatics and 136 statistics packages.

At BH15, we added more bioinformatics packages and  
documentation229 to GNU Guix and created a deployment of 
Guix inside a Docker container230. We also packaged CWL in 
Guix and added support for Ruby gems to Guix which means 
that existing Ruby packages can easily be deployed in Guix, 
similar to support for Python packages and R packages. Guix 
comes with a continuous integration system on a build farm. 
We want to harvest that information to see when packages are  
building or failing. See, for example, the Ruby builds231, which 
contain the SHA values of the package as well as the check-
out of the Guix git repository reflecting the exact dependency 
graph. We are collaborating with Nix and Guix communities  
to get this information as JSON output so it can be used in a web 
service.

Semantic metadata
Assessing the Findable, Accessible, Interoperable, and Reusable 
Principles. Loosely defined practices in scholarly data pub-
lishing prevent researchers from extracting maximum benefit 
from data intensive research activities, and in some cases make 
them entirely unusable232. There has been a growing movement  
encompassing funding agencies, publishers, academics, and the 
public at large to promote “good data management/stewardship”,  
and to define and enforce more stringent rules around the  
publication of digital research objects, including published 
data, associated software, and workflows, so that they are eas-
ily discoverable and readily available for reuse in downstream  
investigations233. These include international initiatives such as 
the Research Data Alliance (RDA,234 and235), and Force11236. 
However, the precise nature and practice of “good data  

management/stewardship” has largely been up to the producer 
of digital objects. Therefore, bringing some clarity around the  
goals and desiderata of good data management and steward-
ship, and defining simple guideposts to inform those who  
publish and/or preserve scholarly data, would be of great utility.

Stakeholders in the publication of research data, including sev-
eral authors of this article, participated in the development 
of an initial draft of the Findable, Accessible, Interoperable, 
and Reusable (FAIR) principles. The principles were intended 
to define the key desiderata for the features and/or behaviors 
that should exist to facilitate data discovery and appropriate 
scholarly reuse and citation. A public draft237 was published  
for public comment, and BH15 participants formed a break-
out group to carefully examine them against the following crite-
ria: necessity, clarity, conciseness, independence, sufficiency, 
implementability and relevance. Our critical evaluation led to the 
development of a revised set of principles that were actionable, 
and improved coverage and comprehension. The text of these 
principles was published verbatim in a recent issue of Scien-
tific Data238. These revised principles have been widely lauded239  
by researchers240,241, and US and European agencies such as 
the National Institutes of Health (NIH,242,243) and Elixir244, as 
being highly informative and providing insight into what it 
means to be “FAIR”. Future work will focus on the develop-
ment of quantitative measures of adherence to the principles to  
assess the FAIRness of a digital resource.

FAIR projector prototype development. Data discovery, inte-
gration, and reuse are a pervasive challenge for life sciences 
research. This is becoming even more acute with the rise of 
scholarly self-archiving. Much effort has been devoted to 
the problem of data interoperability, whether through data  
warehousing245, ontology-based query answering246, or shared 
application programming interfaces (APIs,247). At BH15, a 
group of participants further developed a novel idea that was 
first proposed at a Data FAIRport meeting in 2014, called FAIR  
Projectors. FAIR Projectors are simple software applications 
that implement the FAIR principles by “projecting” data in any  
format (FAIR or non-FAIR) into a FAIR format. A projector will  
make use of a template-like document called a FAIR Profile, 
which acts as a meta-schema for the underlying data source. 
These meta-schemas may be indexed as a means to discover the  
projection of a dataset that matches the integrative requirements, 
i.e. the structure and semantics, of a particular workflow.

To be FAIR themselves, and thus reusable, we have selected 
the RDF Modeling Language (RML,248), where RDF docu-
ments are used to model the structure and semantics of another 
RDF document. For the functionality of the Projectors, we 
identified an emergent, RESTful, LOD technology – Triple  
Pattern Fragments (TPF,1), as a compelling platform that could 
execute the desired Projector behavior without inventing a new 
API. This is because TPF natively uses RDF model to pub-
lish information which can be served as a RESTful API and 
thus realizes a Linked Data service by nature. By the end of  
BH15, we had completed a prototype FAIR Projection system, 
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and had shown how this could be integrated with other compo-
nents of the nascent FAIR Data publication infrastructure. The  
result of this development exercise was recently published249.

Ontology metadata mapping. Identification of equivalent or 
similar concepts between vocabularies is key to the analysis of 
aggregated datasets that use different terminologies. Efforts such 
as UMLS build and maintain a system for mapping biomedi-
cal ontologies to one another. However, such mappings depend 
on specific versions of the ontologies, and any one version can  
impact scientific analyses250. Therefore, having access to ontol-
ogy and mapping metadata is critical to the interpretation and 
reproducibility of results for bioinformatics research. Initiatives 
such as the Open Biomedical Ontologies (OBO) Foundry251, 
Linked Open Vocabularies (LOV,252) and the National Center 
for Biomedical Ontology’s (NCBO) BioPortal253 have  
put forward schemas for ontology metadata. The Ontology 
Metadata Vocabulary (OMV,254) was first published in 2005, 
but does not reuse current standard vocabularies. In contrast, 
the Metadata for Ontology Description (MOD,255) does reuse  
existing properties from SKOS, Friend Of A Friend (FOAF,256)  
and Dublin Core and Dublin Core Terms (DC, DCT,257).

Recently, the W3C Semantic Web for Health Care and Life Sci-
ences Interest Group258 published a computable specification for 
the description of datasets, which could also be applied to the 
description of ontologies259. With respect to mappings and their 
metadata, SKOS offers a lightweight system for terminology 
mappings, while Open Pharmacological Concept Triple Store  
(Open PHACTS,260) put forward a more detailed proposal261 
for mappings between RDF datasets, or LinkSets. Yet, in our 
experience, additional attributes are needed for both ontol-
ogy and mapping metadata. Therefore, we propose an enhanced  
metadata scheme as a best practice for ontologies and map-
pings so as to improve their discovery, analyses, and reporting  
of results.

Our goal was to define a minimal set of attributes and stand-
ards for ontology mapping metadata. We used manually defined 
and automatically detected disease mappings in DisGeNET262 
as a case study263. Our approach involved compiling attributes 
from the use case, identifying metadata requirements from 
related initiatives including ontology repositories (Ontobee,264;  
the Ontology Lookup Service, OLS36; NCBO BioPortal;  
Aber-OWL,265), large-scale providers of mappings (UMLS, 
NCBO, Open PHACTS), as well as from individual ontologies 
including the DO178, HPO26,166, ORDO195, SIO266, the Ontology  
for Biomedical Investigations (OBI,267) and the Experimen-
tal Factor Ontology (EFO,268). We analyzed the mapping  
metadata and devised a more exhaustive metadata specification  
for mappings (Table 1) and ontologies (Table 2).

Our work revealed a lack of common annotation in the descrip-
tion of mappings in both the attributes and vocabularies used. 
The inclusion of justification, provenance, evidence, direction-
ality and versioning of mapping metadata has the potential to 
increase trust in the interpretation, reliability and reusability of 

Table 1. Exhaustive metadata for mappings.

Attribute Source

Identifier (IRI) FAIR

Title Open PHACTS

Description Open PHACTS

Publisher Open PHACTS

License Open PHACTS

Issued Open PHACTS

Link to mapping file Open PHACTS

Type of Subject Open PHACTS

Type of Object Open PHACTS

Type of Mapping Open PHACTS

Link to Subject dataset metadata Open PHACTS

Link to Object dataset metadata Open PHACTS

Mapping relationship Open PHACTS

Mapping justification Open PHACTS

Authorship-who Open PHACTS

Authorship-when Open PHACTS

Creator-who Open PHACTS

Creator-when Open PHACTS

Version of mapping tool Open PHACTS

Assertion method Open PHACTS

Assertion value (exact, ntbt, …) ORDO

Mapping directionality OBAN

Mapping state (active, obsolete, other) BioHackathon 2015

Concept overlap value (n:m) BioHackathon 2015

Provenance/source of mapping 
(ontology/dictionary/database + 
version)

BioHackathon 2015 

Evidence (PMID, Web, EHR..) BioHackathon 2015

Curation state ORDO

Curation author ORDO

Curation date ORDO

Curation justification BioHackathon 2015

Mapping version BioHackathon 2015

Mapping previous version BioHackathon 2015

Link to the linkset metadata BioHackathon 2015

Ontology version BioHackathon 2015

Link to the ontology metadata BioHackathon 2015

Link to mapping tool metadata BioHackathon 2015

Sustainability (code development 
environment)

BioHackathon 2015
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Table 2. Minimal metadata for an 
ontology.

Metadata attributes

       IRI

       Namespace

       Title

       Description

       Format

       Contact

       Homepage

Versioning

       Version

       Previous version

       Number of active terms

       Number of obsolete terms

       Number of anonymous terms

Ontology structure

       Number of classes

       Number of children

       Number of property types

       Number of axioms

       Number of instances

       Maximum depth

       Maximum number of children

Table 3. Statistics from the EFO ontology 
(OWL version of date: 7th September 2015) 
parsed using a script in python developed 
during BH15228.

Statistic Count

Number of IDs 6032

Number of ID Names 6032

Number of obsolete IDs 772

Number of active IDs 5260

Number of EFO2UMLS mappings 55

Number of IDs with UMLS mapping 52

Number of IDs without UMLS mapping 5208

mappings. Other provenance maintaining approaches such as  
Nanopublications269, singleton properties, or the Ontology of  
Biomedical AssociatioNs (OBAN,270) that could be used to model 
this metadata description at individual mapping level to enable  
a more well detailed and fine-grained semantics description. Hav-
ing good quality descriptions of ontology and mapping meta-
data is also relevant for ontology repositories such as BioPortal 

and Aber-OWL, ontology and data mapping services, and  
for methods geared towards scientific discovery. The right 
vocabulary for the metadata description of mappings should be  
determined through wide community agreement.

Experimental metadata representation. Good science must 
generate reproducible results271,272, and one aspect of reproduc-
ibility is the description of experimental methods and reagents 
used to generate the reported outcomes. Researchers write the 
protocols to standardize methods, to share their “know how”  
with colleagues, and to facilitate the reproducibility of results. 
Protocols typically specify a sequence of activities that may 
involve equipment, reagents, critical steps, troubleshooting, 
tips, and other essential information. Efforts such as CEDAR273 
and ISA-Tools274 offer software and data standards to facili-
tate data collection, management, and reuse of experimental  
metadata275. Ontologies such as the OBI, the SIO, and the ontol-
ogy of scientific experiments (EXPO,276) offer vocabulary to 
capture the design, execution and analysis of scientific experi-
ments, including the protocols, materials used, and the data  
generated.

The Experiment ACTions ontology (EXACT,277) suggests a 
meta-language for the description of experiment actions and 
their properties. The LABoratory Ontology for Robot Scientists 
(LABORS,278) that addresses the problem of representing 
the information required by robots to carry out experiments; 
LABORS is an extension of EXPO and defines concepts such as  
“investigation”, “study”, “test”, “trial” and “replicate”. Finally, 
the SeMAntic RepresenTation for experimental Protocols ontol-
ogy (SMART Protocols,279) is an application ontology designed 
to describe an experimental protocol. The SMART Protocol 
framework proposes a minimal information unit for experi-
mental protocols; the Sample, Instrument, Reagent, Objective 
model (SIRO, see 279), has been conceived in a way similar 
to that of the Patient Intervention Comparison Outcome  
(PICO,280) model. It reuses a number of existing ontologies 
including the Information Artifact Ontology (IAO,281), the OBI, 
the BioAssay Ontology (BAO,282), the Chemical Entities of  
Biological Interest (ChEBI,283), the EFO, the Eagle-i Resource  
Ontology (ERO,284), EXACT, and the NCBI taxonomy285.  
Semantic Web technologies including ontologies and Linked 
Data enable semantic publication of experimental protocols, 
their classification, and the mining of textual descriptions  
of experimental protocols.

Limitations of current approaches to experimental metadata 
include an inability to cover the “digital continuum”—from 
the highly diverse set of complex processes in laborato-
ries to the needs expressed by regulatory affairs. There also 
lacks a rapid mechanism to add new concepts into existing  
ontologies and terminologies. Finally, experimental information 
is often scattered over a complex network of applications rang-
ing from Laboratory Information Management Systems (LIMS) 
to text processors and Excel spreadsheets and, most of all,  
laboratory notebooks. Researchers keep a detailed descrip-
tion of their daily activities, results, problems, plans, derivations  
of the original plan, ideas, etc. in their laboratory notebooks.
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As a high-level abstraction serving to represent laboratory work-
flows, we argue, a General Process Model (GPM) is needed. 
GPMs often represent a networked sequence of activities, 
objects, transformations, and events that embody strategies 
for accomplishing a specific task. Such models can be instan-
tiated and specialized as needed. Figure 6 illustrates how a  
GPM could be further instantiated. The model starts by defin-
ing actions in a laboratory. These should be generic so that 
they can be made concrete as specifics from the laboratory are 
added, e.g. properties, inputs, and outputs. These generic objects 
can be linked in terms of inputs and outputs. Once there is an 
abstract workflow, resources are then allocated. The execution 
of the workflow instantiates all the properties for each object; 
data is thus generated with rich, process-related metadata.  
Repositories such as Dryad286, FigShare287, Dataverse288, and 
many others structure metadata primarily for describing generic 
attributes of the datasets while more specialized repositories such 
as the Gene Expression Omnibus (GEO,289) or the PRoteom-
ics IDEntifications database (PRIDE,290) capture specific ele-
ments of the experimental record. Our work to develop a GPM 
will provide a basis by which published data, metadata, and the  
experimental protocols used will establish a mechanism by 
which researchers may execute data sharing plans that meet  
the expectations of funders, journals and other researchers.

Knowledge graph annotation for human curation. Manual 
curation of biomedical repositories is a well-established prac-
tice in the life sciences domain to improve the accuracy and reli-
ability of data sources. An increasing number of repositories 

is being made available as networks of concepts and relations, 
i.e. “knowledge graphs”. Currently, a tool or data source that  
exposes (part of) a knowledge graph typically provides an 
annotation facility to allow curators (or the general public) 
to make or suggest changes. However, such annotations are 
often only used within the context of that particular tool, for 
example to notify curators that there may be a problem with a  
certain data entry, but frequently remain unusable and  
undiscoverable for other purposes.

For this reason, we have developed a tool called the Open, 
Reusable Knowledge graph Annotator (ORKA,291). ORKA is 
a small, embeddable web service and user interface to cap-
ture and publish an annotation event. A typical workflow looks  
like this:

1.    A user or curator of a graph-based resource wants to 
report a defect or comment on a particular edge of the  
graph.

2.    The resource provides a link that forwards the user to the 
ORKA user interface.

3.    The user is identified by means of one of several open 
authentication options.

4.    The user may now “edit” or comment on the particular 
graph edge.

5.    The annotation is captured and stored and the user  
will be redirected to the interface of the original resource.

Figure 6. From a General Process Model to an executable workflow.
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ORKA aims to support annotation from a wide range of data 
sources and tools that are either based on or can be mapped 
onto a knowledge graph. ORKA can be integrated with such 
resources by enabling a request to its API. In a user inter-
face this may look like an “Annotate now” link, button, or  
context menu item, on an association or assertion from the 
knowledge graph. The API requires minimally a pointer to the 
original data source and the selected knowledge graph asser-
tion specified as a single triple, i.e. RDF URIs for subject, 
predicate and object. In subsequent steps, ORKA will collect 
the identity of the user and record the annotation activity as a  
self-contained, semantically interoperable digital object.

To identify the user, we envision a choice from a range of 
commonly used open authentication identity providers. In 
the current prototype, Open Researcher and Contributor ID 
(ORCID) provides the main method of user authentication. 
We consider the identity of the annotator to be an essential  
part of the provenance of the annotation: firstly, it can be 
used to rate or establish trust in the quality of a curator and,  
secondly, it is needed to reward proper credit to the user for  
their curation effort.

In the annotation stage, the user currently has the option to change 
the relation, add a comment, or both. We found that offering 
only a limited set of annotation options helps keep the annota-
tion process quick and simple, yet still expressive. Through the 
selection of an alternative relation, the user suggests an improve-
ment that includes using a more specific predicate or negating 
the relationship. Relations may be chosen from a pre-loaded set,  
or from a specific ontology chosen by the user. The free 
text box can be used to make any additional comments, and  
currently also serves as a catchall to describe any other type of 
annotation: for example, to support an assertion with additional  
evidence, or when a suitable predicate is not readily available.

Finally, ORKA captures the annotation, including provenance 
information (curator ID, date, original source triple and con-
text), as a semantic digital object using the Nanopublication269 
model and the Open Annotation ontology (OA,292). The anno-
tation object is then stored in an annotation repository, which is 
by default an open Nanopublication store (ORKA can also be  
reconfigured to store to a private location). Subsequently, the 
user has the option to browse the repository or return to the 
original resource from which the annotation request to ORKA 
was made. Meanwhile, the original data source will receive 
a notification and link to the annotation object. Data sources  
may then apply different strategies to incorporate the annota-
tions in their resource: some may first want to perform man-
ual validation, or choose to accept annotations from a selected 
group of annotators automatically. We note that the semantic  
description of the annotations and their provenance promotes  
the reuse of annotations: third parties can access the (public)  
annotation stores and use them for their own purpose. Attri-
bution can be achieved, as Nanopublications are inherently  
citable.

We have designed ORKA as a generic service to annotate dif-
ferent types of graph-based data sources and produce persistent, 

reusable semantic digital annotation objects. During BH15 we 
developed a browser bookmarklet that enables annotation of any 
web page with embedded RDFa statements293. ORKA is currently 
being developed in the context of the ODEX4All project294 to  
enable annotation of its core knowledge platform. Initial use cases 
have suggested a need for additional features, such as annota-
tion of the object of a statement as well as specifying evidence 
for an annotation (for example by citing published literature). 
Supporting additional open authentication methods will lower 
the entry barrier for potential users even further. In the future,  
we hope to integrate ORKA in other resources and work 
out scenarios to show how generically reusable annotations 
result in richer, more accurate data sources and how this helps  
knowledge discovery in the life sciences domain.

Conclusions
The BioHackathon series offers an unparalleled opportunity 
for scientists and software developers to work together to tackle 
challenging problems in the life sciences. BH15, the 2015  
edition, was no exception, and featured contributions from a  
wide range of subdisciplines.

On the topic of semantic metadata, we observed the FAIR prin-
ciples gaining further traction with the development of addi-
tional tooling in the form of FAIR Projectors that represent data 
in FAIR ways using a template-like system. Likewise pertain-
ing to semantic metadata, work was done at BH15 to assess 
the state of the art in recording the justification, provenance,  
evidence, directionality and versioning of ontology mappings. 
Additionally in this track, participants initiated work on a Gen-
eral Process Model to capture lab experimental metadata as net-
worked sequences of activities, objects, transformations, and 
events. Lastly in semantic metadata, participants worked on 
the ORKA system for annotating knowledge graphs by human  
curators. To contribute to the improvement of reproducibility in 
bioinformatics, participants in that track worked on three tech-
nologies that formally represent the steps of in silico experi-
ments and the computational environment in which such  
experiments take place. The Common Workflow Language 
(CWL) is a system to describe command line tools and chain them 
together. At BH15, participants added CWL support to the Toil  
workflow engine and worked on CWL components that con-
sume JSON(-LD). In addition, the Docker lightweight system 
for virtualization (‘containerization’) was targeted at BH15 to  
enable discovery of bioinformatics containers and simplify 
deployment of the Virtuoso triple store loaded with bioinfor-
matic data sets. Lastly contributing to reproducibility, partici-
pants further extended the GNU Guix ecosystem, an alternative 
approach for virtualization with certain security advantages, 
by adding additional bioinformatics packages as well as  
CWL and Ruby gems to it.

In the track on genotypes and phenotypes, participants worked 
on the semantic representation of genotype and phenotype 
data. This included the modeling of common, stably named and 
canonically identifiable genomic variation as an RDF graph 
that was queried using SPARQL. Conceptually related to this, 
other participants worked on a real-time generated, query-
able, semantic representation of VCF data, a commonly used 
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format for representing variant calls such as SNPs. Contribut-
ing in this track to the semantic representation of phenotypes,  
participants worked on the translation of the Human Phenotype 
Ontology in Japanese. In efforts to contribute to the representa-
tion of comparative data within frameworks of shared evolution-
ary ancestry, participants in the orthology and phylogeny track 
focused on two challenges. Firstly, work was done on the devel-
opment of the Orthology Ontology to capture essential con-
cepts pertaining to sequence orthology, including evolutionary 
events such as sequence duplication and speciation. Secondly,  
to attempt to place such evolutionary events on absolute time 
scales, an evaluation was made of the amenability of the Fossil-
Calibrations database on the semantic web by implementing a 
prototype pipeline that calculates substitution rates for branches 
between speciation events as a function of time since gene  
duplication.

Contributing to semantic representations in chemistry, par-
ticipants discussed strategies to advance cooperation between 
chemical databases, including establishing agreement on which 
database keys to use, how to make databases more interoper-
able by denser cross-referencing, and harmonizing RDF repre-
sentations. Also in this track, more work was done on the PIERO 
ontology for chemical transformations, including improved 
RDF interoperability and additional data curation. An important  
development was the definition of a classification based on  
reaction characteristics. Moving on to larger molecules, in  
proteomics, participants assessed the scalability of represent-
ing the UniProtKB database in OWL. Other participants in 
the same track worked on ontologizing proteome data. An 
important resource in this field is jPOST, for which an assess-
ment of available controlled vocabularies and ontologies took 
place and work on an RDF schema commenced. In glycomics,  
participants worked on extending the development of an  
ontology for representing glycan structures, GlycoRDF, which  
was initiated at an earlier BioHackathon, in 2012.

In metabolomics, participants worked on improving the  
availability on the semantic web of data pertaining to the  
biochemical analysis of low-molecular-weight metabolites in  
biological systems. This included a focus on the visualization 
of plant metabolome profiles and the identification and anno-
tation of metabolites. Participants in this track further worked 
on the development of visual web applications to expose the  
metabolome database AtMetExpress.

In the natural language processing track, participants worked 
on the capture and analysis of human phenotype data from 
free form text, i.e. the biomedical literature. Other partici-
pants in the same track worked on mining the structured text  
from drug labels to collect rich representations of drug (side)  
effects and indications. Also in this track, work was done on 
data analytics on text-mined corpora, specifically to attempt to 
learn associations between biological processes disrupted by 
gene mutations with externalized phenotypes. Large assess-
ments were made of the integration of text mined and curated 
data and of the interoperability of disease terminology. As a  
demonstration of the state of the art in generating natural  

language, a demo was developed that generates a haiku from  
data on the semantic web.

The data retrieval and query answering track was concerned 
with new technologies for interrogating data on the semantic 
web. This included exposing semantic web services for Open-
LifeData through re-implemented, more scalable interfaces. Par-
ticipants in this track also worked on the SPARQL Builder, a 
tool for more easily constructing queries in the commonly used, 
but not very user-friendly, SPARQL language. Other ways to  
make queries easier included work on LODQA, a system that 
constructs queries from natural language. A final demo of the 
state of the art in interrogating the semantic web in a play-
ful way was Crick-Chan, which presents itself through cartoon  
animations and interacts with users through a chat bot interface.

BH15 thus contributed to many challenges in bioinformat-
ics, including the representation, publication, integration and 
application of biomedical data and metadata across multiple 
disciplines including chemistry, biology, genomics, proteom-
ics, glycomics, metabolomics, phylogeny and physiology.  
A wealth of new semantics-aware applications have been devel-
oped through this hackathon that facilitate the reuse of complex 
biomedical data and build on global efforts to develop an eco-
system of interoperable data and services. As requirements for 
providing higher quality data and metadata continue to grow 
worldwide, BioHackathon participants will be well positioned  
to develop and apply semantic technologies to face the challenges 
of tomorrow.
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This is a sprawling and fascinating report from a hackathon in 2015. The activities involve development of
software and standards across a broad range of subdisciplines within the life sciences, but are united by
largely basing their approaches on the application of semantic technologies. As such, the paper is an
excellent overview of a wide variety of ways in which semantic technologies are being employed with
great success in the biological sciences. Areas targeted include genotype/phenotype data, orthology and
phylogeny, proteomics, metabolomics, data retrieval and querying, natural language processing,
reproducibility, and metadata representation. Despite the several years that have elapsed since then,
many of the tools built and insights gleaned still have relevance today, and so we are grateful that this
work has been written and published. However, we believe that this five year gap between event and
publication provides a valuable opportunity for the authors to reflect on how that hackathon work was
useful, both in its original context as well as today. We think the authors did an excellent job describing
this in the section “Assessing the Findable, Accessible, Interoperable, and Reusable Principles”, but
some other sections suffer by not being clear about what was developed before, during and after the
hackathon. It may turn out that some of this work was not particularly useful in the long term — which is
only to be expected in a hackathon — but it might also be that a good idea from five years ago has been
subsequently overlooked, and this work might be in a position to call attention to such ideas. 

Having explicit subsections entitled “Changes in the landscape since 2015” in every section could be
helpful in making this clearer. There are also several references to events that were contemporaneous
with the hackathon; for example, in the section “Molecular evolutionary process calibration”, the authors
write that “Recently, a working group at the National Evolutionary Synthesis Center (NESCent) …”.
However, this is incorrect to state in a document published in 2020, as NESCent was shut down in June
2015. Clarifying which parts of the text are true as of the workshop and which are true today would help to
prevent such errors.

Understandably for activities at a hackathon, some activities could be described in a little more detail,
while some descriptions could be more concise. Some notes on the various descriptions follow:
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Variation graph construction:
It would be helpful to state which triplestore database was used when stating performance results.
 

Orthology ontology development and application:
Grammatical issue in sentence including “Although the standard mapping and transformation by
SWIT was largely able to transform the content of the three databases, though a few
resource-specific rules were necessary because” (remove ‘though’?).
 

Molecular evolutionary process calibration:
The authors point out that a particular JSON resource is “convenient for programmers but it also
means that certain concepts used in the JSON are ambiguous as they are not linked to any
controlled vocabulary or ontology.” They should mention JSON-LD as a possible solution to this
problem, a technology they refer to several times elsewhere in the paper.
 

Protein semantic representation:
It would be useful to include a brief statement about how the particular axiomatization described
supports some use cases. Besides OWL 2 EL scalability, what motivated this particular design?
"For complex datasets, the additional semantics of OWL, which includes assertions of disjointness,
i.e. the explicit semantic distinction between classes and their instances, and axioms restricting the
use of classes and object properties, may be particularly beneficial." Here, it seems like an
inaccurate definition is provided for ‘disjointness’ (“explicit semantic distinction between classes
and their instance”). This is not what disjointness means, but perhaps this was just meant to be a
list of logical features provided by OWL. Remove ‘i.e.’?
A layout issue we noted was the sentence “We also generate the following axioms (here
expressed in Manchester OWL Syntax)”, which should not be a bullet point.
 

Tools for metabolite identification and interpretation / Plant metabolome database development:
These sections provide a large amount of background information, taking longer to reach the
description of what was accomplished at the hackathon.
 

Chemical database integration:
Perhaps it wasn't discussed at the hackathon, but we are curious how the ChEBI ontology fits into
this picture of harmonization across chemical databases.
 

Clinical phenotype text mining:
The superscript citation format makes some of the sentences oddly worded (e.g., second
paragraph) where it seems like the author name is meant to be in the sentence. "For example ,
assessed the contribution of …”. In this case, it appears that the citation was intended to be
included inline, i.e. “For example, Kotfila and Uzuner (2005) assessed ...”. In these cases, the text
should be rewritten so that it is easier to read. 

The abbreviation section could benefit from hyperlinks to the ontologies (and possibly also the
organizations) being linked to.

Apart from these relatively minor issues, we are grateful that the authors have published this work and
recorded the activities at what appears to be a wide-ranging and productive hackathon. Also,
congratulations to them on producing the first semantic haiku!

Is the topic of the opinion article discussed accurately in the context of the current literature?

Partly
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Partly

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes
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This is a well written report of a Hackathon activity in the area of semantics and ontologies for life
sciences with a view to using these semantic technologies and knowledge structures to enhance the
reproducibility and I would say the use and re-use of life sciences data and methods in a number of
typically gene and protein related areas. While the report is on an activity which I presume took place in
2015 the material is very relevant and not dated.  

The report contains very good summaries of the prior art on the areas, especially ontologies that cover the
areas of interest and are of potential use across the whole of the scientific research life cycle. The details
of the challenges, data made available, teams and goals are provided and will benefit the community
though it will need detailed reading to absorb the extensive material provided by the authors. The
extensive references are themselves a very useful research source.

I consider this to be a well written and useful contribution to the literature which will help the community in
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I consider this to be a well written and useful contribution to the literature which will help the community in
building new and useable systems (and also not to re-invent things that do already work).

Is the topic of the opinion article discussed accurately in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Yes

Are arguments sufficiently supported by evidence from the published literature?
Yes

Are the conclusions drawn balanced and justified on the basis of the presented arguments?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Chemical Informatics, Physical Chemistry, Digital Economy

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact   research@f1000.com

Page 34 of 34

F1000Research 2020, 9:136 Last updated: 08 APR 2020


