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Theileria parva kills over one million cattle annually in sub-Saharan Africa. Parasite genetic complexity,
cellular response immunodominance, and bovine MHC diversity have precluded traditional vaccine
development. One potential solution is gene gun (GG) immunization, which enables simultaneous
administration of one or more DNA-encoded antigens. Although promising in murine, porcine, and
human vaccination trials, bovine GG immunization studies are limited. We utilized the model T. parva
antigen, polymorphic immunodominant molecule (PIM) to test bovine GG immunization. GG immuniza-
tion using a mammalian codon optimized PIM sequence elicited significant anti-PIM antibody and cell-
mediated responses in 7/8 steers, but there was no difference between immunized and control animals
following T. parva challenge. The results suggest immunization with PIM, as delivered here, is insufficient
to protect cattle from T. parva. Nonetheless, the robust immune responses elicited against this model
antigen suggest GG immunization is a promising vaccine platform for T. parva and other bovine
pathogens.
Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

The tick-borne, apicomplexan parasite Theileria parva kills over
one million cattle annually in sub-Saharan Africa [1]. Infection
results in a clinical syndrome known as East Coast Fever (ECF),
characterized by pyrexia, lymphadenopathy, and respiratory fail-
ure [2]. Mortality rates are highest in European cattle breeds
imported for higher meat and milk yields, and most losses are
incurred by smallholder pastoralist farmers [3]. Improved control
of T. parva via next-generation vaccine development is a critical
aspect of international aid programs to combat poverty and starva-
tion in sub-Saharan Africa.

Immune responses to T. parva consist of sporozoite-specific
antibody responses and major histocompatibility complex (MHC)
class I- and II-restricted T cell responses to schizont-infected lym-
phocytes [4–7]. Protective immunity is elicited by sub-lethal natu-
ral infection and by the infection and treatment method (ITM),
whereby cattle are infected with cryopreserved, T. parva-infected
tick stabilate and co-treated with oxytetracycline [1]. ITM effec-
tively premunizes cattle against homologous strains of T. parva
and is integral to ECF prevention in some areas. Unfortunately,
widespread adoption of ITM throughout sub-Saharan Africa has
been severely limited by production and implementation costs
and liquid nitrogen storage requirements. Concerns regarding the
induction of a T. parva carrier state in ITM-immunized animals
and limitations of cross-strain protection have further constrained
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Table 1
MHC class I and class II genotypes of immunized and control steers.

Steer MHC I MHC II

489 A10/A12 1001/1501
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ITM use [1,8,9]. Longer term ECF control strategies include ITM
improvement and next-generation vaccine development.

To date, several T. parva vaccine trials utilizing various antigens
and delivery platforms have been conducted [10–12]. In some tri-
als, a proportion of immunized animals developed T. parva-specific
immune responses, and a subset of these animals were protected
from lethal challenge [10–12]. Although promising, the marginal
success of these trials highlights challenges inherent in subunit
vaccine development for complex intracellular pathogens of out-
bred host species. Indeed, genetic complexity [13] and strain vari-
ation of T. parva [14–16], coupled with immunodominance of the
protective cellular immune response [15,17] and diverse nature
of bovine MHC loci [18–21] have precluded development of a tra-
ditional T. parva subunit vaccine with population-wide efficacy.

A potential solution to these challenges is gene gun (GG) immu-
nization, also known as particle-mediated epidermal delivery DNA
immunization, which enables simultaneous intradermal inocula-
tion of one or more DNA-encoded antigens [22–25]. DNA-
encoded antigens are biolistically delivered into epidermal and
dermal professional and non-professional antigen presenting cells
(APC) where they are expressed, processed, and elicit an immune
response [22]. Due to direct deposition of DNA-encoded antigens
in the nucleus of dermal APCs, GG DNA immunization requires
10 to 100-fold less DNA than conventional intramuscular DNA
immunization yet elicits much stronger humoral and cell-
mediated immune responses [26]. Additionally, the flexible nature
of the platform allows inclusion of diverse DNA-encoded, co-
stimulatory molecules and genetic adjuvants to enhance immune
response development.

GG DNA immunization has been successfully utilized in vacci-
nation trials for viral and neoplastic diseases in humans, primates,
pigs and mice, and was recently used in mice to discover new Plas-
modium yoelii sporozoite candidate antigens [22,25,27,28]. To our
knowledge, GG DNA immunization using complex protozoal anti-
gens has never been tested in a large, outbred species such as cat-
tle. Here, we assessed bovine GG DNA immunization using the T.
parva polymorphic immunodominant molecule (PIM) antigen in
Holstein steers, and made modifications to increase PIM immuno-
genicity. PIM is comprised of a central variable region flanked by
conserved N- and C-terminal ends, ranges in size (based on strain)
from 62 kDa, and is a good model of structurally-complex proto-
zoal proteins [29]. PIM is highly expressed by both the sporozoite
and schizont stages [30] and plays a role in sporozoite lymphocyte
entry during early infection [31]. As its name implies, PIM is the
target of vigorous immune responses during T. parva infection
[32]. Due to the universality of the robust antibody response to
PIM during T. parva infection, recombinant PIM is used in the T.
parva diagnostic ELISA test [33]. Since this ELISA is well-
characterized and validated, it can be used to demonstrate the
development of a humoral immune response to GG DNA immu-
nization using PIM as a model. Although widely used in T. parva
diagnostic assays, the protective potential of PIM as a vaccine anti-
gen had not been formally assessed in a large group of cattle until
the present study. Our study provides a potential path for using GG
DNA immunization and codon optimization to increase the
immunogenicity of T. parva vaccine candidates to achieve high
rates of protection against challenge.
1424 A10/A15 1001/0201
780 A10/A11 1001/0101
901 A10/A19 1001/0901
148 A14/A15 0902/1101
790 A14/A11 0101/1401
807 A14/A083 0902/0101
817 A14/A084 0902/1401
141* A10/A11 1001/0101
1413* A14/A11 0202/0701

* Control steer.
2. Materials and methods

2.1. Cattle

All animal experiments were approved by the Washington State
University Institutional Animal Care and Use Committee (protocol
#4980). Therapeutic drugs were administered according to manu-
facturers’ instructions. This study utilized ten, 3–12 month-old,
MHC class I A10 or A14 heterozygous haplotype-matched [34] Hol-
stein steers (Table 1) from dairies in central Washington. Cattle
were quarantined at the USDA-ARS Animal Disease Research Unit
(ADRU) research barns for two weeks before the start of the study
and received regular health checks from licensed veterinarians.
After quarantine, calves were housed in small groups at the
USDA-ARS-ADRU disease research barn. Pre-immunization and
pre-challenge complete blood counts (CBCs) and serum chemistry
panels were normal, and all calves tested negative on a pre-
immunization T. parva PIM enzyme-linked immunosorbent assay
(ELISA) (data not shown).
2.2. Cloning of expression constructs

All constructs were cloned into NTC9384R UbA76 antibiotic free
vector (NatureTechnologies Inc., Lincoln, NE). The vector backbone
was amplified using the primers (50-gagagagtcgacggtggcttctcgac
gacggtttgt-30 and 50-cccggggagatctttttccctctgccaaaaattatggg-30) to
delete the Ubiquitin tag and the product was DpnI digested. The
native T. parva Muguga PIM coding sequence (GenBank Accession
number AAGK01000004 [35]) was amplified from genomic DNA
using PIM-specific primers (50-agagagtcgacatgaagatctttccctttttattta
tatttccatttttattaaaatta-30 and 50-gagagacccgggttaacaacaatcttcgt
taatgcgagaaaaagagttgc-30). Vector and insert were digested with
SalI and XmaI, gel purified, ligated and transformed into
chemically-competent NTC821601 E. coli. Clones were isolated
and sequence verified. The codon-optimized (CO) PIM coding
sequence was designed (Supplementary Fig. 1), commercially syn-
thesized (GeneWiz, Plainfield, NJ USA), and subcloned into the NTC
vector using SalI and XmaI in a similar manner. Plasmids were
grown in Luria broth (LB) and purified using an Endo-free Maxi
Kit according to the manufacturer’s instructions (Qiagen, Hilden,
Germany). A construct encoding the genetic adjuvant E. coli heat-
labile enterotoxin (LT) was obtained from Debora Fuller (Univer-
sity of Washington, Seattle, WA) and prepared in a similar manner.
2.3. Assessment of in vitro PIM expression

To evaluate in vitro expression of PIM, human embryonic kidney
(HEK) 293 t cells (ATCC# CRL-11268) and bovine aortic endothelial
cells (BAEC) (Sigma-Aldrich, St. Louis, MO) were transiently trans-
fected with NTC-PIM native or NTC-PIM-CO using PEI transfection
reagent (Sigma-Aldrich). Briefly, cells were seeded at 2 � 105 cells/
well in six-well plates and incubated overnight at 37 �C and 5%
CO2. Cells were next incubated with a transfection mix containing
2 mg plasmid DNA and PEI in OPTI-MEM (Gibco, Gaithersburg, MD).
After incubation for 4 h, the transfection mix was replaced by
DMEM (Gibco) with 10% FBS and cells were collected at 24 or
48 h post-transfection into Cell Culture Lysis Reagent (Promega,
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Madison, WI). pMaxGFP (Lonza, Basal, Switzerland) was used as a
positive control for the transfections.

PIM protein expression in cell lysates was assessed by
immunoblotting using standard methods [36]. Detection of PIM
was achieved via incubation for one hour at room temperature
with anti-PIM monoclonal antibody (mAb) clone ILS40.2 (1 mg/
mL) [30]. Membranes were then washed in PBS-T and incubated
for 1 h at room temperature with anti-mouse HRP (1:2500) (Sera
Care, Milford, MA). Immune complexes were visualized using an
enhanced chemiluminescence method (Amersham ECL; GE Health-
care, Pittsburg, PA). AlphaView� SA software (ProteinSimple) was
used to perform densitometry analysis of immunoblot protein
bands to measure the relative expression of PIM in HEK 293 t
and BAEC cells.

2.4. Gene gun cartridge loading

Cartridges were loaded using traditional methods [28]. Car-
tridge batches were quality controlled by elution of single car-
tridges with 50 mL of water and quantified for DNA concentration
using a NanoDrop (Thermo Scientific, Waltham, MA). Typical
DNA yield per cartridge was 0.5 mg.

2.5. Gene gun immunization of cattle

A Helios Gene Gun (Bio Rad, Hercules, CA) was used for GG DNA
delivery. Eight calves received four inoculations with pNTC-PIM-
native (native sequence PIM) followed by immunogenicity evalua-
tion using PIM ELISA. Due to the absence of consistent immune
response development following pNTC-PIM native immunization,
cattle were subsequently inoculated four times with pNTC-PIM-
CO (codon-optimized PIM). Two calves were inoculated eight times
with empty NTC plasmid and were used as controls. Inoculations
were separated by 45–60 days. Before each inoculation, an approx-
imately 15 cm2 area on the left side of the neck was closely shaved
and cleaned with 70% ethanol. Once the skin was prepared, ten car-
tridges were administered at separate foci within the shaved area
using 500 psi helium. Thus, over the course of the entire experi-
ment, immunized cattle were inoculated with 40 pNTC-PIM-
native cartridges (20 mg DNA) and 40 pNTC-PIM-CO cartridges
(20 mg DNA), and control cattle were inoculated with 40 mg pNTC
control plasmid. Peripheral blood was collected from each animal
at various time points to assess the immune response.

2.6. Humoral immune response in PIM gene gun-immunized cattle

Serum samples were tested for the presence of anti-PIM anti-
bodies by ELISA (ILRI, Nairobi, Kenya) per kit instructions [33]
using positive and negative control sera included in the kit. This
assay utilizes E. coli –expressed, full-length recombinant PIM anti-
gen [33]. Plates were read at 405 nm (OD405) using a Multiskan
MCC ELISA reader (Thermo-Fisher). The assay was performed in
duplicate for each animal at each time point. Samples were consid-
ered positive if the observed OD405 was greater than or equal to
three standard deviations above the OD405 of negative control
animals.

To determine the predominant antibody isotype(s) comprising
the humoral immune response to PIM immunization, the PIM
ELISA was modified to use HRP-labeled anti-bovine IgG1 or
similarly-labeled IgG2 secondary antibodies (both from Invitrogen
and used at 1:500).

Immunoblotting was used to verify recognition of full-length,
eukaryotic-cell-expressed codon-optimized PIM by immunized
calf sera as described above. After blocking, membranes were incu-
bated for one hour at room temperature in sera from immunized
cattle diluted 1:2 or in ILS40.2 anti-PIM monoclonal antibody as
described above. To reduce background, bovine serum samples
were adsorbed with HEK293 cell lysate for 48 h at 4 �C prior to
incubation with the membrane. After washing, membranes were
incubated for one hour at room temperature with anti-bovine
HRP (1:2500, SeraCare) or anti-mouse HRP (1:2,500 SeraCare),
and complexes revealed using ECL as described above.

2.7. T. parva infected cell lysates

T. parva infected lymphocyte cell lines were established and
maintained using standard methods [37]. Lysates of T. parva-
infected cell lines and uninfected PBMC were used as antigen to
assess cellular immune response development following PIM
immunization. Briefly, 3 mL of T. parva-infected cell culture
(3 � 106 cells/mL) with a 40–60% infection prevalence, was lysed
via two cycles of freezing (�80 �C) and thawing. Lysate was cen-
trifuged twice for 3 min at 10,000g, supernatant discarded, and
the pellet re-suspended in 400 mL of complete RPMI. Lysate was
then tested by ELISpot assay (described below) to verify that it
lacked soluble IFNc (data not shown), and stored at �80 �C until
use in immunological assays.

2.8. IFNc response of PIM gene gun immunized cattle

One week after the final PIM inoculation, PBMCs from immu-
nized and control steers were isolated from whole blood using
density centrifugation with Histopaque (Sigma-Aldrich) to assess
the ex vivo T. parva-specific immune response following PIM
immunization. Production and secretion of IFNc by PBMC stimu-
lated overnight with 20 mL T. parva-infected cell lysate was mea-
sured using ELISpot assays (MabTech, Cincinnati, OH) per the
manufacturer’s instructions. As a positive control for IFNc produc-
tion, PBMC from each animal were exposed to 20 ng/mL phorbol
12-myristate 13-acetate (PMA) (Sigma) plus 1 mg/mL ionomycin
(Sigma), and PBMCs incubated without antigen served as negative
controls. All cell cultures were performed in triplicate. Plates were
read and analyzed using an Immunospot ELISpot reader (Cellular
Technology Limited, Shaker Heights, OH). For each steer, the mean
number of spot forming units (SFU) generated after PBMC incuba-
tion with T. parva infected cell lysate was compared to the mean
number of SFU generated after incubation of PBMC alone using a
two-tailed student’s T-test (a < 0.05).

2.9. T. parva challenge

Three weeks after the last immunization, cattle were challenged
via subcutaneous inoculation of 1 mL cryopreserved Pullman
2015/4 T. parva Muguga sporozoite stabilate. Beginning three days
post-challenge, animals were physically examined daily, and rectal
temperature, pulse and respiratory rate recorded. Beginning seven
days post-challenge, CBCs were assessed daily, and serum chem-
istry panels assessed weekly. Cattle that developed fever greater
than 40.2 �C were treated with flunixin meglumine (MWI Animal
Health, Boise, ID). Cattle that developed evidence of respiratory
distress were euthanized via intravenous injection of pentobarbital
(Fatal Plus, Vortech Pharmaceuticals, Dearborn, MI). A necropsy
was performed on all cattle, and sections of lung and lymph node
were collected and fixed in 10% neutral buffered formalin for
histopathology and PIM immunohistochemistry, as previously
described [2].

2.10. T. parva p104 qPCR

To determine the level of T. parva parasite density, quantitative
PCR (qPCR) targeting the single-copy T. parva p104 gene was per-
formed as previously described [38]. CFX ManagerTM Software
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(Bio-Rad) was used to analyze the qPCR data. Samples were run in
duplicate, with numbers of p104 copies presented as absolute
numbers determined by the standard curve. Efficiency of amplifi-
cation and melt curve analyses were performed to evaluate analyt-
ical sensitivity and specificity of the qPCR [2].
3. Results

3.1. Humoral response elicited by pNTC-PIM-native immunization

One month after the final of four GG DNA immunizations with
pNTC-PIM-native, blood was collected from all cattle and serum
assayed for the presence of an anti-PIM antibody response. At this
point, only 3/8 cattle exhibited significant anti-PIM antibody
responses compared to negative control cattle (Fig. 1).
3.2. Codon optimization and in vitro expression of PIM

Due to limited immunogenicity and variability of the in vivo
responses above, we next assessed in vitro PIM expression in a
bovine-derived cell line following transfection with the native
PIM construct versus a CO-PIM construct to determine if codon
optimization would increase PIM expression efficiency. Codon
optimization increased the GC-content of the PIM sequence (Sup-
plementary Fig. 2A). To investigate the effect of codon optimization
on expression, native and codon-optimized sequences of PIM were
cloned into the NTC9384R UbA76 plasmid as described above and
used to transiently transfect HEK 293 t or BAEC cells.

Immunoblot analysis using the anti-PIM mAb ILS40.2 showed
PIM expression in HEK 293 t cells was markedly increased in cells
transfected with the CO sequence compared to the native
sequence. Interestingly, BAEC were unable to efficiently express
the native sequence, but expressed easily detectible levels of PIM
when transfected with the CO sequence (Supplementary Fig. 2B).
Densitometry revealed a greater than 2.5-fold increase in PIM
expression in HEK 293 t cells transfected with plasmid containing
the CO sequence compared to native sequence (Supplementary
Fig. 2C).

Collectively, these data demonstrate a significant increase in
in vitro T. parva PIM expression by transiently transfected when a
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3.3. Humoral response elicited by pNTC-CO-PIM immunization

Due to the poor expression profile of native PIM by bovine cells
in vitro and the significant enhancement of expression when CO-
PIM was used, we hypothesized that the native construct was
poorly expressed in vivo, leading to reduced antigen production
and resultant inconsistent antibody response. To test this hypoth-
esis, we immunized all cattle an additional four times using the
pNTC-PIM-CO construct. Two weeks after the last inoculation,
7/8 cattle exhibited significant anti-PIM antibody responses com-
pared to the negative control cattle using the PIM ELISA (Fig. 1),
and immunoblots using sera from immunized cattle verified recog-
nition of the full-length, mammalian-cell-expressed, codon-
optimized PIM antigen (Fig. 2). Serum was re-assessed in the PIM
ELISA four months later to evaluate the longevity of the antibody
response, and 7/8 cattle continued to show significant anti-PIM
antibody responses. One steer lacked a significant antibody
response in the final PIM ELISA but was seropositive in the previ-
ous assay, such that only 6/8 cattle maintained positive antibody
titers four months following immunization (Fig. 1).

To better characterize the antibody response to PIM, anti-PIM
antibody isotyping was performed on serum collected four months
after the last inoculation. In 7/8 animals, the IgG repertoire con-
tained significantly (p < 0.05) higher levels of IgG2 than IgG1
(Table 2).

3.4. Cellular immune response elicited by CO-PIM immunization

One week after the final inoculation with the pNTC-PIM-CO
construct, blood was collected from all cattle and PBMCs used in
IFNc ELISpot assays to determine whether lymphocytes from
PIM-immunized cattle would produce IFNc in response to T.
parva-infected cell lysate. Significant numbers of PBMC from 7/8
PIM-immunized cattle produced IFNc in response to the T. parva-
infected cell lysate compared to uninfected cell lysate, while PBMC
from two control steers did not contain significant numbers of T.
parva-specific, IFNc-producing lymphocytes (Fig. 3). Since the steer
in which an ex vivo cell-mediated immune response was not
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Table 2
Pre-challenge anti-PIM total IgG/IgG1/IgG2, OD405 (±Standard deviation).

Animal ID Total IgG IgG1 IgG2

1424 0.2135 (±0.0205) 0.0445 (±0.0007) 0.2380 (±0.1400)a

489* 0.0775 (±0.0049) 0.0425 (±0.0021) 0.0590 (±0.0001)a

807 0.2465 (±0.0233) 0.0465 (±0.0021) 0.0725 (±0.0063)
817 0.2415 (±0.0021) 0.0430 (±0.0001) 0.2205 (±0.0233)a

901 0.2390 (±0.0000) 0.0460 (±0.0001) 0.0705 (±0.0021)a

780 0.4810 (±0.0268) 0.0445 (±0.0007) 0.0510 (±0.0001)a

790 0.5075 (±0.0318) 0.0445 (±0.0007) 0.4270 (±0.0593)a

148 0.1620 (±0.0042) 0.0420 (±0.0014) 0.0930 (±0.0028)a

a p < 0.05, t test comparing OD405 of IgG1 and IgG2.
* This animal failed to develop a significant, long-lasting anti-PIM antibody

response.
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detected (Animal 780) developed a significant anti-PIM antibody
response, and vice-versa (Animal 489), there was no apparent cor-
relation between the development of cell-mediated and humoral
immunity in these animals.
3.5. T. parva challenge

Upon challenge, there were no statistically significant differ-
ences in clinical responses to lethal T. parva challenge between
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the PIM-immunized and control cattle, and all cattle developed
clinical signs (Supplementary Fig. 3) and gross and histologic
lesions of severe ECF [2]. Histologically, the lungs and lymph nodes
of all cattle contained abundant T. parva schizonts (Supplementary
Fig. 4) [2].
4. Discussion

T. parva is the leading infectious cause of bovine mortality in
sub-Saharan Africa [1,3,39]. Widespread adoption of ITM-
immunization in the region is severely limited by its prohibitive
cost, requirement for liquid nitrogen storage, necessity of antibi-
otic co-treatment, and induction of a T. parva carrier state in immu-
nized cattle, resulting in possible ITM-strain transfer to new areas
[1,8]. Thus, in addition to ITM improvement, long-term ECF control
strategies include development of a sustainable, cost-effective,
next-generation vaccine [9]. Due to the complexity of the parasite
genome and life cycle [13], the multifaceted nature of the protec-
tive T. parva immune response [15], and the marked genetic vari-
ability of outbred cattle populations [18–21], killed organism
vaccines and traditional, mono- or divalent subunit vaccines have
not proven effective in ECF prevention [11]. It is likely that a pro-
esponse to 
cell lysate 
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*

ay was performed 1 week after the final inoculation with codon-optimized PIM. The
ean SFU for triplicate wells. For each steer, the mean number of SFU generated after
f SFU generated after incubation of PBMC alone using a two-tailed student’s T-test,
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tective vaccine will be multivalent -- comprised of antigens
expressed by different parasite life stages and strains capable of
eliciting vigorous humoral and cell-mediated immune responses
in cattle of diverse genetic backgrounds.

For these reasons, GG DNA immunization is a promising T. parva
vaccine platform. Not only does it enable inclusion of numerous
antigens, it also allows addition of genetic adjuvants, including var-
ious immune-stimulating molecules, cytokines and shRNAs
[23,28]. Although widely tested and successful against several neo-
plasms and infectious organisms of mice and primates [22,25], GG
DNA immunization has only been used in a small number of her-
pesvirus vaccine trials in cattle [40–42]. In this study, we utilized
the T. parva PIM antigen to optimize and test GG DNA immuniza-
tion as a platform for vaccination against complex protozoal patho-
gens in cattle.

When GG DNA immunization was utilized to elicit protection
against bovine herpesvirus-1 (BoHV-1), it was determined that
mucosal delivery was superior to intradermal delivery [40].
Although mucosal delivery is an ideal route for respiratory patho-
gens like BoHV-1, intradermal delivery is the preferred route of
immunization for hemoparasitic pathogens like T. parva, and if
GG DNA immunization is to be used to prevent hemoparasitic
infections, bovine immune responsiveness to intradermally deliv-
ered DNA-encoded antigens must be improved. In this study, we
tested expression of native and CO-PIM in vitro, and followed
induction of antibody responses when animals were serially vacci-
nated with native PIM and then with CO-PIM.

Expression of PIM by BAEC was undetectable when cells were
transfected with the native PIM sequence, but was abundant when
the CO-PIM construct was used for transfection. Similarly, when
the native PIM construct was used for GG DNA immunization, only
three cattle developed antibody responses. However, after receiv-
ing an additional four inoculations with the codon-optimized
PIM construct, 7/8 cattle exhibited significant anti-PIM antibody
responses. Since four of those animals failed to respond to PIM
prior to inoculation with the CO construct, even after four inocula-
tions, it is likely that the native construct was not expressed and
processed to an extent sufficient to allow antigen binding and pre-
sentation in those steers, thereby abrogating the development of
an immune response. These results indicate that CO greatly
improves antigen expression and humoral immune response
development to GG DNA immunization in cattle. We are currently
investigating whether priming and boosting with CO-PIM alone
can induce responses with greater efficiency.

Isotyping of the PIM-specific antibody response prior to T. parva
challenge revealed that, in 7/8 animals, an IgG2 anti-PIM antibody
response predominated. The role of different Ig isotypes in cattle
has only been partially explored to date. Previous bovine studies
suggests IgG2 is the major isotype responsible for classical path-
way complement activation and is also important in opsonization
[43]. Recently, a T. parva vaccine study using the antigen p67C
demonstrated that significant anti-p67 IgG2 titers correlated posi-
tively with protection from challenge [12]. Numerous studies have
shown that bovine IgG2 production is enhanced by IFNc during
Th1-skewed immune responses [44–48]. Due to the intracellular
nature of T. parva, the development of a Th1 response is critical
to host survival, and thus, must be elicited by a protective subunit
vaccine.

In addition to the robust IgG2 response, 7/8 of the immunized
cattle in our experiment also developed a significant Th1 T- cell
response following GGDNA PIM immunization. Indeed, significant
numbers of cells from these cattle produced IFNc following over-
night, ex vivo exposure to T. parva-infected cell lysate. Since the
PIM antigen is an antibody target during natural infection
[33,49], in-depth analysis of the T-cell response was not performed
in this study. However, the fact that responses in this group of
immunized cattle were biased to a Th1, IFNc and IgG2-
predominant response suggests that our bovine GG DNA vaccine
modifications, including mammalian cell codon-optimization, have
greatly enhanced the utility of this vaccine platform for this com-
plex livestock disease.

Despite the robust humoral and cell-mediated immune
responses elicited by our PIM immunizations, there was no signif-
icant difference in challenge outcome between immunized and
control steers in this study. This result was not unexpected, and
its cause is likely multifactorial. First, immune-protection in T.
parva is associated with the development of a CD8+ cytotoxic T-
lymphocyte response, the antigenic target(s) of which are entirely
dependent upon the MHC class I genotype and T-cell receptor
repertoire of individual animals [4,10,17,50,51]. It is possible that
the steers utilized in our experiments lacked the MHC class I back-
ground to efficiently bind and present PIM epitopes.

Second, although cattle almost always develop robust anti-PIM
antibodies during natural infection, bovine anti-PIM antibodies
have never demonstrated sporozoite neutralizing capabilities [9].
Thus, it is likely that the anti-PIM antibody response developed
by immunized cattle in this study was non-neutralizing. Thus, even
robust humoral immune responses to this immunodominant anti-
gen are not completely protective, as is the case with similar
immunodominant proteins in other organisms [27,28].

Finally, each vaccination with 10 GG cartridges utilized only
�5 mg of DNA (0.5 mg/cartridge), and lower amounts of DNA per
cartridge may be equally effective [28]. The dose-sparing nature
of GG vaccination and relative stability of gene gun cartridges
increase the utility of this platform for field immunization.

In conclusion, our data demonstrate that intradermal GG DNA
immunization can elicit both humoral- and cell-mediated immu-
nity to complex antigens of hemoparasitic pathogens of cattle.
Codon-optimization of antigenic sequences for mammalian cell
expression is critical to immune response development. Our sys-
tem generated a Th1/IgG2-biased response, which is appropriate
for the elicitation of protective immunity to intracellular hemopar-
asites. Our data also indicate that anti-PIM antibody responses are
insufficient to prevent ECF upon T. parva challenge and that further
work is needed to determine whether PIM is a viable CD8+ CTL tar-
get antigen in some cattle. With further optimization, GG DNA
immunization is a promising delivery platform for next-
generation T. parva vaccination, and further studies are underway
to determine whether multivalent GG DNA immunization with
known CD8+ CTL target antigens and sporozoite antibody targets
will elicit protective immunity to T. parva.
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