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Abstract

Considered with a poor outcome of subarachnoid hemorrhage due to rupture of intracranial aneurysms 
(IAs), treatment interventions to prevent rupture of the lesions are mandatory for social health. As treat-
ment option is limited to surgical manipulations, like microsurgical clipping, endovascular coiling or 
deployment of flow diverter, and these surgical interventions have a potential risk of complications in 
nature, a proper selection of rupture-prone IAs among ones incidentally found is essential. Today, a rup-
ture risk in each case is estimated by several factors like patient characteristics and morphological ones 
of each lesion. However, unfortunately, an IA without treatment sometimes unexpectedly ruptures result-
ing in a devastating outcome or an IA surgically treated is turned out to have a thick wall. To achieve 
more efficient treatment interventions, the development of a novel diagnostic modality is required. Here, 
mainly through the accumulation of experimental findings, the crucial contribution of macrophage- 
mediated chronic inflammatory responses to IA progression have been revealed, making macrophage 
being a promising target for a diagnosis. If we could non-invasively visualize accumulation of mac-
rophages in lesions, this imaging technique ‘macrophage imaging’ may enable a qualitative evaluation 
of IAs to stratify rupture-prone ‘dangerous’ lesions among many stable ones. Thereby, a development of 
macrophage imaging makes an indication of surgical interventions being more accurate and also greatly 
facilitates a development of a novel medical therapy if used as a surrogate marker.
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Introduction

Unruptured intracranial aneurysm (IA) is a common 
disease found in about 2–5% of general population.1) 
Unruptured IAs are incidentally found during brain 
check or so especially in Japan. Patients with such 
incidentally found lesions have sometimes been 
treated preemptively because of the high morbidity 
and mortality of subarachnoid hemorrhage due to 
rupture of pre-existing IAs.2) Current available options 
to achieve the preemptive medicine preventing 
rupture of IAs are limited to surgical interventions 
(i.e. microsurgery or endovascular surgery). Indica-
tions of surgical interventions as the pre-emptive 
medicine have been determined on a case-to-case 

basis through carefully considering estimated annual 
rupture rates of each lesion and potential risks posed 
by surgical interventions.3,4) Annual rupture rates 
of each IA lesion are currently estimated3) through 
combination of some predictors indicated by prospec-
tive human cohort studies,5–10) e.g. a size, a shape or 
a location as aneurysmal factors and a race, an age 
or confounding diseases. In another point of view, 
because complications by surgical intervention are 
not negligible in nature, a development of novel 
predictors of rupture for each lesion makes indica-
tions of surgical interventions more appropriate.

Recent experimental findings has clarified the role 
of macrophage-mediated chronic inflammation in the 
promotion of the pathogenesis of IAs.11–16) A develop-
ment of an imaging technique visualizing macrophages 
infiltrating in lesions, so called ‘macrophage imaging’, 
and an evaluation of its usefulness as a surrogate to 
predict progression and rupture of lesions has thus 
become of great interest. Macrophage imaging may 
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be able to detect a qualitatively different aspect 
of each IA lesion from well-established predictors 
of rupture,5–8,10) and thereby provide more direct 
reference regarding inflammatory status, ‘activity’, 
of individual lesions.

To date, several studies have already demonstrated 
the potential of macrophage imaging as a surrogate 
marker to stratify rupture-prone IAs.17–19) In this 
review article, we have summarized the biological 
rationale, technical aspects, the usefulness, and 
the future perspective of macrophage imaging as a 
potential diagnostic tool of IAs.

Macrophage Infiltration as a Surrogate 
Marker to Predict the Progression of IAs

Macrophage imaging is a diagnostic tool utilizing 
phagocytic activity of macrophages. The presence 
of macrophages in tissues or lesions can be moni-
tored through visualizing contrast agents engulfed 
by them. The potential of this imaging technique as 
a diagnostic tool to visualize macrophage-mediated 
inflammatory responses in situ has already been 
indicated in several diseases like atherosclerosis, 
cancers, and inflammation in the central nervous 
system.18,20–24) In this section, we have summarized 
the previous experimental findings and a rationale 
to use the presence of macrophages as a surrogate 
marker to predict the progression or rupture of IAs.

Histopathological analyses of surgically resected 
human IA specimens have revealed that the number 
of macrophages present in lesions is larger in 
ruptured IAs than that in unruptured ones.25,26) 
Because degenerative changes in IA walls (e.g. an 
endothelial injury or a loss of medial smooth muscle 
cells) are prominent features of ruptured IAs,25,26) 
many believe the involvement of macrophages infil-
trating to lesions in the progression of IAs.

The crucial role of macrophages in the pathogenesis 
of IAs has been further investigated in animal studies 
and a basic concept has been clarified. Macrophages 
can be observed in IA lesions induced in animal 
models of IAs27,28) as a type of cells whose number 
is largest among inflammatory cells.13) The crucial 
contribution of macrophages to the progression of the 
disease has been supported by some experimental 
findings. For example, an inhibition of monocyte 
chemotactic protein-1 (MCP-1), a cardinal chemoat-
tractant protein for macrophages, or a genetic dele-
tion of CCL2 (which encodes MCP-1), significantly 
suppresses infiltration of macrophages in lesions and 
also the progression of the lesion.12) A pharmacological 
depletion of macrophages by Clodronate liposome 
consistently and significantly inhibits the develop-
ment of IAs.16) Although macrophages not only evoke 

inflammatory responses but also function to repair 
damaged tissues and thus the role of macrophages 
in vascular inflammation are complex and ununi-
form,29,30) above findings suggest that macrophages 
infiltrating to IA lesions as a whole facilitate the 
pathophysiology of IAs. This assumption is in line 
with a histopathological investigation of surgically 
resected human IA specimens.31) In this study, both 
the two major subpopulation of macrophages, M1 
lineage with pro-inflammatory actions and M2 lineage 
with anti-inflammatory actions, could be observed in 
IA walls before rupture, while M1 linage becomes 
predominant after rupture.31) Not only the precise 
spatiotemporal changes of each subpopulation of 
macrophages in IA lesion during the disease progres-
sion but also the contribution of each subpopulation in 
the pathogenesis, however, remains to be elucidated.

A genetic deletion of p50 subunit of nuclear factor 
k B (NF-k B) or a pharmacological inhibition of NF-k B 
activity significantly suppresses the development of 
IAs.32) Because a transcription factor NF-k B plays a 
central role in regulating (in most cases, triggering) 
inflammatory responses via inducing various pro-
inflammatory genes as a major transcription factor 
for them, these findings suggest that IA is one of the 
inflammation-mediated diseases. Indeed, in above 
experiments deleting or inhibiting NF-k B, expressions 
of pro-inflammatory genes like IL-1b, cyclooxygenase-2 
(COX-2) and inducible nitric oxide synthese (iNOS) 
in lesions are remarkably suppressed.32) Furthermore, 
because a genetic deletion or a pharmacological inhi-
bition of pro-inflammatory molecules downstream 
of NF-k B, including TNF-a,33,34) IL-1b,35) cyclooxy-
genase-2 (COX-2),36) inducible nitric oxide synthese 
(iNOS),37) and matrix metalloproteinase-9 (MMP-9) 
matrix metalloproteinase-9 (MMP-9),13,38) consistently 
and significantly suppresses the progression of IAs, 
NF-k B-mediated inflammatory responses are supposed 
to regulate the pathogenesis of IAs.

In experiments using NF-k B reporter mice in which 
NF-k B activation can be monitored by an expres-
sion of a fluorescent protein, NF-k B first activates 
in endothelial cells and macrophages infiltrating in 
adventitia at the early stage of IA formation.11) Through 
a cell type-specific inhibition of NF-k B activation 
by expressing the mutated form of Ik Ba under the 
control of Cre-LoxP system, the crucial role of NF-k B 
activation in macrophages in the pathogenesis of 
IAs is revealed.11) Indeed, MMP-2 and nine mainly 
produced by macrophages in the NF-k B-dependent 
manner promote the initiation and progression of 
the disease.13,32) Cysteine cathepsins, which are 
extracellular matrix-degrading proteinase like MMPs, 
are also induced in various cell types including 
macrophages in IA lesions, and induces fragility 
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of the walls.39) These findings support the crucial 
role of macrophages in degradation of  extracellular 
matrix in situ to exacerbate the fragility of IA wall. 
Recently, prostaglandin E receptor subtype 2 (EP2) 
cascade is identified as an upstream signal cascade 
to activate NF-k B in lesions.11,36) As a macrophage-
specific deletion of Ptger2 (which encodes EP2) can 
suppress the development of IAs11) consistently with 
results about NF-k B, the importance of macrophages 
and inflammatory cascade functioning there in the 
pathogenesis has been further supported. Here 
importantly, the prostaglandin E (PGE)2–EP2–NF-k B 
signaling cascade in macrophages functions not only 
to initiate but also to sustenance of inflammatory 
responses in situ once triggered through forming 
a positive feedback loop via inducing COX-2. In 
addition, this signaling cascade in macrophages 
synergizes with a cardinal pro-inflammatory cytokine, 
TNF-a, present in situ33,34) to amplify inflamma-
tory response there.11) Also, this cascade enhances 
MCP-1 expression and contributes to the formation 
of auto-amplification among macrophages, making 
the macrophage-mediated inflammatory responses 
in lesions being exacerbated.11)

Macrophage-mediated chronic inflammation has 
thus been identified as one of the essential factors 

in the progression of IAs. Therefore, visualizing 
macrophages in IA lesions can become a reason-
able strategy to predict the progression of lesions.

Macrophage Imaging

As discussed in the previous section, macrophage 
imaging may enable to evaluate inflammation status 
in IA lesions17,40) (Fig. 1).

Ferumoxytol is an ultrasmall superparamagnetic 
iron oxide particle (USPIO) used for the treat-
ment of anemia due to chronic renal diseases. As 
macrophages engulf USPIO (Fig. 2A) and this particle 
exerts strong T2 * effect in MRI,41) USPIO can also be 
used as a contrast agent for detecting macrophages 
in MRI. Indeed, macrophage imaging using USPIO  
has been demonstrated in oncology and inflammation 
in the central nervous system.18,20–24)  Ferumoxytol 
has 30 nm in the hydrodynamic diameter and its 
circulating half-life is about 14 h in human. Because 
the diameter of ferumoxytol is remarkably smaller 
than well-used gadolinium-containing contrast agent 
with the diameter 1 nm and is thus retained much 
longer in the blood, ferumoxytol disappears much 
more slowly from blood stream but may cross the 
impaired blood–brain barrier more specifically 

Fig. 1 The schematic drawing of the concept of macrophage imaging. Nano-particles are injected to a patient 
with an intracranial aneurysm and macrophages in a lesion engulfing these particles are visualized by MRI. The 
lesion with enhancement is stratified as an ‘active’ one.
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Fig. 2 Macrophage imaging by an iron-containing nanoparticle, ferumoxytol. (A) Electron microscopic imaging 
of RAW264.7 cells, a mouse macrophage cell line, engulfing ferumoxytol. Cultured Raw264.7 cells were treated 
with ferumoxytol and subjected to an electron microscopic observation. Magnified image of RAW264.7 cells 
engulfing ferumoxytol is shown in the right panel. (B) One example of macrophage imaging of human case with 
a cavernous aneurysm by ferumoxytol. 2D-Gradient echo MR images were acquired before (pre) and 24 h after 
(post) the administration of macrophage imaging. Subtracted image is shown in the right panel. Note the presence 
of several hypo-intensity signals in the aneurysm wall. Images in this figure were originally published in cita-
tion17 as Figs. 2A and 4A (B). Written permission regarding the reuse of these images in this figure was acquired.

A

B

in damaged tissues resulting in the uptake by 
macrophages infiltrating there. The previous report 
about inflammation in the central nervous system 
has demonstrated that the enhancement of lesions 
begins within several hours after injection, forms 
peak at around 24 h and lasts at least for 3 days.42) 
Consistently, in the previous studies dealing IAs, 
enhancement of IA walls by ferumoxytol is well 
demonstrated at 24–72 h after administration17,40). 
Note that the uptake of ferumoxytol in macrophages 
infiltrating in IA lesions is confirmed by a Berlin 
blue staining at 24–72 h in human IA specimens.40) 
Importantly, enhancement of IA walls by ferumoxytol 
at 24 h after administration is associated with rupture 
of the lesion within 6 months after the imaging,18) 
supporting the notion that macrophage imaging can 
predict rupture of lesions. Here,  intriguingly, oral 
intake of aspirin (81 mg/day) with anti-inflammatory 
effect attenuates the enhancement of IA walls by 

ferumoxytol in 3 months.19) These findings suggest 
that macrophage imaging is useful not only for 
monitoring macrophage-mediated inflammation  
in situ but also for evaluating the efficacy of medi-
cation when used as a surrogate maker.

There are, however, several limitations in the usage 
of ferumoxytol as a contrast agent for macrophage 
imaging to predict rupture-prone IAs. First, the 
indication of ferumoxytol is strictly limited to iron 
deficiency anemia due to chronic kidney disease by 
the Food and Drug Administration because of its 
potential risk of a lethal allergic reaction. Second, 
because iron is abundantly contained in red blood 
cells in the blood stream as a component of hemo-
globin, subtraction of images between pre- and post-
injection to discriminate signals from hemoglobin 
is required for detecting the presence of iron in 
macrophages in IA walls (Fig. 2B). Considered the 
resolution of MRI and the thickness of IA walls, 
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the subtraction of two independently acquired MRI 
T2 * images is quite challenging and time-consuming, 
making the macrophage imaging by ferumoxytol 
being technically difficult and the usage of this 
imaging technique in a clinical setting being almost 
impossible. Another limitation is associated with 
an optimal dose; administration of ferumoxytol 
at a high dose is advantageous in visualizing its 
presence in tissues, but the signal-to-noise ratio is 
inversely correlated with the dose.43)

The potential of another vessel wall imaging 
using conventional gadolinium contrast agents as 
a diagnostic tool has also been reported.44–46) In 
these studies, the circumferential enhancement 
of human IA walls by conventional T1-weighted 
imaging with gadolinium contrast agents is corre-
lated with the progression of lesions.44–46) Histo-
pathological examinations of these IA specimens 
with enhancement have revealed the association 
of vessel wall enhancement with the presence of 
vasa vasorum formations and abundant macrophage 
infiltrations.47,48) Therefore, the enhancement with 
contrast agents in MRI might reflect the inflamma-
tion in lesions, although mechanisms underlying 
enhancements have not been revealed. Nonethe-
less, these studies imply that the accumulation of 
gadolinium even in thin IA walls can be visual-
ized in MRI. Considering these findings and above 
limitations about USPIO, positive contrast agents 
like gadolinium-containing nanoparticles, may 
thus be more suitable as a contrast agent used for 
macrophage imaging. The development of a novel 
contrast agent for macrophage imaging applicable 
in a clinical setting is demanded to achieve more 
efficient preemptive treatment for IAs.
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