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Abstract: Fabry-Perot cavity (FPC) based on Fiber Bragg gratings (FBGs) is an excellent candidate
for fiber sensing and high-precision measurement. The advancement of the femtosecond laser
micromachining technique provides more choices for the fabrication of FBGs-based FPCs. In this
paper, we fabricate miniature FBGs-based FPCs, using the femtosecond laser line-by-line scanning
writing technique for the first time. By this method, the FBGs can be limited to a specific area in the
fiber core region. The grating length, position, and the distance between two successive FBGs can
be conveniently controlled to achieve the desired transmission spectrum. For future applications
in sensing, the temperature and strain responses of the fabricated FBGs-based FPCs were studied
experimentally. This work provides a meaningful guidance for the fabrication and application of
miniature FPCs based on FBGs.

Keywords: Fiber Bragg gratings; Fabry-Perot cavity; femtosecond laser; micromachining technique

1. Introduction

Fiber-optics Fabry-Perot cavity (FPC) is an important kind of optical device and
is widely applied for optical sensing, high precision measurement, and digital signal
processing, due to the characteristics of compactness, high sensitivity and immune to
electromagnetic interference [1]. To date, many structures of FPCs have been demonstrated,
including two inserted vertically cut fibers [2], hybrid structure based on large lateral offset
splicing and cleaving [3], two FBGs with the same resonant wavelength [4], etc. Among
them, FBGs-based FPCs are relatively more compact and stable as well as being easier to
control the cavity parameters in fabrication. So, this kind of FPC plays an important role in
fiber sensing. For example, they can be used as pickup for acoustic guitars [5]; a magnetic
field detector could be realized by recording the wavelength shift [6]; and they can also be
applied as a high-resolution inclinometer [7].

The fabrication of FBGs-based FPCs can be realized by cascading or partly super-
imposing multiple FBGs on fibers [8]. Ultraviolet exposure is the most commonly used
method to inscribe FBGs with which FBGs often present high stability and low insertion
loss. However, the resonant wavelength is decided by the period of the used phase mask,
and hydrogen-loading and annealing are unavoidable processes. Direct ultraviolet writ-
ing was reported to fabricate miniature FPCs in waveguides [9,10], but for fiber-based
inscription systems, the fabrication of the microcavity (total length of FPC in the magnitude
of millimeters) is extremely difficult; for example, the total length of cavity in [8] was
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larger than 10 cm. Owing to the development of the femtosecond laser direct writing
technique [11–14], hydrogen loading and annealing are not necessary anymore, and the
resonant wavelength is not restricted by the phase mask. Until now, FBGs-based FPCs
by femtosecond laser direct writing were reported in few articles. For instance, femtosec-
ond laser point-by-point inscription was employed to manufacture FBGs-based FPCs [15],
which is the most convenient and timesaving method. However, due to the influence
of transmission loss caused by the Mie scattering effect [16], the insertion loss and the
polarization-dependent loss in this method, a part of the core guided energy coupled to
the cladding layer, the spectrum was not symmetric, and the interference was not obvious.
Femtosecond laser plane-by-plane inscription [17–19] was also reported for the fabrication
of FBGs-based FPCs in multimode polymer fiber [20] in which the spectrum of FBGs-based
FPCs is relatively smooth, but the inscription process is relatively time-consuming. Fem-
tosecond laser line-by-line inscription is another efficient method to fabricate FBGs [21–23].
However, up to now, no FBGs-based FPCs fabricated by this method were reported. Com-
pared with point-by-point and plane-by-plane inscription methods, line-by-line writing
can achieve a balance between a good spectrum, time consumption and the complexity of
the writing system.

In this paper, we theoretically study the spectral properties of FBGs-based FPCs,
and simulations are performed to explore how three important fabrication parameters of
the cavity length, grating length and refractive index modulation affect the transmission
spectra. Based on the simulation, four miniature FBGs-based FPCs are fabricated by the
femtosecond laser line-by-line inscription method for the first time, and the total length of
FPCs is in the magnitude of millimeters. To investigate the properties of the fabricated FPCs
in the future sensing applications, two systems are constructed for testing the temperature
and strain responses of the FPCs. The experimental results show that the miniature FBGs-
based FPCs fabricated here have very stable characteristics, which is helpful for future
applications. Our research provides a new method for the fabrication of miniature FBGs-
based FPCs and facilitates the fabrication of highly integrated optical fiber devices in
the future.

2. Theories and Simulations

The schematic of a FBGs-based FPC is shown in Figure 1. Two FBGs constitute the
structure. Λ is the period of FBGs, L is the grating length, d is the cavity length (the distance
between the center of FBG1 and FBG2) and the total length of FBGs-based FPC is d + (L1 +
L2)/2.
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Figure 1. Schematic of a FBGs-based FPC.

The transmission coefficient Ut and transmission rate It of the FBGs-based FPC can be
given by the following:

Ut =
t1t2

1 − r1r2eiδ (1)

It = UtU∗
t (2)
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where, r1 and r2 are the reflection coefficients of FBG1 and FBG2; t1 and t2 are the trans-
mission coefficients of FBG1 and FBG2; δ is optical path difference, δ = 4πneff [d − (L1 +
L2)/2]/λ, where neff is the effective refractive index of the fiber grating, λ is the wavelength
of the incident light, * represents conjugate operations.

From Equations (1) and (2), the evolutions of the transmission characteristics of FBGs-
based FPCs with the parameters can be simulated. In the following research, according
to the actual writing parameters, the cavity length, grating length and refractive index
modulation are selected for simulation, exploring how these parameters’ change affects the
transmission spectra, as shown in Figures 2–4 respectively.
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spectra with cavity length of (b) 1000 µm, (c) 2000 µm and (d) 4000 µm.
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Figure 2a shows the transmission spectra of FBGs-based FPCs with continuous varia-
tion in the cavity length from 500 µm to 4500 µm. The grating length is fixed at 355.24 µm,
and the refractive index modulation is 0.0015. The interference not only occurs in the main
interference band, but also in the sidelobes. It is seen that as the cavity length increases,
the number of rejection bands in the main interference band increases, and the width of
each rejection band becomes narrower. Figure 2b–d shows the transmission spectra under
three different cavity lengths of 1000 µm, 2000 µm and 4000 µm, respectively. Here, we
define each maximum transmittance as a peak, and each minimum transmittance as a dip.
We can see that the number of peaks and dips increase with the increasing of the cavity
length. However, the envelope of the spectra does not change because the envelope only
depends on the FBGs comprised of the FPCs, and in our simulation, the grating length and
the refractive index modulation remain unchanged. We can also see that the cavity length
becomes longer and the free spectral range (FSR) becomes narrower.

The transmission spectra of continuous variation grating length from 50 µm to 950 µm
are shown in Figure 3a. The distance between the center of two FBGs is fixed at 1000 µm,
and the refractive index modulation is 0.0015. Figure 3b–d shows the transmission spectra
when the grating length are 100 µm, 400 µm and 800 µm, respectively. It can be seen that as
the grating length increases, the width of the main interference band and sidelobe becomes
narrower, while the bandwidth of the peak closest to the central wavelength of 1548 nm
also becomes narrower and narrower. For a single grating, a shorter grating length decides
a weaker reflectivity and a wider bandwidth [24], giving weaker dips as shown in Figure 3b.
If the grating length becomes longer, the symmetry of the transmission spectrum degrades,
as shown in Figure 3d. The reason is that the distance between the FBGs decreases when
the grating length increases, as the cavity length is fixed in simulation, which contributes to
the decrease in the optical path difference δ, causing detuning of the cavity. Thus, a proper
grating length is needed for sensing.

Figure 4a represents the transmission spectra under the condition of continuously
changing refractive index modulation from 0.0001 to 0.003. Figure 4b–d corresponds to
the transmission spectra under the condition of modulating the refractive index of 0.0005,
0.0015 and 0.0025, respectively. The grating length is 355.24 µm and the cavity length is
1000 µm. With the increase in refractive index modulation, the central wavelength shifts
red and the resonant intensity becomes stronger rapidly. Additionally, the width of the
main interference band and sidelobe becomes wider, and the peaks become narrower.
However, the number of peaks and dips do not change, although the FSR becomes wider.
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Therefore, a FBGs-based FPC with deeper dips and narrower peaks can be fabricated by
increasing the refractive index modulation, which is realized by adding the femtosecond
laser pulse energy, repetition rate, or writing time. However, the insertion loss is an
important parameter that needs to be considered.

In summary, the bandwidth of each peak and the FSR becomes narrower with the
increase in the cavity length or grating length. However, both of them become wider, while
the refractive index modulation increases. The width of the main interference band and
sidelobes is only decided by the grating length and the refractive index modulation. The
depth of the dips becomes deeper by increasing not the grating length, but the refractive
index modulation. In the following part, we fabricate FBGs-based FPCs, using femtosecond
line-by-line inscription. The simulation results could provide some useful guidance for
fabrication.

3. Fabrication

Figure 5 represents the schematics of the fs laser line-by-line writing system, composed
of an fs laser, light control system, oil-immersion lens, high-precision fiber control platform,
and fiber core imaging system. The fs laser operates at 515 nm with a repetition rate of
1 kHz, which is frequency doubled from a 1030 nm solid laser. After passing through the
light control system composed of a collimator, an aperture, an expander, and three mirrors,
the fs laser is finally focused into the fiber core by the oil-immersion lens (magnification
of 100×). As fs writing requires very high stability and accuracy, the fiber is fixed on a
high-precision 3D electrical translation stage. Meanwhile, the fiber core imaging system is
used to observe where the laser is focused during the inscription. The resolution of each
line is 0.7 µm. The scanning speed is 1 mm/s, and the diameter of the elementary point is
about 0.7 µm (the diameter of the focal spot for the “oil-immersion lens” is about 1 µm). The
refractive index modulation generated by femtosecond laser is in the magnitude of 10−3.
Fluctuations in the transverse dimension of the grating do exist but exert little influence on
the spectrum of FPCs. The microscopic image (100×) of a single FBG is illustrated in the
inset of Figure 5.
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The schematic diagram of the writing parameters is shown in Figure 5, where the
grating length is LFBG and the distance between the centers of the two gratings is d. The
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period of the FBG is set as 1070 nm, which can realize the second order resonance at the
wavelength of ~1550 nm. The length of each line is about 32 µm. By varying the line position
over the cross section of the fiber core, the coupling coefficient of the fundamental mode
will change in the meantime. If the line is located in the center of the core, the coupling
coefficient will be strong. Off-center inscription will decrease the coupling coefficient. In
the inscription, the pulse energy is about 36 nJ. After finishing the inscription of LBL-
FBG1, the 3D electrical translation stage translates along the fiber axial direction, and the
displacement distance is d—LFBG. Then, LBL-FBG2 begins to be inscribed. The length of
LBL-FBG2 is equal to that of LBL-FBG1, and both are located in the same plane, parallel to
the fiber axis. The two FBGs have the same writing time length. Thus, the spectra of these
two LBL-FBGs are almost identical. To control the insertion loss and for comparison, the
transmission depth near the central wavelength of each FBG is fixed to be about 1 dB.

Figure 6 shows the spectra of four different FBGs-based FPCs. Figure 6a shows that the
FSR is about 0.8 nm and there are five dips within the Bragg resonance wavelength range.
Figure 6b illustrates that the FSR downsizes to 0.4 nm and the number of dips increases
to 10. Comparing Figure 6a,b, the length of LBL-FBG is close, which indicates that the
coupling coefficient is also close, as we fix the same refractive index modulation intensity
(showing by the same transmission depth of about 1 dB). Under this condition, if the cavity
length increases, the FSR decreases. When the coupling coefficient decreases (even if the
grating length increases in this condition), the FSR also decreases. As shown in Figure 6c, it
can be derived from the spectra that the FSR is about 0.75 nm. The experimental tendency
agrees well with the theoretical tendency. A narrower FSR can be derived by decreasing
the coupling coefficient or increasing the cavity length. For instance, as illustrated in
Figure 6d, the FSR is only 0.2 nm. The bandwidth of the peak also conforms to the same
law. In summary, the experimental results are well consistent with the simulation results.
The occurrence of additional dips in transmission spectrum has something to do with the
sidelobe of FBGs. As we can see in Figure 2 in the manuscript, interference also appears
out of the Bragg resonance range, especially the sidelobe range. For the reason that FBGs
can also reflect light in the sidelobe range, this provides the condition for the appearance
of FP interference if two identical FBGs are inscribed on the same fiber. Moreover, strong
cladding mode coupling occurs in the line-by-line inscribed FBG, the dips in the cladding
mode coupling region are also influenced by the transmission loss, and the whole spectrum
is not symmetric.
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cavity length 1000 µm; (b) FPC-II: grating length 334.91 µm, cavity length 2000 µm; (c) FPC-III: grating length 508.25 µm,
cavity length 1000 µm; (d) FPC-IV: grating length 514.67 µm, cavity length 4000 µm.
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4. Temperature and Strain Response Measurement

To investigate the properties of the fabricated FPCs in future sensing applications, two
systems are constructed for testing the temperature and strain responses of the FPCs. In
the following research, FPC-I and FPC-IV in Figure 6 are selected for the experiments to
compare the characteristics of FPCs of different FSRs, which could provide some useful
guidance for future temperature or strain sensing.

4.1. Temperature Response

The temperature response test system is shown in Figure 7. The laser covering the
C- and L-band passes through the FPC from the light source (VASS-CL-B, Connect Ltd.
Shanghai, China) to the spectrometer (AQ6730D, Yokogawa Ltd. Tokyo, Japan). At the
same time, the FPC is clamped in the center of the heating platform, which is an intelligent
temperature control platform (P-3020/P-3020A, AntaiX Ltd. Shenzhen, China), with an
accuracy of 0.1 ◦C to ensure uniform heating. Finally, the spectrum is recorded from low
temperature to high temperature continuously.
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The results of the temperature response are shown in Figure 8. Figure 8a,d shows the
measured transmission spectra of FPC-I and FPC-IV at room temperature, respectively.
Peaks A and B represent the minimum of the transmission of the two FPCs respectively.
Figure 8b,e shows the wavelength shift of Peaks A and B with six different temperatures. It
is found that the peaks have a red shift when the temperature increases, and Figure 8c,f
shows the fitting curves, showing a good linear relationship between the wavelength shift
and the variation in temperature. The sensitivity of the wavelength drift is 12.4 pm/◦C
for PCF-I and 11.8 pm/◦C for PCF-IV. In view of that, the resolution of the parameter
measurement depends on the minimum resolution of the spectrometer, so the resolution of
the temperature resolutions of both PCFs are 0.81 ◦C and 0.85 ◦C, respectively. In actual
applications for highly sensitive temperature measurement, the FPCs of narrower peaks
and narrower FSR will have higher sensitivity. Experimental results show that the FPCs
work stably, even when the temperature exceeds 250 ◦C. The temperature is limited by the
heating platform in experiments. In fact, we believe that the FPCs could work stably at a
much higher temperature, which has important special applications in high-temperature
measurement. This is one of the main advantages of FBGs fabricated by the fs laser writing
technique, compared with the ultraviolet exposure method.
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4.2. Strain Response

The strain response test system is shown in Figure 9. The FPC is fixed on a one-
dimensional nanometer motorized high-precision translation stage by an optical fiber
clamp. The computer controls one end to move a fixed distance in the same direction each
time. In this way, the FPC is moved for a fixed distance to be elongated, and the spectrum
is recorded at this time.
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The results of the strain response are shown in Figure 10. In principle, the external
strain loaded on the FPC will change the cavity length and the grating length, which
will influence the transmission spectrum of the FPC. Figure 10a,d shows the measured
transmission spectra of FPC-I and FPC-IV when no external strain is exerted, respectively.
Peaks A and B represent the deepest peak in the two transmission spectra respectively.
Figure 10b,e shows the wavelength shift of Peaks A and B as the loaded strain increases. It
is found that the peaks have a red shift when the strain increases, just like the response
to the temperature, and Figure 10c,f shows the fitting curves, also showing a good linear
relationship between the wavelength shift and the loaded strain. The sensitivity of the
wavelength drift is 1.37 pm/µε for PCF-I and 1.04 pm/µε for PCF-IV. In a similar way, the
strain resolutions of both PCF are 7.3 µε and 9.6 µε, respectively. Results show that FPCs of
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wider FSR, usually having shorter cavity lengths, would have higher sensitivity to strain.
This may be due to the bigger relative change in the cavity and FBG lengths to the strain
when the cavity is shorter. Experimental results also show that the FPCs work stably when
the external strain changes.
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5. Conclusions

Miniature FBGs-based FPCs fabricated by femtosecond laser line-by-line inscription
method are reported for the first time. The transmission spectra characteristics of the FPCs
are studied by simulations and experiments. The results agree well with each other and
show that the bandwidth of each peak in the main interference and the free spectral range
of the FPC become narrower with the increase in the cavity length or grating length. In
addition, the temperature and strain response characteristics of the fabricated FPCs are also
studied experimentally. Results show that the FPCs work stably, and the peak wavelength
changes linearly with temperature or strain changes, which is of great significance to optical
sensing in the future. Our studies come up with a new method to fabricate miniature
FBGs-based FPCs, which is meaningful in new concept sensors and integrated optics.
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