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Abstract: Process planning optimization is a well-known NP-hard combinatorial problem extensively
studied in the scientific community. Its main components include operation sequencing, selection
of manufacturing resources and determination of appropriate setup plans. These problems require
metaheuristic-based approaches in order to be effectively and efficiently solved. Therefore, to
optimize the complex process planning problem, a novel hybrid grey wolf optimizer (HGWO) is
proposed. The traditional grey wolf optimizer (GWO) is improved by employing genetic strategies
such as selection, crossover and mutation which enhance global search abilities and convergence of
the traditional GWO. Precedence relationships among machining operations are taken into account
and precedence constraints are modeled using operation precedence graphs and adjacency matrices.
Constraint handling heuristic procedure is adopted to move infeasible solutions to a feasible domain.
Minimization of the total weighted machining cost of a process plan is adopted as the objective and
three experimental studies that consider three different prismatic parts are conducted. Comparative
analysis of the obtained cost values, as well as the convergence analysis, are performed and the
HGWO approach demonstrated effectiveness and flexibility in finding optimal and near-optimal
process plans. On the other side, comparative analysis of computational times and execution times of
certain MATLAB functions showed that the HGWO have good time efficiency but limited since it
requires more time compared to considered hybrid and traditional algorithms. Potential directions to
improving efficiency and performances of the proposed approach are given in conclusions.

Keywords: process planning optimization; grey wolf optimizer; precedence constraints; constraint
handling; selection; crossover; mutation

1. Introduction

Process planning optimization (PPO) problems consist of two subproblems: operations
selection and operations sequencing [1]. Operations selection is a task of selecting necessary
machining operations for each machining feature recognized on a part or a product. In
order to perform these operations, adequate machining resources are required. In that
sense, the PPO problem includes selection of machine candidate, cutting tool candidate
and tool approach direction (TAD) candidate for each machining operation. On the other
hand, operations sequencing represents a task of finding the order of selected machining
operations with respect to the predetermined precedence constraints based on relationships
between machining features. Tackling with such a problem requires dealing with a number
of alternatives which makes the PPO a combinatorial optimization problem. A number of
alternative process plans grows in accordance with problem dimensions. In other words, as
a number of machining features increases, so does a number of machining operations. This
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leads to exponential time growth required to find optimal or near-optimal process plans,
which means that the PPO problem belongs to the class of NP-hard (non-deterministic
polynomial) optimization problems.

As it is impossible to check every possible solution to an NP-hard problem, conven-
tional non-heuristic methods have proved to be ineffective. The PPO problem requires the
implementation of metaheuristic algorithms which have shown promising performance
for solving difficult problems. This is especially due to their ability to achieve a trade-off
between local and global search [2]. This paper proposes a novel hybrid grey wolf opti-
mizer (HGWO) to deal with the PPO problem with precedence constraints. The manuscript
is organized as follows. Section 2 provides recent studies related to the PPO. Section 3
describes the problem, focusing on manufacturing interactions and precedence constraints,
representation of process plans and mathematical modelling of the PPO. Section 4 empha-
sizes the proposed HGWO approach starting from traditional GWO, then genetic strategies
that are included, and constraint handling algorithm as part of the structure of the HGWO.
Section 5 represents the experimental research that consider three experimental studies,
or three prismatic parts. With detailed description of these cases, comparative analysis of
cost values and convergence curves are performed to test the performances of the HGWO.
Later, discussion in Section 6, emphasize the effectiveness of the proposed method and
the computational efficiency. Conclusions with directions for future research are given in
Section 7.

2. Related Research Studies

In the past few decades, many search algorithms have been employed to deal with
the PPO problem. In the initial stages of research on the PPO, genetic algorithms have
been widely reported among other metaheuristics. One of the earliest implementations
of genetic algorithms (GAs) can be found in Zhang et al. [3]. Besides the GA, many other
algorithms such as ACO, PSO, TS, SA are applied to this day.

GA it is the most popular evolutionary algorithm based on a Darwinian theory
of natural selection and genetics. Traditional GAs, as well as many other algorithms,
require additional modifications to improve their convergence as well as global and local
search abilities. Study performed in Salehi and Bahreininejad [4] adopts hybrid GA and
intelligent search for optimization of process planning in preliminary and detailed planning
stages. The initial and feasible solutions were checked by order and clustering constraints.
Li et al. [5] proposed a hybridization model of GA and SA where the initial process
plans were generated using the GA approach while the optimal or near-optimal process
plans were obtained using the SA algorithm. Kafashi [6] developed a GA approach in
order to tackle integrated setup planning and operation sequencing problem in flexible
manufacturing environment. With the emphasis on technological constraints, tolerance
relation analysis and feature-based representation, satisfactory setup plans and operation
sequences were generated. Cai et al. [7] used the GA approach based on optimization
toolbox to address adaptive setup planning problem towards the process planning and
scheduling integration. They considered machine availability based on tool accessibility
analysis as a constraint, and selected certain scheduling criteria such as cost, makespan
or machine utilization. Huang et al. [8] proposed a hybrid graph and GA approach.
Combining graph theory as well as matrix theory, precisely operation precedence graphs
and adjacency matrices, precedence constraints were formulated and a GA approach based
on modified crossover and mutation strategies were utilized to solve the PPO problem.
Two heuristic approaches are incorporated within this hybrid approach in order to adjust
infeasible process plans to a feasible domain. Li et al. [9] employed a novel two phase
genetic algorithm to optimize process parameters and machining sequence for two-tool
parallel drilling operations with multiple blind holes distributed in a pair of parallel faces
and in multiple pairs of parallel faces. Hybridization of GA and local search for the
PPO on turning machine tool was proposed by Su et al. [10]. They formulated the PPO
problem as a mixed 0–1 integer programming model and used a novel encoding strategy
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to deal with complicated precedence constraints. In the study presented by Su et al. [11],
precedence constrained operation sequencing problem was formulated and edge selection
based strategy was adopted to assure feasibility of solutions and improve GA’s converging
efficiency. Dou et al. [12] proposed the improved GA by considering fragment crossover
and mutation operators with adaptive operation probabilities as well as a new elitist-based
crossover strategy. Luo et al. [13] dealt with a large-sized process sequencing problem
with complex association constraints. The problem with huge and complex solution space
was decomposed to smaller multi-neighborhood spaces and hybrid GA and variable
neighborhood search (VNS) approach were used to obtain the best solutions through all
neighborhood spaces.

Furthermore, the ant colony optimization algorithm also found its application to the
PPO. Liu et al. [14] used ant colony optimization for process planning optimization. They
based their research on mapping the PPO problem to a weighted graph and converting to
a constraint-based travelling salesman problem. Constraint and state matrices were used
to ensure the feasibility of process plans. Wang et al. [15] dealt with the PPO problem by
using a weighted directed graph for process plan representation. Wang et al. [16] proposed
a two-stage ACO algorithm to solve the PPO problem for prismatic parts. The PPO was
formulated using a directed graph and then the proposed ACO approach was used for
optimizing process plans for two prismatic parts from the literature. First stage included
operation selection while the second was focused on operation sequencing. Hu et al. [17]
considered precedence constraint and clustering constraint relationships to ensure feasible
permutations and enhanced search abilities. They used the updating method and the local
search mechanism to modify the ACO algorithm.

Particle swarm optimization (PSO) is also one of the most popular metaheuristics
based on swarm intelligence. This method is inspired by social behavior of living organ-
isms that live in groups (swarms), such as birds or fish [18]. One of the recent studies
concerning the PSO in process planning can be found in [19]. Here, authors proposed a
modified PSO algorithm improved by adopting efficient encoding, updating and random
search methods in order to tackle seven different case studies that consider prismatic
parts. Petrović et al. [20] developed a new chaotic PSO algorithm for flexible process plan-
ning. By emphasizing different types of flexibilities, authors used AND/OR networks
to represent process plans and then tested performances of the cPSO on several cases
including cylindrical as well as prismatic parts. Miljković and Petrović [21] developed a
modified multi-objective PSO algorithm for flexible process planning. By emphasizing
different types of flexibilities, authors used AND/OR networks to represent feasible pro-
cess plans, and tested performances of the cPSO on several cases including cylindrical
as well as prismatic parts. Dou et al. [22] proposed a novel feasible sequence-oriented
discrete PSO algorithm to solve the operation sequencing problems in CAPP. It incorporates
novel crossover and mutation operators with adaptive probabilities to evolve particles and
improve exploration ability.

Lian et al. [23] proposed the imperialist competitive algorithm to address the PPO
problem. This socio-politically motivated population-based metaheuristic was inspired by
imperialist competition. The approach utilizes steps of assimilation, competition, revolution
and elimination to obtain optimal process plans according to predefined networks and
types of flexibilities.

Wen et al. [24] proposed a new method based on honey bees mating optimization
(HBMO) algorithm to optimize the PPO. The solution encoding, crossover operator and
local search strategies were developed, and three experiments were carried out to demon-
strate improvement of the HBMO approach.

A new heuristic method, called cross entropy approach was proposed to optimize
flexible process planning by Lv and Qiao [25]. Its authors adopted AND/OR networks to
represent flexible process plans and established mathematical model for the minimization of
total processing time and total cost of flexible process plans. The new sample representation
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and probability distribution parameter were introduced and case studies were carried and
discussed to indicate the performance and adaptability of the CE approach.

Wang et al. [26] adopted a hybrid bat algorithm for the PPO focusing on both crucial
tasks, operations selection and operations sequencing. Encoding, decoding and initial-
ization strategies were proposed and two local search strategies were incorporated into
the standard bat algorithm (BA) to improve its local convergence. A classical simulation
experiment was conducted to verify the validity of the hybrid BA.

Musharavati and Hamouda [27] investigated the possibility of implementing four
different configurations of simulated annealing algorithm to solve the process planning
problem in reconfigurable manufacturing systems. They used knowledge exploitation and
quasi-parallelism as concepts to enhance the SA algorithms. Performances of the variant
algorithms are compared and ANOVA methodology is used in computational analysis to
test the means and indicate improvements towards better optimal solutions.

Mohammadi et al. [28] dealt with the multi-objective optimization of the integrated
process planning and scheduling problem. They designed a slot-based mixed integer linear
programming model that accounts for sequence-dependent preparation times. Minimiza-
tion of manufacturing cost in process planning, and minimization of preparation times and
total tardiness were considered as optimization objectives. To solve the problem, a hybrid
simulated annealing approach was introduced. The SA was modified with tabu search
algorithm as well as local search strategies in order to improve solution’s quality and avoid
premature convergence.

Xu et al. [29] introduced a novel NC process reuse-oriented flexible process planning
optimization approach for prismatic parts with the objective of minimizing total manufac-
turing cost. A hybrid ant colony algorithm (ACA) and simulated annealing (SA) approach
based on operation precedence graph (OPG) was presented to find the global optimal NC
process scheme for the part.

Lian et al. [30] proposed a multi-dimensional tabu search algorithm to optimize four
dimensions of a process plan, such as operation sequence, machine sequence, tool sequence,
and tool approach direction sequence. Classical neighborhood strategies such as insertion
and swap are used to improve the performance of MDTS.

Falih and Shammari [31] proposed a novel hybrid constrained permutation algorithm
and genetic algorithm approach for process planning problem. A set of feasible operation
sequences is generated using a CPA algorithm and the GA with mixed crossover operator
is further employed to search for optimal or near optimal process plans.

Gao et al. [32] suggested the intelligent water drop algorithm for solving the process
planning problem. Firstly, operation units were defined according to the processing charac-
teristics, and later, the IWD algorithm was combined with the process planning problem.

Kizys et al. [33] developed an iterative local search metaheuristic and quadratic
programming approach to deal with variants of the mean-variance portfolio optimization
problem subject to cardinality and quantity constraints.

Sawik and Sawik [34] used stochastic programming approach to optimize cybersecu-
rity investment in supply chains. A mixed binary optimization problem is transformed
to an unconstrained binary program in order to maximize total cybersecurity value of
control portfolio. It is also shown that the portfolio of security controls with maximum total
cybersecurity value reduces the losses from security breaches and mitigates the impact of
cyber risk.

In one of the recent studies, Milosević et al. [35] presented the intelligent process
planning for the concepts of smart factory and smart manufacturing. Nature-inspired
metaheuristic algorithms as smart services of artificial intelligence for intelligent process
planning optimization within smart manufacturing were proposed. Three modern algo-
rithms such as grey wolf optimizer (GWO), whale optimization algorithm (WOA) and crow
search algorithm (CSA) were employed on three classical case studies from the literature.

Djurdjev et al. [36] proposed a novel genetic crow search approach (GCSA) for opera-
tion sequencing in process planning. The traditional CSA algorithm has been improved
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by adopting genetic strategies such as tournament selection, three-string crossover, shift
mutation and resource mutation. Adaptive probabilities were introduced to improve local
and global capabilities of the GCSA. Besides, the nearest mechanism strategy was added to
ensure feasibility of machine, tools and TADs vectors. Lastly, repairment heuristic strategy
was used to handle precedence constraints among features and machining operations.

Aforementioned studies have shown that the improvements made by authors largely
increased efficiency of metaheuristic algorithms. However, as stated in [20], main draw-
backs reflect in time-consuming optimization and slow convergence of TS, SA and GA
approaches particularly. The key and also the most challenging task in the implemen-
tation of metaheuristic algorithms is to find a proper balance between exploration and
exploitation phases [37], and thereby, maintain its simplicity and flexibility. Many different
concepts have been developed and tested so far, making them available for application in
different scientific fields. In this research, we focus on implementing novel metaheuristic
approach to solve the PPO problem.

3. Process Planning Optimization Problem

Computer-aided process planning represents the link between computer-aided design
and computer-aided manufacturing within the computer integrated environment. The
aim of process planning is to manufacture a part or a product starting from its initial
design stages to its final stage (a finished part or product). The input to process planning
includes valuable geometric information obtained from a CAD file. Accordingly, process
planners have a goal to map product information to a technological domain. Parts/products
are generally described by design features which are characterized by geometric forms or
shapes with technological attributes such as tolerances and surface finishes. Design features
are transformed to manufacturing features which represent manufacturing meaning of
the geometry of a part, a product or an assembly associated with certain manufacturing
activities [38]. An important subset of manufacturing features consists of machining
features such as holes, steps, grooves, pockets, planes, etc. Recognized machining features
are most often considered as an input information for the PPO problem.

Apart from machining features that require certain operations in order to be machined
on a part or a product, process planning considers other activities such as finding the
sequence of machining operations, determining machining resources—machine tools,
cutting tools, fixtures, determining cutting conditions and calculating machining time
and cost. In the PPO, the quality of a single process plan is determined by selecting
machining resources such as machine tools, cutting tools, and tool approach directions
(TADs) for each machining operation, as well as generating optimal sequence of machining
operations for an observed part or a product. During the decision-making process of
selecting alternatives of machining resources and TADs, in order to find feasible and
optimal order of machining operations, the sequence have to satisfy precedence constraints
that are based on relationships between machining features and machining operations.

3.1. Representation of Process Plans

When dealing with the PPO problem, the first step is to select an appropriate repre-
sentation of a process plan. In recent studies [20,21,23,25] five types of flexibilities were
considered, and AND/OR networks are used to represent the PPO problem. The main
advantage of these networks is in the fact that a single AND/OR network visualizes the
detailed representation of all flexibilities for a considered part or a product. By using
AND/OR connectors and links, a network can easily be traversed and a feasible alternative
process plan can be generated.

Knowledge-based representation is the second method used for representing process
plans [8,39]. Here, a process plan is represented using vectors with n bits of data informa-
tion. Each bit represents a machining operation and the order of bits form an operation
sequence. As mentioned, each machining operation requires a set of a machine candidate,
a cutting tool candidate and a TAD candidate which are used in order to perform a given
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machining operation. Therefore, apart from an operation vector, this representation also
consists of a machine vector, a tool vector and a TAD vector.

To form a process plan, we considered that each machining feature on a part contains
a certain number of operation units [32]. Operation units represent single machining
operations associated with its candidate resources and can be formulated using the follow-
ing expression:

moi =
[
Mj, CTk, TADl

]
(1)

where moi represents a machining operation i, while Mj, CTk and TADl stand for a machine
candidate, a cutting tool candidate and a TAD candidate for an operation i, respectively.

Operation units become building elements of an operation sequence that can be repre-
sented using modified knowledge-based approach similar to the one previously mentioned.
Figure 1 shows a simple example of a representation of process planning problem.

Figure 1. Process plan representation.

In Figure 1, we have the total of 5 operation units that match the permutation of
5 numbers. They are shown in the dashed boxes in the first row of the represented
process plan (left picture). Position 1 in the vector contains the operation unit 3 which
further include M1—machine 1, CT6—cutting tool 6 and TAD+x—TAD “+x” as candidates
for mo3—machining operation 3. All these machining operations form an operation se-
quence vector called operations[n] (n is a total number of machining operations). Candidate
solutions are assigned to each machining operation and presented in the right picture.
Therefore, randomly selected candidates form machine vector, cutting tool vector and
TADs vector, respectively.

3.2. Manufacturing Relationships and Precedence Constraints

Process planning is a precondition for executing a machining process. According to
manufacturing and geometric specifications of machining features, manufacturing rela-
tionships occur followed by potential interferences between certain consecutive operations.
Therefore, in order to machine a feature, process planners are required to pay thorough
attention to manufacturing relationships which strongly affect the feasibility of process
plans. Consequently, generating operation sequence without considering manufacturing
relationships may result in a situation where executing one operation may make it difficult
or impossible to execute others. These relationships form precedence constraints in the
PPO problem which affect the sequence of all machining operations required to machine
a certain product or a part. With the emphasis on machining, two distinctive types of
precedence constraints based on relationships among machining operations are hard and
soft constraints [40].

Since the PPO problem considered in this study is formulated as an optimization
problem, precedence constraints need to be respected in order to find feasible and optimal
process plans. Generally, as the name implies, hard constraints are more stringent compared
to soft constraints. They directly affect the feasibility of process plans and process planners
must ensure the consistency with hard constraints. On the other hand, soft constraints
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have the influence solely on the quality, cost and efficiency of a feasible process plan and
therefore can be violated in some cases.

According to [39,40], hard and soft constraints can be divided into several types.
Figure 2 represents the schematic illustration of precedence constraints based on manufac-
turing relationships among features.

Figure 2. Schematic representation of precedence constraints.

3.3. Representation and Modelling of Precedence Constraints

Precedence constraints define precedence relationships between features/machining op-
erations whose purpose is to help in finding a feasible operation sequence. With the emphasis
on hard and soft constraints, we will consider two different approaches in this research. One
approach will focus only on hard precedence constraints and the other will consider both
types of constraints, hard and soft. Accordingly, two different prismatic parts adopted from
the literature sources are adopted to identify precedence relationships and define types of
constraints based on relationships or interactions between machining operations.

The simplest way to graphically illustrate precedence relationships is with operation
precedence graphs (OPGs), which are effectively proposed in [8,41]. Assuming the fact
that the emphasis will be placed on two different approaches, we will adopt two different
OPGs. For hard constraints only, representation will be based on classical connected OPGs
(cOPGs), while for both hard and soft constraints representation of precedence relationships
will be based on disconnected graphs (dOPGs).

In order to represent aforementioned constraints and relationships, we adopted the
first part from Guo et al. [42]. Its 3D solid model with assigned features and operations, as
well as the cOPG that depicts only hard constraints, are shown in Figure 3. According to
this figure, the total number of machining operations for prismatic part 1 is 20 and can be
defined as the set of machining operations [mo1, mo2, mo3, . . . , mo20]. Each machining
operation from the cOPG is represented as a node while connections among these nodes
are directed edges that show precedence relationships among them. An operation sequence
that satisfies these precedence relationships is considered a feasible operation sequence.

Figure 3. (a) Semi-transparent solid model and (b) the cOPG of the prismatic part 1.
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The best way to manipulate such graphical data in a selected programming environ-
ment is by converting it to a matrix form. In that sense, we adopted the adjacency matrix [8].
The adjacency matrix is generally used to represent nodes of a graph. To convert graph
information to an adjacency matrix, we used the following expression:

Adj_matrix = (PRij)n× n (2)

where PRij stands for a precedence relationship between machining operation i (regarding
the row) and machining operation j (regarding the column). For hard constraints only, the
PRij values are binary, ones and zeroes. The first rule for this case is when PRij = 1 and
PRji = 0. Here, a directed edge connects the nodes moi and moj pointing from moi towards
moj and, therefore states that machining operation i has to be performed prior to machining
operation j. Otherwise, PRij = 0. Another rule is where PRii = 0 for all operations from
the operation set (here [mo1, . . . , mo20]). The expression n× n means that the adjacency
matrix is a square matrix where n stands for the total number of machining operations.

It can be noticed from Figure 4, that the first row for mo1 regarding the machining
operation 1 has six precedence relationships that equal number 1, meaning that the ma-
chining operation mo1 has to be performed prior to mo2, mo3, mo5, mo6, mo11 and mo18.
The same rule stands for each row in the matrix.

Figure 4. Schematic representation of precedence constraints.

To put an emphasis on both hard and soft constraints we included another prismatic
part proposed by [3]. Three-dimensional (3D) solid model of the prismatic part 2 with
assigned features and machining operations along with the corresponding dOPG is shown
in Figure 5.

Figure 5b presents the disconnected dOPG with 9 different precedence relationships
among machining operations. Only node mo5 does not have precedence relationships with
other nodes. There are 4 hard constraints and 5 soft constraints depicted with red and
blue edges. Accordingly, two different numbers have to be used in order to form a reliable
adjacency matrix. Herewith, number 1 stands for a hard constraint and number 2 in the
matrix assumes that node moi and node moj form a soft constraint. The formulation and
rules are the same as for the cOPG. The operation precedence matrix for the prismatic part
2 is given in Figure 6. Hard constraints are the ones whose violation must be avoided and
therefore have total priority over soft constraints. This means that relationships among
machining operations assigned with number 2 in the matrix can in some cases be neglected
if they get into conflict with hard relationships assigned with number 1.
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Figure 5. (a) Semi-transparent solid model and (b) the dOPG of the prismatic part 2.

Figure 6. The adjacency matrix for the prismatic part 2.

3.4. Mathematical Model of Process Planning

So far, the most popular evaluation criteria for the PPO problem are the minimization
of the total machining time and the minimization of the total machining cost. The criterion
of the total machining time has been successfully used in [9,11,20,21,25]. The machining
time is composed of five time factors: machine processing time, tool processing time,
transportation time (between machines), total tool change time and total setup change time.
On the other side, the minimization of the total machining cost has been more frequently
considered in scientific studies [4,6,8,10,11,14–16,24,29,31,32]. This criterion is adopted
here, and consists of five cost components that are described below.

1. Total machine cost (TMC) represents the total cost of all machines that are used in a
process plan and is calculated using the following equation:

TMC = ∑n
i=1 MCIj (3)

where j stands for operations[i].Machines (i.e., j = 1 . . . nMach, where nMach stands for
total number of machines), n is the total number of machining operations while MCIj
represents the machine candidate cost index for using a machine j, a constant cost value for
a specific machine.

2. Total cutting tool cost (TCTC) is the total sum of cutting tool costs used in a process
plan and is calculated in the following way:

TCTC = ∑n
i=1 CTCIj (4)
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where j stands for operations[i].Tools (j = 1 . . . nTools, where nTools stands for total number
of cutting tools), CTCIj stands for the cutting tool cost index for using a cutting tool j, a
constant cost value for a specific cutting tool.

3. Total machine change cost (TMCC) and the number of machine changes (NMC)
are important cost factors considered when two successive machining operations in opera-
tions[n] are performed on different machines. Number of machine changes is computed as:

NMC = ∑n−1
i=1 Ω1 (operations[i].Machines, operations[i + 1].Machines) (5)

TMCC = ∑NMC
1 MCC (6)

Ω1(X, Y) =
{

1, if X 6= Y
0, if X = Y

(7)

where MCC represents the machine candidate change cost index while operations[i].Machines
stands for the machine ID used for performing the machining operation i from operations[n].

4. Total cutting tool change cost (TCTCC) and the number of cutting tool changes
(NCTC) are similarly significant cost factors compared to those of machines. Cutting tool
changes do not occur only in situations when same cutting tool and same machine are
used for machining two successive machining operations. In other cases, tool changes are
required. Accordingly, number of cutting tool changes is computed as follows:

NCTC =
n−1

∑
i=1

Ω2

 Ω1

(
operations[i].Machines,

operations[i + 1].Machines

)
,

Ω1

(
operations[i].Tools,

operations[i + 1].Tools

)
 (8)

TCTCC =
NCTC

∑
1

CTCC (9)

Ω2(X, Y) =
{

0, X = Y = 0
1, otherwise

(10)

where CTCC is the cutting tool change cost index and operations[i].Tools stands for the
cutting tool ID used for performing the operation i from operations[n].

5. Total setup cost (TSC), number of setup changes (NSC) and the number of setups
(NS) are the cost factors considered when two successive machining operations are not
performed on the same machine and using the same tool approach direction. This stands for
3-axis machines which are considered in Section 4. Firstly, the NSC is calculated as follows:

SC = ∑n−1
i=1 Ω2

 Ω1

(
operations[i].Machines,

operations[i + 1].Machines

)
,

Ω1

(
operations[i].TADs,

operations[i + 1].TADs

)
 (11)

The corresponding NS is calculated as:

NS = NSC + 1 (12)

Number one assumes the starting machine setup which is then added to the corre-
sponding number of setup changes calculated by Equation (11). Lastly, the TSC costs are
computed as:

TSC = ∑NS
1 SCC (13)

where SCC represent the setup change cost index and operations[i]. TADs stands for the TAD
ID used for performing the operation i from operations[n]. Similar to tool changes, setup
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changes do not appear only when the same TAD and the same machine are used when
performing two successive machining operations. In other cases, the change is required.

6. Additional penalty costs (APC) and the number of violating constraints (NVC) are
the cost factors included in the part of our study focused on soft and hard constraints. Even
if soft constraints are allowed to be violated, number of violations is subject to minimization.
Firstly, the number of violated soft constraints is calculated using the following equation:

NVC = ∑n−1
i=1 ∑n

j=i+1 Ω3

(
operations[i],
operations[j]

)
(14)

where operations[i] and operations[j] stand for two consecutive machining operations in
operations[n] vector. The APC is thereby calculated as:

APC = ∑NVC
1 penalty (15)

Ω3(X, Y) =
{

0, X → Y violates soft constr.
1, X → Y in accordance with soft constr.

(16)

where penalty assumes the fixed penalty cost index which is applied for each violated soft
constraint. In this study, the penalty cost applies to prismatic part 2 that involves both hard
and soft constraints. As the conflicts between these two types of precedence constraints
may occur, hard constraints become the priority. In that case, soft constraints that are
numerically assigned with number 2 in Figure 6, have to be violated.

7. Total weighted machining cost (TWMC) sums up all the previous cost factors in the
following equation:

TWMC = w1 · TMC + w2 · TCTC + w3 · TMCC+
+w4 · TCTCC + w5 · TSC + w6 · APC

(17)

where w1−w6 are the weight coefficients used for experimental studies. The APC costs are not
included in Equation (17) in those studies which consider only hard precedence constraints.

8. Fitness function is maximized in order to verify the total weighted machining costs
of a process plan and is defined as follows:

f f =
1

TWMC
(18)

4. A Hybrid Grey Wolf Optimizer (HGWO) for Process Planning Optimization
4.1. Traditional Grey Wolf Optimizer

Grey wolf optimizer (GWO) is proposed by Mirjalili et al. [37]. It is a modern swarm-
based algorithm whose inspiration derives from the social intelligence of grey wolves.

Grey wolves (lat. Canis lupus) are predatory animals which brings them to the top of
food chain in animal world. The advantages of social life of grey wolves mostly reflect in
social hunting, group care about infants and territorial defense against dangerous forces
outside the pack. A strict social hierarchy among members of the pack is what brings grey
wolves to the fore. From the most dominant to the most submissive wolves there are alphas,
betas, deltas and omegas. According to the social dominance hierarchy, a mathematical
model of GWO was designed. Three main stages of grey wolf hunting process, such as
tracking, encircling and attacking a prey, are included in this model.

According to the social dominance hierarchy previously described, a mathematical
model of GWO was designed. Three main stages of grey wolf hunting process, such as
tracking, encircling and attacking a prey, are included in this model.

When designing the social hierarchy in the GWO, the three best solutions in a popula-
tion of individuals represent alpha (α), beta (β) and delta (δ) wolves, respectively. All the
other candidates are considered to be omegas (ω). The hunting (optimization) process is
guided by the three fittest wolves.



Materials 2021, 14, 7360 12 of 31

The first mechanism in the GWO is encircling of prey which is defined according to
the following equations:

→
D =

∣∣∣∣→C · →Xp(it)−
→
X(it)

∣∣∣∣ (19)

→
X(it + 1) =

→
Xp(it)−

→
A ·
→
D (20)

→
A = 2

→
a
→
r 1 −

→
a (21)

→
C = 2

→
r 2 (22)

where it stands for current iteration,
→
A and

→
C are coefficient vectors that are defined

accoding to random numbers
→
r 1 and

→
r 2 in [0,1].

→
X is the position vector of the prey while

→
Xp is the position vector of a grey wolf. Vector

→
a indicate a value that linearly decreases

from 2 to 0.
When modelling hunting behaviour, the fittest wolves, the alpha (α), the beta (β) and

the delta (δ) have the main role. It is assumed that these wolves respectively have better
knowledge about potential location of the prey. Therefore, omega wolves (ω) update their
positions based on the positions of the alpha (α), the beta (β) and the delta (δ). This process
is mathematically formulated by the following equations:

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣ →Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣ →Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣ (23)

→
X1 =

→
Xα −

→
A1 ·

(→
Dα

) →
X2 =

→
Xβ −

→
A2 ·

(→
Dβ

) →
X3 =

→
Xδ −

→
A3 ·

(→
Dδ

)
(24)

→
X(it + 1) =

→
X1 +

→
X2 +

→
X3

3
(25)

where
→
X represents a position of a grey wolf over a cource of iterations it updated according

to the distances from three fittest wolves, alpha,
→
Dα, beta,

→
Dβ and delta,

→
Dδ.

Intensification and diversification of the GWO are maintained by the coefficient

vector
→
A whose fluctuation range depends on linear decrease of the vector

→
a . During

iterations, the vector
→
a tends to decrease the coefficient vector

→
A which has direct impact on

exploatation and exploration. If the absolute value of
→
A is less then 1, the wolves perform

an attack, i.e., converge towards the prey, and therefore local search abilities of the GWO

are emphasized. On the other hand, if the absolute value of
→
A is greater then 1, the wolves

diverge from the prey and global search abilities of the GWO are used.
Search for prey, or divergence from prey, is another component of the GWO that

emphasizes exploration. It is defined by the coefficient vector
→
C which ranges from 0 to

2. Its purpose is to assign random weights to a potential prey and give wolves harder
or easier way to reach it. In order to use global capacities of the GWO and avoid global

optima, the value of the vector
→
C does not decrease linearly compared to the vector

→
A.

Grey wolf optimizer has been applied to various types of optimization problems to
this day. One of its main advantages is less parameter tunning since all the vectors above
mentioned are based on random values. However, main drawbacks of the GWO are low
convergence rate and entrapment in local optima [20]. To overcome these issues, researchers
have proposed different ways to improve or enhance the traditional GWO. Ahmed et al. [43]
proposed niching GWO to deal with multi-modal optimization problems. To maintain
balance between exploitation and exploration and avoid premature convergence, authors
incorporated best features of the PSO algorithm and a local search technique. Yue et al. [44]
developed a novel hybrid algorithm based on the GWO and fireworks algorithm (FWA)
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in order to combine both global abilities of FWA and local abilities of GWO. Wang and
Wang [45] used quantum computing principles and operations of differential evolution
with grey wolf optimizer in order to improve performance when dealing with NP-complete
combinatorial 0–1 knapsack problems. Martin et al. [46] proposed a novel discrete GWO
algorithm which uses update rules to distinguish between exploitation and exploration
stage. Jiang and Zhang [47] applied the GWO algorithm on job shop and flexible job shop
scheduling problems. They embedded crossover operation and adaptive mutation method
to maintain the search within discrete domain, and avoid premature convergence and
local optima. Variable neighborhood search was also introduced to improve explorative
capacities of the proposed GWO. Qin et al. [48] implemented hybrid discrete multi-objective
GWO to solve the casting production scheduling problem where makespan, the total
production cost and the total delivery delay time were used as objective functions. A
strategy based on reducing job transportation time and processing time are adopted to
improve initial solutions. Additionally, improved tabu search algorithm was incorporated
into the GWO to improve performances of the proposed method. Premkumar et al. [49]
developed a multi-objective GWO to solve the brushless direct current (BLDC) motor
design problem. Firstly, the analytical model of the BLDC motor design problem that
belongs to highly non-linear electromagnetic optimization problems is presented. MOGWO
was verified on standard benchmark functions, and latter applied to mono and multi
objective optimization of BLDC motor design problem.

In the next section, the hybrid grey wolf optimizer based on traditional GWO and GA
operations is proposed for solving NP-hard process planning combinatorial problem.

4.2. HGWO Methodology

When designing mathematical model of the HGWO method, certain adaptations of
previous Equations (19), (20), (23) and (24) have to be considered. Firstly, the distances of
gray wolves from the alpha (α), the beta (β) and the delta (δ) wolf for the machine vector,
the tool vector and the TAD vector respectively, are formulated as follows:

→
Dα,m =

∣∣∣∣→C1 ·
→

Xα,m −
→

Xm

∣∣∣∣, →
Dβ,m =

∣∣∣∣→C2 ·
→

Xβ,m −
→

Xm

∣∣∣∣, →
Dδ,m =

∣∣∣∣→C3 ·
→

Xδ,m −
→

Xm

∣∣∣∣ (26)

→
Dα,t =

∣∣∣∣→C1 ·
→

Xα,t −
→
Xt

∣∣∣∣, →
Dβ,t =

∣∣∣∣→C2 ·
→

Xβ,t −
→
Xt

∣∣∣∣, →
Dδ,t =

∣∣∣∣→C3 ·
→

Xδ,t −
→
Xt

∣∣∣∣ (27)

→
Dα,tad =

∣∣∣∣→C1 ·
→

Xα,tad −
→

Xtad

∣∣∣∣, →
Dβ,tad =

∣∣∣∣→C2 ·
→

Xβ,tad −
→

Xtad

∣∣∣∣, →
Dδ,tad =∣∣∣∣→C3 ·

→
Xδ,tad −

→
Xtad

∣∣∣∣ (28)

where
→

Xm stands for the machine position vector of a grey wolf,
→

Xα,m,
→

Xβ,m and
→

Xδ,m are the

alpha (α), the beta (β) and the delta (δ) wolf for the machine vector;
→
Xt is the tool position

vector of a grey wolf,
→

Xα,t,
→

Xβ,t and
→

Xδ,t are the alpha (α), the beta (β) and the delta (δ) wolf

for the tool vector,
→

Xtad is the TAD position vector of a grey wolf and
→

Xα,tad,
→

Xβ,tad and
→

Xδ,tad are the alpha (α), the beta (β) and the delta (δ) wolf for the TAD vector.
Furthermore, the position of a gray wolf in the iteration it + 1 is formulated on the

basis of the machine vector, the tool vector and the TAD vector relative to the position
vectors of the alpha (α), the beta (β) and the delta (δ) wolves. This can be expressed with
the following expressions:

→
Xm(it + 1) =

→
X1,m +

→
X2,m +

→
X3,m

3
,
→
Xt(it + 1) =

→
X1,t +

→
X2,t +

→
X3,t

3
,
→

Xtad(it + 1) =

→
X1,tad +

→
X2,tad +

→
X3,tad

3
(29)
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→
X1,m =

→
Xα,m −

→
A1 ·

( →
Dα,m

)
,
→

X2,m =
→

Xβ,m −
→
A2 ·

( →
Dβ,m

)
,
→

X3,m =
→

Xδ,m −
→
A3 ·

( →
Dδ,m

)
(30)

→
X1,t =

→
Xα,t −

→
A1 ·

( →
Dα,t

)
,
→

X2,t =
→

Xβ,t −
→
A2 ·

( →
Dβ,t

)
,
→

X3,t =
→

Xδ,t −
→
A3 ·

( →
Dδ,t

)
(31)

→
X1,tad =

→
Xα,tad,−

→
A1 ·

( →
Dα,tad

)
,
→

X2,tad =
→

Xβ,tad −
→
A2 ·

( →
Dβ,tad

)
,
→

X3,tad =
→

Xδ,tad −
→
A3 ·

( →
Dδ,tad

)
(32)

where
→

Xm(it + 1),
→
Xt(it + 1) i

→
Xtad(it + 1) represent the updated machine, tool and TAD

position vectors of a grey wolf in iteration it+1 respectively,
→

X1,m,
→

X2,m and
→

X3,m are the
updated machine vectors according to the distance from the alpha (α), the beta (β) and

the delta (δ) wolf respectively,
→

X1,t,
→

X2,t and
→

X3,t are the updated tool vectors according to

the distance from the alpha (α), the beta (β) and the delta (δ) wolf respectively, and
→

X1,tad,
→

X2,tad and
→

X3,tad are the updated TAD vectors according to the distance from the alpha (α),
the beta (β) and the delta (δ) wolf respectively.

So far, no recent discoveries have shown the proposal of the GWO for solving pro-
cess planning optimization problem. In this paper, we present a novel hybrid grey wolf
optimizer (HGWO) approach to address the PPO problem with various precedence con-
straints focusing on prismatic parts. The pseudocode of the proposed approach can be
seen in Figure 7. It includes the following components: (1) knowledge-based represen-
tation of process plans (positions of grey wolves), (2) initializing population (pack of
wolves), (3) applying constraint handling heuristic, (4) fitness evaluation of positions of
wolves, (5) traditional GWO steps for updating positions of wolves, (6) tournament selec-
tion, (7) crossover, (8) shift mutation, (9) resource mutation, (10) fitness re-evaluation and
(11) termination criteria of the HGWO.

Figure 7. Pseudocode of the proposed HGWO.

4.2.1. Initialization of Population

The first step after defining the representation of solutions is to initialize a starting
population of individuals, here described as a pack of wolves. As mentioned earlier,
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the modified knowledge-based representation is adopted in this study. For the adopted
representation of individuals, a population can be initialized. To ensure the feasibility of
individuals, the search methodology has to include an appropriate approach for converting
infeasible individuals to a feasible domain. Therefore, we propose two heuristic algorithms
for constraint handling that will be incorporated into the proposed HGWO in order to
guarantee feasible solutions. The first heuristic is adopted from [8] and utilized for dealing
with hard constraints only. The other heuristic was developed in [39] to address both hard
and soft constraints.

Using the information about precedence constraints and operations precedence graph
let us assume that a randomly generated sequence of operations for a single individual
from a population would have the following form: [mo2, mo5, mo6, mo8, mo1, mo9, mo4,
mo3, mo7]. To complete the initialization of a process plan, randomly selected machine,
cutting tool and TAD candidate are assigned to each of these machining operations to form
the operation units. Here, we will focus on the operations sequence which is crucial for
elimination of infeasible solutions. Using the adjacency matrix as an input information,
the constraint handling heuristic for the hard constraints is developed, Figure 8. The
step-by-step procedure of the constraint handling heuristic algorithm is the following:

1. A vector operation[n] is used for representing a single solution; its adjacency matrix is
given in Equation (2);

2. A variable pt1 (pt1 = n) representing an index pointer of the vector operations[n]
is generated;

3. Repeat the procedure within the for loop until pt1 = 0;
4. Identify the machining operation at the point pt1 = n;
5. For the identified machining operation calculate the sum of all number values in a

corresponding row of the adjacency matrix ∑n
i=1(PRij); Then, check the conditions:

I. If ∑n
i=1(PRij) = 0

(a) Leave the machining operation at the position pt1;
(b) Exclude the row and the column of the Adj_matrix that match the value

of the machining operation at the position pt1; instead of removing
the row and the column, assign “not a number”;

(c) Initialize n = n − 1 and move pointer pt1 one place left;

II. If ∑n
i=1(PRij) 6= 0

(a) Initialize pt2 = pt1 − 1;
(b) Identify the machining operation at the position pt2;
(c) Calculate the sum ∑n

i=1(PRij) of all number values in the correspond-
ing row that matches the identified machining operation at the posi-
tion pt2;

(d) Repeat the following steps while pt2 > 0;
(e) If ∑n

i=1(PRij) = 0

� Swap the machining operation at the position pt1 with the ma-
chining operation at the position pt2;

� Remove the row and the column of the corresponding Adj_matrix
which match the value of the machining operation at the posi-
tion pt2; assign “not a number”;

� Break the loop and move to the step (3);

(f) If ∑n
i=1(PRij) 6= 0

� Initialize pt2 = pt2 − 1;
� Move to the step (d);

6. Return to the step (3) and reduce the pointer pt1 = pt1 − 1;
7. Reset the Adj_matrix and apply all the steps for the next individual.
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Figure 8. The step-by-step procedure of the constraint handling heuristic: (a) Select the pointer identifying the last machining
operation in the sequence, mo7; (b) Swap mo7 and mo3 according to the condition in Step 5.II; (c) Exclude row and column
of mo3, and select the next one, mo4; (d) Swap mo7 and mo4 according to the Step 5.II, exclude row and column of mo4, and
select the next operation, mo9; (e) Swap positions of mo7 and mo9, exclude row and column of mo9, and select the next
operation, mo8; mo1 is skipped according to the Step 5.II.f); (f) Swap positions of mo7 and mo8, exclude row and column of
mo8, and select the next operation, mo1; (g) Swap positions of mo7 and mo1, exclude row and column of mo7, and select the
next operations, mo1 and mo6; (h) Leave mo6 and mo1 as positioned, exclude row and column of mo6, and select the next
operation, mo5; (i) mo1 goes before mo5 and before the last operation mo2; the final sequence is generated.

The step-by step constraint handling procedure begins with the adjacency matrix
given in Figure 8a. The procedure is based on identifying index pointers pt1 and modifying
the sequence within the for loop. The first selected pointer pt1 = n = 9 denotes the last
machining operation in the matrix, mo7. The sum of all values in the row 9 meets the
second condition in the Step 5 meaning that ∑n

i=1(PRij) 6= 0. Then, the Step 5.II.a) starts
with initializing the second pointer pt2 = pt1 − 1 = 8 that denotes mo3, Figure 8b. The
same condition is checked and since the sum ∑n

i=1(PRij) equals zero, the operations mo7
and mo3 are swapped and the row and the column of the mo3 are assigned with the
non-numbering value. Operation mo3 than takes the final position 8 in the sequence,
Figure 8c. The procedure continues with the Step 6 that reduces the pointer pt1 to 8 and
repeats from the Step 5. Pointers pt1 = 8 and pt2 = 7 denote the operations mo7 and mo4,
Figure 8c. After checking conditions in Step 5.II, the row and the column of mo4 are
assigned with the non-numbering value and removed from the following steps, Figure 8d.
From Figure 8d to Figure 8i, the handling procedure continues to remove the rows and
the columns of machining operations for which the sum ∑n

i=1(PRij) equals zero. The
sequence of operations is modified accordingly. Figure 8i shows that the operation mo5



Materials 2021, 14, 7360 17 of 31

has to swap place with mo1 in order to complete the procedure of generating a feasible
machining sequence.

The second constraint handling heuristic is adopted from [3]. Here, we will shortly
focus on the most significant steps of this heuristic. In order to handle both hard and soft
constraints, firstly, so called “linked list” is created. This list includes machining operations
that form hard constraints, therefore leaving the positions of other operations unchanged.
Herewith, a heuristic process is imposed on the linked list to ensure its consistency with the
hard constraints. Such an approach is adopted for the part 2 shown in Figure 5. Afterwards,
the next step of this constraint handling algorithm is to include the additional penalty
costs for violated soft constraints in the objective function model, Equations (15) and (16).
Considering the fact that soft constraints are not manipulated using the linked list, certain
soft constraints may be subject to violation. In this step, soft constraints can be compromised
and violated to achieve the minimal total weighted machining cost, Equation (17).

4.2.2. Genetic Components of the HGWO Approach

Genetic algorithms are techniques based on natural evolution of species that mimic the
viewpoint of modern genetics, so-called “survival of the fittest”. Apart from being fitness-
oriented and belonging to the group of population-based optimization algorithms, their
unique characterization is varying operations that mimic genetic gene changes and enable
population individuals to evolve. These strategies are selection, crossover and mutation.

The adopted selection strategy for the HGWO algorithm is the tournament selection
which belongs to the group of proportionate-based selection schemes. This strategy is
based on selecting a number of individuals (tournament size) from the population that will
participate in the so called “tournament”. The individual with the highest fitness value
is considered as the fittest individual and therefore the winner of the tournament. The
process of selecting individuals lasts until a new generation of individuals is created.

Crossover or recombination is the next strategy employed to recombine two selected
parent individuals in order to obtain better offsprings. In this paper, a modified one-point
crossover strategy is adopted to improve exploration capabilities of the proposed approach.
Using the predefined crossover probability pc, the steps of this recombination procedure
are the following:

• Two wolf candidates selected from the tournaments are randomly chosen to be par-
ent wolves;

• By generating a random crossover point, two parent wolves are divided into two
sections to create two child wolves;

• Left section of the child wolf 1 is formed by copying left section of the parent wolf 1.
Then, the right section of the child wolf 1 is formed in two parts. The first part is to
find the remaining machining operations in the parent wolf 2 and copy them in the
current order to the right section of the child wolf 1. Afterwards, the machine, cutting
tool and TAD candidate are copied from these machining operations in the parent
wolf 2 to the remaining machining operations in right section of the child wolf 1;

• The identical, but inverse procedure using left section of the parent wolf 2 and remain-
ing machining operations from the parent wolf 1 is performed to produce the child
wolf 2.

To improve exploration capabilities of the HGWO and avoid premature convergence,
two appropriate mutation strategies are introduced. Here, the shift mutation and resource
mutation strategy are used. The first strategy, takes two random genes (operation units) of
a randomly selected wolf from the population (pack) and exchanges them. This procedure
impacts the feasibility of the mutated position of the wolf.

The second mutation strategy called “resource mutation” does minor changes to a
machine, cutting tool and TAD candidate, respectively. The steps of the resource mutation
strategy (example for a machine vector) are the following:

• Randomly select a crow candidate for resource mutation;
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• Randomly select the mutation point, i.e., machining operation that matches certain
position in the vector;

• Check the availability of machines in the machine candidate list for the selected
machining operation;

• Randomly select one of the available machines as the current machine;
• Identify all other machining operations that have the current machine in their machine

candidate list;
• Assign the same alternative machine candidate as the current machine for remaining

machining operations;
• Repeat the same steps for the CT vector and TAD vector using CT candidate list and

TAD candidate list respectively.

Besides the above described genetic strategies within the HGWO approach, we also
included inertia weight coefficient in order to achieve additional control of exploration
and exploitation. The inertia is decreased linearly thereby emphasizing global exploration
ability in the initial stages of the search process and moving towards local exploitation
abilities in the latter stages. Convergence curves in Chapter 5 graphically show diversifica-
tion of the search (primarily HGWO and HybGA curves) in the initial stages meaning that
the exploration is at hand, whereas the latter stages clearly show less diversified search
where local abilities of metaheuristics are more used. In that sense, the mathematical
Equations (25)–(27) defined in the Section 4.2 will have the following form:

→
Dα,m =

∣∣∣∣→C1 ·
→

Xα,m − w ·
→

Xm

∣∣∣∣, →
Dβ,m =

∣∣∣∣→C2 ·
→

Xβ,m − w ·
→

Xm

∣∣∣∣, →
Dδ,m =

∣∣∣∣→C3 ·
→

Xδ,m − w ·
→

Xm

∣∣∣∣ (33)

→
Dα,t =

∣∣∣∣→C1 ·
→

Xα,t − w ·
→
Xt

∣∣∣∣, →
Dβ,t =

∣∣∣∣→C2 ·
→

Xβ,t − w ·
→
Xt

∣∣∣∣, →
Dδ,t =

∣∣∣∣→C3 ·
→

Xδ,t − w ·
→
Xt

∣∣∣∣ (34)

→
Dα,tad =

∣∣∣∣→C1 ·
→

Xα,tad − w ·
→

Xtad

∣∣∣∣, →
Dβ,tad =

∣∣∣∣→C2 ·
→

Xβ,tad − w ·
→

Xtad

∣∣∣∣, →
Dδ,tad =

∣∣∣∣→C3 ·
→

Xδ,tad − w ·
→

Xtad

∣∣∣∣ (35)

where w represents inertia weight that is decreased linearly using the next equation:

w = ((wmax − wmin)/MaxIt) · it (36)

where wmax and wmin are maximal and minimal weight, MaxIt is the maximal number of
iterations and it is the current iteration.

5. Experimental Studies and Results

The proposed HGWO algorithm was programmed in MATLAB environment and
executed on a Windows 10 operating system by a 1.99 GHz Intel i7 processor and 8 GB
RAM computer. Its performance was verified on three experimental studies that consider
three different prismatic parts. The first experiment employed the prismatic part 1 taken
from [42]. The 3D solid model with associated features and its cOPG are represented
in Figure 3. The second experiment for testing the HECSA algorithm is the prismatic
part 2 taken from [3]. Its model representation and dOPG are presented in Figure 5. The
prismatic part 3 in the third experiment is adopted from [6]. Figures 9 and 10 depict the
semi-transparent 3D model with its dOPG and adjacency matrix, respectively. Compared
to the first and the second experimental study which considered prismatic parts with hard,
and both hard and soft constraints respectively, precedence relationships in this model
require certain operations to be performed in the same setup. In that sense, number 2
is added to the dOPG (e.g., mo10 precedes mo3 and both should be performed in the
same setup). The prismatic part 3 is modeled for one condition in which all resources
are available.
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Figure 9. (a) Semi-transparent solid model and (b) dOPG of prismatic part 3.

Figure 10. The adjacency matrix for prismatic part 3.

The detailed information about features and candidates for machines, cutting tools
and TADs for prismatic part 1 is given in Table 1. Precedence relationships among ma-
chining features for prismatic part 1 are presented in Table 2. Similarly, information about
features and resource candidates, as well as information about precedence relationships for
prismatic part 2 are given in Tables 3 and 4, respectively. Lastly, information about features
and resource candidates for prismatic part 3 are shown in Table 5. Available machines
and cutting tools as well as the machining cost information about three prismatic parts are
given in Tables 6 and 7, respectively.

Parameter tuning may be one of the most time-consuming challenges when testing
the performances of metaheuristic algorithms. In this paper, we performed several manual
tests of input parameters of the HGWO and finally we adopted the following: pack size:
N = 100, maximal number of iterations: MaxIter = 700, tournament size: TourSize = 5,
crossover probability: pc = 0.8, shift mutation probability pm1 = 0.4, resource mutation
probability: pm2 = 0.6 and maximal and minimal inertia weights are wmax = 1.2 and
wmin = 0.2. The adopted optimization objective is to minimize the total weighted ma-
chining cost defined in Section 3.4. The output results included minimum and maximum
results achieved in 20 runs, and mean values of the obtained results.
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Table 1. Information about features and resource candidates for prismatic part 1.

Feat. Feature Definition Machining
Operations Machines Cutting Tools TADs

f1 Planar surface Milling (mo1) M2,M3 CT6,CT7,CT8 TAD+z

f2 Planar surface Milling (mo2) M2,M3 CT6,CT7,CT8 TAD−z

f3 Two pockets arranged as a
replicated feature Milling (mo3) M2,M3 CT6,CT7,CT8 TAD+x

f4 Four holes arranged as a
replicated feature Drilling (mo4) M1,M2,M3 CT2 TAD+z, TAD−z

f5 A step Milling (mo5) M2,M3 CT6,CT7 TAD+x, TAD−z

f6 A rib Milling (mo6) M2,M3 CT7,CT8 TAD+y, TAD−z

f7 A boss Milling (mo7) M2,M3 CT7,CT8 TAD−a

f8 A compound hole
Drilling (mo8) M1,M2,M3 CT2,CT3,CT4

TAD−aReaming (mo9) M1,M2,M3 CT9
Boring (mo10) M2,M3 CT10

f9 A rib Milling (mo11) M2,M3 CT7,CT8 TAD−y, TAD−z

f10 A compound hole
Drilling (mo12) M1,M2,M3 CT2,CT3,CT4

TAD−zReaming (mo13) M1,M2,M3 CT9
Boring (mo14) M3,M4 CT10

f11
Nine holes arranged as a

replicated feature
Drilling (mo15) M1,M2,M3 CT1 TAD−zTapping (mo16) M1,M2,M3 CT5

f12 A pocket Milling (mo17) M2,M3 CT7,CT8 TAD−x

f13 A step Milling (mo18) M2,M3 CT6, CT7 TAD−x, TAD−z

f14 A compound hole Reaming (mo19) M1,M2,M3 CT9 TAD+zBoring (mo20) M3,M4 CT10

The optimal process plans for minimal machining cost and three conditions concerning
prismatic part 1 are shown in Table 8. In the first condition, all resources are available.
The second condition excludes costs for cutting tools and cutting tool changes. The third
condition is the same as the second, with unavailability of machine 2 and cutting tool 8.

To perform detailed comparative analysis, results were compared with different
approaches in the literature, HGASA by Li et al. [5], PSO by Guo et al. [42], HybGA by
Huang et al. [8], HBMO by Wen et al. [24], ACO by Wang et al. [15], TSACO by Wang
et al. [16], cPSO by Petrović et al. [20], mACO by Hu et al. [17], ESGA by Su et al. [11], IWD
by Gao et al. [32], TS, SA, GA and ACO by Liu et al. [14] and GA by Kafashi [6]. Numerical
information about the comparative studies for three prismatic parts is given in Table 9.

Firstly, we will discuss the results for the prismatic part 1. For the first condition where
all resources are available, the HGWO obtained the minimal TWMC of 2470 cost units in
20 runs. The total of six results have values bellow 2500 cost units. According to Table 9, the
minimal TWMC of 2470 is one of the best results compared to the results obtained by other
algorithms. Only the approach reported in [15] achieved better minimum. The average cost
obtained by the HGWO is better than the average cost achieved by cPSO [20], PSO [42], and
mACO [17]. However, the maximal value of 2805 shows a lack of consistency in achieved
results compared to other metaheuristics. Considering the second condition where CT
cost and CT change cost are not included, the TWMC of 1990 cost units appears to be the
best minimal result. As shown in Table 9, HGWO outperforms all other metaheuristic
approaches in terms of the minimal TWMC and the mean TWMC. On the other hand, the
achieved maximal value was better compared to ACO [15], TSACO [16] and IWD [32]
approaches. Lastly, the HGWO showed best performances for the third condition in which
machine M2 and cutting tool CT8 are not available. Best minimal TWMC of 2490 cost
units is found. Additionally, regarding the mean and the maximal values of the TWMC,
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the HGWO demonstrated much better consistency and effectiveness than the considered
modified and hybrid approaches.

Table 2. Precedence relationships for prismatic part 1.

Features Machining
Operations Precedence Constraint Description

f1 Milling (mo1) f1 (mo1) is the datum and supporting face for the part; therefore it is machined
before all features and operations

f2 Milling (mo2) f2 (mo2) is before f10 (mo12, mo13, mo14) and f11 (mo15, mo16)
for the material removal interactions

f3 Milling (mo3)

f4 Drilling (mo4)

f5 Milling (mo5) f5 (mo5) is before f4 (mo4) and f7 (mo7) for the datum interactions

f6 Milling (mo6) f6 (mo6) is before f10 (mo12, mo13, mo14) for the datum interaction

f7 Milling (mo7) f7 (mo7) is before f8 (mo8, mo9, mo10) for the datum interactions

f8
Drilling (mo8)

mo8 is before (mo9 and mo10); mo9 is before mo10 for the fixed order of machining operationsReaming (mo9)
Boring (mo10)

f9 Milling (mo11) f9 (mo11) is before f10 (mo12, mo13, mo14) for the datum interaction

f10
Drilling (mo12) mo12 is before (mo13 and mo14); mo13 is before mo14 for the fixed order of machining operations;

f10 (mo12, mo13, mo14) is before f11 (mo15, mo16) and mo12 of f10 is before f14 (mo19, mo20) for
the datum interaction

Reaming (mo13)
Boring (mo14)

f11
Drilling (mo15) mo15 is before mo16 for the fixed order of operations
Tapping (mo16)

f12 Milling (mo17)

f13 Milling (mo18) f13 (mo18) is before f4 (mo4) and f12 (mo17) for the material removal interaction

f14
Reaming (mo19) mo19 is before mo20 for the fixed order of machining operations
Boring (mo20)

Table 3. Information about features and resource candidates for prismatic part 2.

Feat. Feature Definition Machining
Operations Machines Cutting Tools TADs

f1 Two holes as a replicated feature Drilling (mo1) M1,M2,M3 CT1 TAD+z, TAD−z

f2 A chamfer Drilling (mo2) M2,M3 CT8
TAD−x, TAD+y,
TAD−y, TAD−z

f3 A slot Milling (mo3) M2,M3 CT5,CT6 TAD+y

f4 A slot Milling (mo4) M2 CT5,CT6 TAD+y

f5 A step Milling (mo5) M2,M3 CT5,CT6 TAD+y, TAD−z

f6 Two holes as a replicated feature Drilling (mo6) M1,M2,M3 CT2 TAD+z, TAD−z

f7 Four holes as a replicated feature Drilling (mo7) M1,M2,M3 CT1 TAD+z, TAD−z

f8 A slot Milling (mo8) M2,M3 CT5,CT6 TAD+x

f9 Two holes as a replicated feature Drilling (mo9) M1,M2,M3 CT1 TAD−z

f10 A slot Milling (mo10) M2,M3 CT5,CT6 TAD−y

f11 A slot Milling (mo11) M2,M3 CT5,CT7 TAD−y

f12 Two holes as a replicated feature Drilling (mo12) M1,M2,M3 CT1 TAD+z, TAD−z

f13 A step Milling (mo13) M2,M3 CT5,CT6 TAD-x, TAD−y

f14 Two holes a replicated feature Drilling (mo14) M1,M2,M3 CT1 TAD−y
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Table 4. Precedence relationships for prismatic part 2.

Manufacturing Interactions Precedence Relationships Type of Precedence
Constraints

Tool-feature interaction mo1 must be executed before mo2

Hard constraints
Feature-datum interactions

mo6 must be executed before mo7
mo10 must be executed before mo11
mo13 must be executed before mo14

Thin-wall interactions
mo9 must be executed before mo8

Soft Constraints

mo12 must be executed before mo10

Material removal interactions

mo8 must be executed before mo9
mo10 must be executed before mo12
mo13 must be executed before mo14
mo3 must be executed before mo4

Table 5. Information about features and resource candidates for prismatic part 3.

Feat. Feature Definition Machining
Operations Machines Cutting Tools TADs

f1 Pocket Milling (mo1) M2,M3 CT5,CT6,CT7 TAD−z

f2 Blind hole Drilling (mo2) M1,M2,M3 CT2,CT3,CT4 TAD−z

f3 Through hole
Drilling (mo3) M1,M2,M3 CT2,CT3,CT4 TAD+z, TAD−z
Reaming (mo4) M1,M2,M3 CT9 TAD+z, TAD−z
Boring (mo5) M3,M4 CT8 TAD+z, TAD−z

f4 Four Through holes Drilling (mo6) M1,M2,M3 CT2 TAD+z, TAD−z

f5 Slot Milling (mo7) M2,M3 CT5,CT6 TAD-y, TAD−z

f6 Slot Milling (mo8) M2,M3 CT5,CT6 TAD+y, TAD−z

f7 Two Blind holes Drilling (mo9) M1,M2,M3 CT1 TAD+y

f8 Two slots Milling (mo10) M2,M3 CT6,CT7,CT10 TAD+y, TAD−y, TAD+z

f9 Pocket Milling (mo11) M2,M3 CT5,CT6,CT7 TAD−x

f10 Pocket Milling (mo12) M2,M3 CT5,CT6,CT7 TAD+x

f11 Plane
Rough milling (mo13) M2,M3 CT5,CT6,CT7 TAD+x, TAD−x, TAD+y,

TAD−y, TAD+zFinish milling (mo14) M2,M3 CT5,CT6,CT7

Table 6. Available machining resources for three prismatic parts.

Prismatic Part 1 Prismatic Part 2 Prismatic Part 3

Machines

M1 Drilling press Drilling press Drilling press
M2 3-axis vertical milling machine Milling machine 3-axis vertical milling machine
M3 CNC 3-axis vertical milling machine 3-axis vertical milling machine CNC 3-axis vertical milling machine
M4 Boring machine - Boring machine

Tools

CT1 Drill Drill 1 Drill 1
CT2 Drill Drill 2 Drill 2
CT3 Drill Reamer Drill 3
CT4 Drill Boring tool Drill 4
CT5 Tapping tool Milling cutter 1 Milling cutter 1
CT6 Mill Milling cutter 2 Milling cutter 2
CT7 Mill Slot cutter Milling cutter 3
CT8 Mill Chamfer tool Boring tool
CT9 Reamer - Reamer
CT10 Boring tool - Slot cutter
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Table 7. Cost information for the considered prismatic parts.

Resources Prismatic part 1

Machines M1 M2 M3 M4
Machine cost index (MCI) 10 40 100 60
Cutting tools CT1 CT2 CT3 CT4 CT5 CT6 CT7 CT8 CT9 CT10
Cutting tool cost index (CTCI) 7 5 3 8 7 10 15 30 15 20
Change indices MCC SCC CTCC
Cost 160 100 20

Resources Prismatic part 2

Machines M1 M2 M3
Machine cost index (MCI) 10 35 60
Cutting tools CT1 CT2 CT3 CT4 CT5 CT6 CT7 CT8
Cutting tool cost index (CTCI) 3 3 8 15 10 15 10 10
Change indices MCC SCC CTCC
Cost 300 120 15

Resources Prismatic part 3

Machines M1 M2 M3 M4
Machine cost index (MCI) 10 40 100 60
Cutting tools CT1 CT2 CT3 CT4 CT5 CT6 CT7 CT8 CT9 CT10
Cutting tool cost index (CTCI) 7 5 3 8 7 10 15 30 20 15
Change indices MCC SCC CTCC
Cost 160 120 20

Table 8. Optimal process plans for prismatic part 1 and three optimization conditions.

Condition 1

Machining operation 1 5 3 2 18 4 17 11 6 12 13 7 8 9 19 20 14 10 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1
Cutting tool 6 6 6 6 6 2 7 7 7 4 9 7 4 9 9 10 10 10 1 5
TAD +z +x +x −z −z −z −z −z −z −z −z −a −a −a +z +z −z −a −z −z

TMC = 800, TMCC = 320, NMC = 2, TCTC = 250, TCTCC = 200, NCTC = 10, TSC = 900, NSC = 9, TWMC = 2470

Condition 2

Machining operation 1 18 11 2 6 12 13 17 5 3 7 8 9 19 10 20 14 4 15 16
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 1 1 1
Cutting tool 8 7 8 8 8 3 9 8 7 8 8 3 9 9 10 10 10 2 1 5
TAD +z −z −z −z −z −z −z −z −z +x −a −a −a +z −a +z −z −z −z −z

TMC = 770, TMCC = 320, NMC = 2, TSC = 900, NSC = 9, TWMC = 1990

Condition 3

Machining operation 1 3 18 17 5 11 2 6 12 13 14 19 20 7 8 9 10 4 15 16
Machine 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1
Cutting tool 7 7 7 7 7 7 6 7 4 9 10 9 10 7 4 9 10 2 1 5
TAD +z +x −z −z −z −z −z −z −z −z −z +z +z −a −a −a −a −z −z −z

TMC = 1730, TMCC = 160, NMC = 1, TSC = 600, NSC = 6, TWMC = 2490
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Table 9. Comparative results of HECSA with other algorithms for three prismatic parts.

Algorithm Condition 1 Condition 2 Condition 3

Mean Max Min Mean Max Min Mean Max Min

Prismatic part 1

HGWO 2608.9 2805 2470 2092 2240 1990 2499.5 2500 2490
HGASA (Li et al. [5]) 2546 2585 2527 2120 2120 2120 - 2600 2590
PSO (Guo et al. [42]) 2680.5 - 2535 - - - - - -
HybGA (Huang et al. [8]) - - 2527 - - 2120 - - 2590
HBMO (Wen et al. [24]) 2543.5 2557 2525 2098 2120 2090 2592.4 2600 2590
ACO (Wang et al. [15]) 2456.1 2527 2435 2115.4 2380 2090 2600 2740 2580
TSACO (Wang et al. [16]) 2552.4 2557 2525 2120.5 2380 2090 2600.8 2740 2590
cPSO (Petrović et al. [20]) 2629 2687 2520 2100 2220 2020 2515 2600 2500
mACO (Hu et al. [17]) 2666 - 2530 2115 - 2090 - - -
ESGA (Su et al. [11]) 2539.1 2562 2530 - - 2090 - - 2590
IWD (Gao et al. [32]) 2553.5 2554 2527 2123 2380 2090 2615.3 2740 2590

Prismatic part 2

HGWO 1344.3 1363 1328 1193 1290 1170
HybGA (Huang et al. [8]) 1370 1583 1328 1224 1410 1170
TS (Liu et al. [14]) 1342 1378 1328 1194 1298 1170
SA (Liu et al. [14]) 1373.5 1518 1328 1217 1345 1170
GA (Liu et al. [14]) 1611 1778 1478 1482 1650 1410
ACO (Liu et al. [14]) 1329.5 1343 1328 1170 1170 1170
cPSO (Petrović et al. [20]) 1654 1748 1493 1428 1530 1270

Prismatic part 3

HGWO 1918.8 2003 1815
HGASA (Li et al. [5]) 1927.1 2079 1823
PSO (Guo et al. [42]) 2408.5 2280 2593
GA (Kafashi [6]) - - 2057
HybGA (Huang et al. [8]) 1828 1895 1749
cPSO (Petrović et al. [20]) 1871.5 1934 1775

Furthermore, in Figure 11 we presented convergence curves for prismatic part 1. As
can be seen, convergence of six different metaheuristic approaches is compared considering
three optimization conditions. Convergence of the proposed HGWO is compared with the
convergence of three traditional algorithms, PSO [42], GA [14] and GWO, as well as the
hybrid and the modified metaheuristics, HybGA [8] and cPSO [20]. From the information
in Figure 11a, considering the first condition, GWO, GA and HybGA showed much faster
converegence compared to other algorithms. However, the GWO and GA converged
towards local optima, whereas the HybGA succeded in finding much better solution.
Although the HGWO showed much slower convergence than the HybGA for example,
it converged towards the minimal value of 2470. This value may not be considered the
global optimum, since the slightly better result in the literature has been reported so far. It
could be safely argued that the HGWO converged towards the near-optimal solution. From
Figure 11b and the second condition of the first study, it can be noticed that the convergence
of the HGWO is similar to the one of the HybGA. After approximately 200 iterations, these
approaches converged towards the optimal and near-optimal result. PSO, like CPSO,
converged towards the good solutions, but with much slower convergence. GA and GWO
got trapped in the local optima in the early stages. Lastly, the convergence curves for the
third condition are given in Figure 11c. It can be seen that all algorithms in this analysis
converged towards best solutions. The reason lies in the fact that the third condition
excludes certain solution candidates as well as cost assigned with them. HGWO showed
slightly slower convergence than GA, GWO and HybGA, but, on the other side, succeded
in finding the new global optimum of 2490 cost units for TWMC. This result showed the
effectiveness of the HGWO for the third condition.
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Figure 11. Convergence curves for the prismatic part 1: (a) 1st condition; (b) 2nd condition; (c) 3rd condition.

Best process plans for two conditions for prismatic part 2 are given in Table 10. After
adopting similar parameters as in the previous study, we compared the results with six
different approaches from the literature [8,14,20]. The comparative results are shown in
Table 9. The proposed HGWO performed well by achieving optimal TWMC of 1328 cost
units eight times under the first condition. The mean value was slightly greater compared
to the same result achieved by TS and ACO, but much better compared to other algorithms.
Similar conclusion can be made for the maximal TWMC where the HGWO showed better
result compared to the HybGA, TS, SA, GA and CPSO. Under the second condition, the
HGWO found the minimal TWMC of 1170 cost units which appeared 19 times in 20 runs.
Besides the ACO approach, the HGWO achieved the best maximal and the best mean
results compared to all other algorithms.

Figure 12 presents the convergence curves for two optimization conditions of the
second experimental study concerning prismatic part 2. The same six metaheuristics are
considered in the convergence analysis. As shown in Figure 12a for the first condition,
the HGWO and the HybGA show similar performances, with the HGWO showing slower
convergence compared to the hybrid metaheuristic algorithm. Both approaches converged
towards the global TWMC of 1328 cost units. GA and GWO got trapped in the local optima
in early stages, whereas the CPSO and the PSO showed progress in converging towards
good solutions but not as good as the ones found by the HGWO and the HybGA. Similar
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performances can be seen for the second condition shown in Figure 12b. Since the second
condition excludes certain alternatives and costs, the HGWO showed faster convergence
than for the previous condition. Like the HybGA, HGWO converged towards the global
TWMC of 1170 cost units. It took HGWO approximately 150th iterations to converge
towards the global optimum compared to the HybGA which was faster to some extent.
However, compared to the traditional GA, GWO, PSO, as well as the CPSO, the HGWO
showed more superior performance for the second condition.

Table 10. Optimal process plans for prismatic part 2 for two conditions.

Condition 1

Machining operation 8 5 3 4 13 10 11 14 12 6 1 7 9 2
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cutting tool 5 5 5 5 5 5 5 1 1 2 1 1 1 8
TAD +x +y +y +y −y −y −y −y −z −z −z −z −z −z

TMC = 490, TMCC = 0, NMC = 0, TCTC = 98, TCTCC = 60, NCTC = 4, TSC = 480, NSC = 4, TWMC = 1328

Condition 2

Machining operation 8 1 6 12 7 9 5 3 4 13 14 2 10 11
Machine 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Cutting tool 5 1 2 1 1 1 6 6 6 6 1 8 6 5
TAD +x −z −z −z −z −z +y +y +y −y −y −y −y −y
TMC = 490, TMCC = 0, NMC = 0, TSC = 480, NSC = 4, TWMC = 1170

Figure 12. Convergence curves for the prismatic part 2: (a) 1st condition; (b) 2nd condition.

The optimal process plans for prismatic part 3 are obtained and presented in Table 11.
The same input parameters are used for this experimental study. Table 9 shows the
comparative results for the minimal, the maximal and the mean TWMC. In 20 runs, the
HGWO obtained the TWMC below 1900 cost units eight times in total, and bellow 2000 cost
units eleven times. The minimal TWMC of 1815 cost units is better than the minimal values
obtained by the GA, PSO, as well as the HGASA. The HGWO outperforms these algorithms
in terms of the best maximal and the best mean results.

Figure 13 shows the convergence curves for the third experimental study. It can be
noticed that the HybGA again shows the best convergence rate and by far outperforms
other algorithms in this regard. As far as the HGWO is concerned, it shows much slower
convergence compared to the first and the second experimental study. The HGWO ob-
tained the TWMC of 1815 cost units after 500 iterations. Despite the slow convergence rate,
the proposed HGWO algorithm achieved near-optimal solution for this prismatic part. Tra-
ditional GWO and especially GA also showed good convergence rates but they got trapped
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in the local optima. CPSO and PSO performances could not match the performances of the
previous algorithms.

Table 11. Optimal process plans for prismatic part 3 for two conditions.

Machining operation 11 13 12 14 8 9 10 7 1 3 5 4 2 6
Machine 2 2 2 2 2 2 2 2 2 2 3 3 3 3
Cutting tool 5 5 5 5 5 1 6 6 6 3 8 9 2 2
TAD −x +x +x +x +y +y +y −z −z −z −z −z −z −z

TMC = 800, TMCC = 160, NMC = 1, TCTC = 135, TCTCC = 120, NCTC = 6, TSC = 600, NSC = 5, TWMC = 1815

Figure 13. Convergence curve for the prismatic part 3.

6. Time Efficiency of the HGWO

According to the obtained experimental results, the HGWO approach showed very
good effectiveness and flexibility by finding optimal and near-optimal solutions of the
process planning optimization problem. From the perspective of the solutions quality, the
comparative results in Table 9 show that the HGWO obtained the near-optimal TWMC
value for the first condition, and the new optimal values for the second and the third
condition of the first experimental study. In terms of the consistency, the HGWO showed
good mean values for all three conditions surpassing the mean results of several algorithms
reported in the literature. The optimal TWMC cost values are obtained for both conditions
of the second experimental study with much better consistency that is reflected in very
good mean results. In the third experimental study, the HGWO approach obtained near-
optimal results of TWMC with good consistency where mean results surpass those results
obtained by traditional algorithms.

Although the proposed HGWO approach demonstrated flexibility and effectiveness
in terms of the solution qualities, there are certain limitations regarding its computational
time efficiency. Due to the fact a small number of researchers included computational times
in their studies, a detailed comparative analysis could not be performed in this regard.
In Table 12 we presented the mean computational times of six metaheuristic algorithms
whose convergence curves were shown in Figures 11–13 for three experimental studies,
respectively. They are expressed in seconds required to complete a single run, and the
results in Table 12 are the mean computational times of 20 runs. From the perspective of the
HGWO efficiency, better mean computational times are achieved against traditional PSO
and modified cPSO approach. On the other side, they exceed the mean computational times
of three algorithms, GWO, GA and HybGA. Similar values for the HGWO and the PSO are
obtained for the prismatic part 2. Although some authors suggest less amount of time to be
reasonable for large-sized NP-hard problems [50], we may argue that approximately 1 to
1.5 min of the running time is a reasonably well amount of time needed to solve different
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instances of an NP-hard problem such as the PPO. GA and GWO as traditional algorithms
obviously show the lowest computational times in all studies, since the modified and
hybrid algorithms require more time to perform additional operations. One of the reasons
for lower efficiency of the HGWO compared to the HybGA is the difference in input
parameters, where HGWO considered larger probabilities for crossover and mutation
strategies, as well as larger tournament size, compared to HybGA. According to the
convergence curves in Figures 11–13, the convergence rate of the HGWO is slower in the
first stages of the search process, especially for the first conditions of prismatic parts 1 and
2, as well as prismatic part 3. For example, curve in Figure 11a shows slower rate of the
HGWO in the first 300 iterations, meaning that the probabilities of crossover and mutation
are much higher than in the latter iterations, which leads to the increase in computational
time of the HGWO.

Table 12. Mean computational times (s) of five different algorithms for three experimental studies.

Algorithm
Prismatic Part 1 Prismatic Part 2 Prismatic Part 3

Cond. 1 Cond. 2 Cond. 3 Cond. 1 Cond. 2 Cond. 1

HGWO 67.9351 67.3275 89.2144 84.5813 86.2835 62.8624
HybGA 42.1551 42.9072 47.7353 50.0639 50.6163 38.1999
PSO 70.3245 70.0847 90.9951 83.9863 84.4812 64.7519
GA 38.9688 38.2773 44.7899 43.3343 44.1306 34.0308
GWO 43.6161 42.2103 60.7819 48.9564 49.5188 38.3231
cPSO 75.7522 78.1318 97.5841 93.0888 93.8023 72.2037

Time efficiency of the HGWO can also be evaluated by the function execution times
that are called in the programming environment. Since the MATLAB was used to imple-
ment the HGWO, we provide the execution times of several functions coded in MATLAB
which are presented in Table 13. Apart from the functions that consider calling six different
algorithms considered in experimental studies, fitness evaluation and constraint handling
functions are also presented. Two time values, total and self-time are shown. Total time
represents the total time spent in a function including all child functions, while the self-time
means the total time spent in a function without any time spent in child functions. All
time values in Table 13 are obtained after 20 runs and consider only the first experimental
study. It can be noticed that calling the HGWO algorithm requires more time compared
to almost all other algorithms except the CPSO. The big difference in total and self-time
means that the HGWO requires calling many child functions, including fitness evaluation
and constraint handling algorithm.

Table 13. MATLAB profile summary report about the execution times of certain MATLAB functions.

Function Name
(MATLAB)

Execution Times for the Several Functions Regarding Prismatic Part

Condition 1 Condition 2 Condition 3

Total Time Self-Time Total Time Self-Time Total Time Self-Time

fitness_cost 3229.754 3229.754 3645.48 3645.48 3527.900 3527.900
cpso_algorithm 2005.366 722.229 2185.712 791.54 2061.431 771.305

hgwo_algorithm 1823.554 583.585 2011.849 651.219 1895.894 638.906
pso_algorithm 1791.113 701.895 2006.323 798.087 1928.071 766.405

constr_handling 1283.064 1283.064 1387.015 1387.015 1353.541 1353.541
gwo_algorithm 1231.354 535.619 1332.102 579.912 1303.338 569.971

hybga_algorithm 971.847 42.707 1085.238 47.323 1015.884 44.017
ga_algorithm 889.644 27.057 989.088 30.224 964.780 29.588

According to the computational times and function execution times, we can argue
that the HGWO demonstrated good time efficiency. However, this can also be considered
as the main disadvantage of the proposed approach since the comparative results clearly
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show that the HGWO falls behind other algorithms. The fact that the constraint handling
heuristic, the fitness evaluation, the tournament selection, the crossover, the shift mutation,
and the resource mutation represent a separate MATLAB functions that the HGWO has to
call in order to perform a single iteration, the time efficiency should be treated with enough
attention. With effectiveness and flexibility as the main advantages, and time efficiency as
the main disadvantage of the HGWO approach, potential improvements in terms of time
efficiency and convergence rate are beyond the scope of this paper and may be a subject
for future research studies.

7. Conclusions

A hybrid grey wolf optimizer is proposed to solve the NP-hard process planning
optimization problem based on precedence constraints. The problem considers opera-
tion sequencing task along with the optimal selection of appropriate machines, cutting
tools and tool approach directions that define a process plan. Modern knowledge-based
representation scheme is used to represent process plans in a population of alternatives
and the operation precedence graph approach with adjacency matrices is adopted to deal
with precedence relationships among machining features. According to these relation-
ships, precedence constraints are defined. To deal with the precedence constraint in an
appropriate manner, we adopted constraint handling heuristic algorithm to deal with hard
constraints, as well as both hard and soft constraints. In that sense, the feasibility of process
plans was ensured.

To improve the performance of traditional grey wolf optimizer, the strategies of genetic
algorithm were adopted. Tournament selection is utilized for selecting fittest individuals
and classical two-point crossover strategy is applied on selected individuals to generate
wolf offspring. Shift and resource mutation strategies preform minor changes to vector
candidates and complete the evolutionary steps of the HGWO approach. To additionally
achieve balance between exploration and exploitation inertia weight coefficients from the
PSO are added to the mathematical model of the HGWO approach.

For the evaluation of process plans, traditional total weighted machining cost was
adopted as an optimization criterion. The detailed mathematical model is presented and
the criterion was formed for different conditions covered in three experimental studies
which consider three prismatic parts proposed in the literature.

After manually determining input parameters of the proposed HGWO approach,
popular results obtained by traditional and modern approaches were used to perform
the detailed comparative analysis. Three experimental studies are conducted to test the
effectiveness and efficiency of the HGWO approach. The detailed representation of optimal
process plans and comparative results including the minimal, the maximal and the mean
TWMC for 20 algorithm runs were given. The HGWO approach demonstrated flexibility
and effectiveness by solving the process planning optimization problem and finding the
optimal and the near-optimal results.

Although effectiveness and flexibility showed as the main advantages of the HGWO,
time efficiency of the proposed algorithm showed certain limitations. The HGWO suc-
ceeded in finding optimal and near-optimal process plans in a reasonable time period, but
the comparative analysis of computational times, as well as function execution times in
MATLAB programming environment, confirm good efficiency of the HGWO. However,
the HGWO falls behind certain hybrid and traditional algorithms in this regard.

One of the directions for future research may be focused on improving efficiency and
convergence of the HGWO, primarily through consideration of different genetic strategies.
Additionally, optimization of input parameters has already been reported in some studies
and should be taken into account in order to further improve performances of the HGWO.
Possible contribution to the area of process planning optimization can be directed towards
the optimization of integrated process planning and scheduling. Likewise, the recent
advances in the field of Industry 4.0 may consider the implementation of the HGWO as a
cloud service within the Smart factory.
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