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Experimental optical phase measurement
approaching the exact Heisenberg limit
Shakib Daryanoosh 1, Sergei Slussarenko 1, Dominic W. Berry2, Howard M. Wiseman1 & Geoff J. Pryde1

The use of quantum resources can provide measurement precision beyond the shot-noise

limit (SNL). The task of ab initio optical phase measurement—the estimation of a completely

unknown phase—has been experimentally demonstrated with precision beyond the SNL, and

even scaling like the ultimate bound, the Heisenberg limit (HL), but with an overhead factor.

However, existing approaches have not been able—even in principle—to achieve the best

possible precision, saturating the HL exactly. Here we demonstrate a scheme to achieve true

HL phase measurement, using a combination of three techniques: entanglement, multiple

samplings of the phase shift, and adaptive measurement. Our experimental demonstration of

the scheme uses two photonic qubits, one double passed, so that, for a successful coin-

cidence detection, the number of photon-passes is N= 3. We achieve a precision that is

within 4% of the HL. This scheme can be extended to higher N and other physical systems.
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Precise measurement is at the heart of science and technol-
ogy1. An important fundamental concern is how to achieve
the best precision in measuring a physical quantity, relative

to the resources of the probe system. As physical resources are
fundamentally quantised, it is quantum physics that determines
the ultimate precision that can be achieved. Correlated quantum
resources2–4 such as entangled states can provide an enhance-
ment over independent use of quantum systems in measurement.

Quantum-enhanced optical phase estimation promises
improvements in all measurement tasks for which interferometry
is presently used5,6. Such optical quantum metrology can be
divided into two distinct tasks. In phase sensing, the goal is to
determine small deviations in a phase about an already well-
known value—a very specific situation. The use of maximally
path-entangled NOON states7,8 can, in principle, provide optimal
sensitivity for this task9. The more challenging task is phase
measurement, sometimes called ab initio phase measurement10,
in which the aim is to determine an unknown phase ϕ with no
prior information about its value. In this case, the use of multiple
passes of the optical phase shift and adaptive quantum mea-
surement11, or entanglement and adaptive quantum measure-
ment12, have been shown to be capable of surpassing the shot-
noise limit (SNL), VSNL= 1/N (for large N). The SNL represents
the minimum variance achievable with a definite number N of
independent samples of the phase shift by a photon. By making
correlated samples of the phase shift, these schemes11–13 can
achieve an asymptotic variance V= (Bπ/N)2. This is proportional
to, but with a constant overhead B > 1 over, the ultimate limit (the
Heisenberg limit, HL) of (π/N)2 for the asymptotic ab initio task.
To be precise, in terms of Holevo’s variance measure14,15, the
exact HL for any value of N is

VHL ¼ tan2 π= N þ 2ð Þ½ �: ð1Þ

Phase measurement schemes are not limited to optics:
equivalent techniques have also used phase shifts of superposition
states of single-NV-centre measurements induced by magnetic
fields16,17, for example.

Here we demonstrate a technique to address this outstanding,
fundamental question of quantum metrology: how to measure
phase at the exact HL? We show a concrete way to implement the
conceptual scheme previously proposed in theory15, and imple-
ment it experimentally. As in previous photonic ab initio phase
estimation experiments, we characterise the quality of our
implementation with respect to detected resources—it relies on
probabilistic state preparation and measurement schemes, and

takes into account only the successful coincidence detections in
the calculation of precision. We thus prove the principle of the
scheme, which in future can be extended to remove postselective
elements.

Results
Theory. We begin by introducing the basic tools and techniques
used in this work. The basic concept of optical phase measure-
ment with photons is shown in Fig. 1a. The phase to be measured
is inserted in one path of an interferometer; the other path is the
reference arm. In the language of quantum information, a photon
incident on the first beam splitter (BS) is represented by the
logical state |0〉. The action of the BS is modelled by a Hadamard
gate Hj0i ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

. The unknown phase shift applied
on the path representing |1〉 is implemented by the unitary gate
U(ϕ)= exp(iϕ|1〉〈1|). The last BS prior to detection stages maps
the logical Z-basis onto the X-basis.

A more general protocol may include more sophisticated
techniques. The relevant constituents are: the quantum state of
the light in the interferometer paths; the possibility of multiple
coherent samplings of the phase shift by some photons; and the
detection strategy. For example, Fig. 1b generalises the basic
single photon interferometer to include p ≥ 1 applications of U(ϕ)
and a classically controllable phase, described by
RðθÞ ¼ expðiθj0ih0jÞ, on the reference path (representing |0〉).
We can also depict this interferometer following the quantum
circuit convention, as in Fig. 1c.

For ab initio phase measurement with N photons and no
multipassing (p= 1), it is known theoretically that the HL can be
achieved by preparing a path-entangled state10,18 and implement-
ing an entangling detection scheme19. The problem is that both of
these steps are very difficult to do. An alternative way15 to achieve
the HL uses entanglement across multiple spatio-temporal
modes, and multiple applications p of the phase gate, combined
with the inverse quantum Fourier transform (IQFT) for the
measurement. While the IQFT is also an entangling operation, it
has been known for some time20 that, in this phase estimation
algorithm (PEA)21, it can be replaced by an adaptive measure-
ment scheme1, where individual photons are measured one by
one, with the reference phase adjusted after each measurement.
This replacement requires the photons in the entangled state to be
spread out in time, but suffers no penalty in measurement
precision.

Here, we show the practicality of combining entanglement,
multipassing and adaptive measurement to achieve the HL. Our
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Fig. 1 Optical phase measurement concept. a Basic interferometric setup for estimation of an unknown phase ϕ. b Conceptual scheme of an advanced
interferometer that includes multiple (p) passes of the phase shift ϕ and a controllable phase θ in the reference arm. c Quantum circuit representation of
the interferometer shown in b. The interferometer is represented by a Hadamard gate H and a projective measurement in the X-basis, and the application
of reference and unknown phases (p passes) is represented by unitary operators RðθÞ and Up, respectively. d Quantum circuit for Heisenberg-limited
interferometric phase estimation with N= 3 resources. The protocol is extensible to higher N, in principle15. e Quantum circuit for the preparation of the
optimal state jψopti, Eq. (2), using a CNOT gate with control and target qubits prepared in jψCi and jψTi, respectively
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Heisenberg-limited interferometric phase estimation algorithm
(HPEA)15 is illustrated in Fig. 1d. This protocol is based on the
standard PEA such that using K+ 1 qubits yields an estimate ϕest
of the true phase ϕ with K+ 1 bits of precision21. It involves
application of the phase gate N= 2K+1−1 times, with the number
of applications being p= 2K, 2K−1,…, 20 on each successive qubit
(photon). Our particular demonstration is an instance of a (K+
1=) 2-photon superposition state15 that may be used to perform a
protocol with N= 2K+1−1= 3 resources, achieving a variance for
ab initio phase estimation of exactly VHL (Eq. (1)).

The optimal entangled state for the HPEA is15

ψopt

��� E
¼ c0 Φ

þj i þ c1 Ψ
þj i; ð2Þ

where

cj ¼
sin ðjþ 1Þπ=5½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP1
k¼0 sin

2 ðk þ 1Þπ=5½ �
q ; ð3Þ

and where jΦþi ¼ j00i þ j11ið Þ= ffiffiffi
2

p
and jΨþi ¼

j01i þ j10ið Þ= ffiffiffi
2

p
are Bell states. The optimal adaptive measure-

ment20 is implemented by measuring the qubits sequentially in
the X-basis, and, conditioned on the results, adjusting the
controllable phase θ shifts on subsequent qubits, as shown in
Fig. 1d.

Experimental scheme. In our experiment (Fig. 2), we used
orthogonal right- and left-circular polarisations instead of paths
to form the two arms of the interferometer. We used a non-
deterministic CNOT gate, acting on photon polarisation qubits
(horizontal |h〉≡ |0〉, vertical |v〉≡ |1〉), to generate the state in
Eq. (2). As shown in Fig. 1e, the control qubit is prepared in the
diagonal polarisation state jψCi ¼ ðjhi þ jviÞ= ffiffiffi

2
p

, and the target
qubit in the linear polarisation |ψT〉= c0|h〉+ c1|v〉, so that the
output state after the CNOT is the optimal state:
jψopti ¼ ÛCNOTðjψCi � jψTiÞ. Figure 3 shows the density matri-
ces of the experimentally generated state ρexp and the ideal state
ρopt≡ |ψopt〉〈ψopt|.

The polarisation interferometer, highlighted by the grey
background in Fig. 2, used a large half-wave plate (HWP) to
implement the unknown phase shift between the arms. Mode C
was passed twice through this unknown phase. Another HWP
(shown in Fig. 2 with a white rim) was used as the reference phase
shift θ on mode T, in order to implement the detection scheme.

We implemented the feedforward step non-deterministically,
using waveplates that were fixed for each run, combined with
postselective sorting of the data based on the results from the
detector labeled C. Although this approach would be inadequate for
estimation from exactly one shot, it is an accurate way to
characterise the performance of the scheme over many repetitions.
Table 1 shows how the data were sorted and how phase values were
allocated for each shot, according to the detector firing patterns.

Experimental phase estimation. To characterise the performance
of our HPEA, we first calculate the conditional Holevo variance
Vϕ
H in the estimates for each applied phase ϕ (see Methods section

for details on data analysis). Here Vϕ
H ¼ exp½iðϕ� ϕestÞ�

� �
ϕest

��� ����2
�1

for a given ϕ, where ¼h iϕest indicates averaging over the values of
ϕest resulting from the data. Figure 4 shows Vϕ

H for the entire
range of ϕ ∈ [0, 2π). The protocol performs best when ϕ= 0, π/2,
π, and 3π/2, corresponding to the cases where, to a good
approximation, only one of the four possible detection outcomes
occur: dd, ad, da, and aa, respectively, as shown in Fig. 5. (Here, d
(a) means the diagonal (antidiagonal) polarisation states, which

are X-basis eigenstates.) It performs worst for intermediate pha-
ses. This explains the oscillatory nature of the data in Fig. 4.

As we are interested in evaluating the precision of ab initio
phase estimation, we cannot use any knowledge of ϕ. Thus we
erase any initial phase information by calculating the uncondi-

tional Holevo variance VH ¼ exp½iðϕ� ϕestÞ�
� �

ϕest

D E
ϕ

����
����
�2

�1,

which averages over ϕ. We find VH= 0.5497 ± 0.0007, whereas
the Heisenberg limit for N= 3 resources is VHL ≈ 0.527824. As
can be seen from the simulation (described in Supplementary
Note 1) results in Fig. 4, this 4% discrepancy between the
experimental result and theoretical bound can be attributed to the
non-unit fidelity of the prepared entangled state with respect to
ρopt, highlighting the strong correlation between the protocol
performance and quality of the prepared state25. The small phase
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Fig. 2 Schematic of the experimental setup. Single photons at 820 nm are
generated via a type-I spontaneous parametric downconversion (SPDC)
process (blue background) and collected using single-mode fibres and
passed into the entangling gate (green background) in order to realise the
state jψexpi. Input polarisation was adjusted with fibre polarisation
controllers (FPC). The non-deterministic universal CNOT gate, composed
of 3 partially polarising beam splitters (PPBS) and 2 half-waveplates
(HWP), performs the state preparation by post-selecting coincidence
events between the control and target output ports with success probability
1/9. The area with grey background corresponds to the implementation of
the phase estimation. Photons in mode C pass twice through the HWP
(acting as a phase shift element), in order to realise the UðϕÞ2 operation.
Photons in mode T experience the phase shift once (performing the UðϕÞ
operation). The effect of the feedforward operation, RðθÞ, is simulated by
dialling a HWP (depicted with a white rim), for a fixed time period, with 0
and π/8 corresponding to the ON and OFF settings of the control operation.
Finally, photons are independently directed to a polarisation analysis unit
consisting of a quarter-wave plate (QWP), HWP and a polarising beam
splitter (PBS) followed by a 2 nm spectral filter and a single photon
counting module (SPCM). See Methods section for further details on the
experimental setup operation
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offset between the measured data and numerical simulations
appears due to a residual phase shift from mirrors and other
optical components. This constant phase offset does not influence
HPEA precision and can be compensated by a more sophisticated
calibration of the setup, or in postprocessing, if required.

For comparison, we perform standard quantum interferometry
with three independent photons (see Supplementary Notes 2 and 3
for details). Calculating the Holevo variance for this measurement
gives VH= 0.7870 ± 0.0007 which is close to the theoretical value of
VSLN= 0.7778 for the SNL with N= 3 resources.

We also compare our results with the theoretically optimal
results for other schemes that use a subset of the three protocol
components; Table 2. It can readily be observed that our scheme
outperforms all those that use two of the components only. While
the experimentally measured VH is numerically only a little lower
than the next best theoretical bound (see Supplementary Note 4
for derivation of theory results), the difference amounts to a
10 standard deviation improvement. We note that arbitrary
entanglement can always do the job of multiple passes, by
replacing each multipassed photon with a multiple-photon
NOON state7, split across the two polarisations. Thus our results
could, in principle, be reproduced by an entangled state of three
photonic qubits, two in one spatio-temporal mode and the third
in another, with both modes going through U(ϕ) once. We rule
out such complicated schemes in our comparison by restricting to
symmetric entanglement, in which each photon that passes
through U(ϕ) a given number of times is prepared identically.
(This is the case for the entanglement in our scheme since each of
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Fig. 3 Density matrices of the experimental state and ρopt. a Real part of the state matrix ρexp reconstructed with polarisation state tomography. The fidelity
of the state with the optimal state jψopti, Eq. (2), is hψoptjρexpjψopti ¼ 0:980±0:003, and the purity is Tr ρ2exp

h i
¼ 0:965±0:006. The density matrix was

calculated from ~50,000 twofold coincidence events. Uncertainties in fidelity and purity represent 95% confidence intervals calculated with Monte-Carlo
simulation22. Imaginary components (not shown) are ≤0.013. b Real part of the ideal optimal state ρopt. Note that ImðρoptÞ ¼ 0
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Fig. 4 Heisenberg-limited phase estimation with N= 3 resources. Red dots represent experimentally measured variance Vϕ
H as a function of ϕ. The red

horizontal line-segment cutting the left axis shows the optimal protocol Holevo variance VH ¼ 0:5497±0:0007, determined from these data, while blue
line-segment shows the HL. The blue and the green curves represent results of numerical simulations of the variance for the ideal optimal state ρopt and
experimentally prepared state ρexp, respectively. Brown dots represent Vϕ

H for the shot-noise-limited interferometry and the black dashed line represents
the measured Holevo variance VH ¼ 0:7870±0:0007 for the same measurement. The grey solid line shows the SNL. Numerical values for the
experimental results and corresponding limits are detailed in Table 2. Each data point was calculated from at least 50,000 twofold coincidence events and
the error bars represent 95% confidence intervals calculated with the bootstrap method23

Table 1 The detection outcome patterns

Outcome in C θ Successful events in CT Rejected events in CT

d 0 dd, da ad, aa
a π/8 ad, aa dd, da
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the two photons passes through U(ϕ) a different number of
times.)

Discussion
We have experimentally demonstrated how to use entangle-
ment, adaptive measurement and multiple passes of the phase
shift to perform ab initio phase measurement that outperforms
any other scheme, in terms of sensitivity per resource. Our
results are very close to the Heisenberg limit for N= 3, giving
substantial experimental justification to the theoretical predic-
tion that this method can achieve the ultimate measurement
sensitivity. While in our analysis we count only photons
detected, in twofold coincidences consistent with success of the
probabilistic operations, as resources, advances in nascent
photon source27 and detection28 technology, heralded state
preparation schemes29,30 and deterministic adaptive measure-
ment (with e.g. a Pockels cell) may soon allow saturation of the
Heisenberg limit bound even when all the employed resources
are taken into account. As quantum phase-sensitive states are
susceptible to loss31, we expect that similar considerations
would apply to the states in our scheme. For small N, as we use
here, loss has less of an effect on the sensitivity. Future exten-
sions to the scheme will employ K+ 1 > 2 photons, yielding N
= 2K+1−1 resources and a correspondingly decreased phase
uncertainty, as quantum logic circuits become increasingly
capable of producing large entangled states with high fidelity.
We note that while we have implemented this scheme optically,
it can be applied to the estimation of any parameter that

implements a phase shift between qubit states of some physical
system.

Methods
Photon source. We used spontaneous parametric downconversion (SPDC) to
produce pairs of polarisation-unentangled single photons. Ultrashort pulses from a
mode-locked Ti:sapphire laser at 820 nm, with repetition rate of 80MHz, were
upconverted to 410 nm wavelength through a second-harmonic-generation (SHG)
process with a 2 mm lithium triborate (LBO) crystal. The SHG beam was colli-
mated with a f= 75 mm lens and the IR pump was spatially filtered away with two
dispersive prisms. The UV light was focused on a 0.5 mm BiBO crystal to generate
photon pairs via a type-I SPDC. The pump power was set to ~100 mW to ensure
low probability of double pair emission from the crystal. Using 2 nm narrow band
spectral filters, and Excelitas single photon counting modules (SPCMs) with
detection efficiency in the range (50–60)%, the overall coincidence efficiency was in
the window of (11–13)% with single-detection count rates of ~40,000 counts/s.

Entangling gate. The single photons produced in the SPDC process were spatially
filtered using antireflection (AR) coated single-mode fibres, and sent through the
entangling gate to produce a state close to the optimal state ρopt. The logical circuit
of the gate consisted of three PPBSs, with ηv= 1/3 and ηh= 1 for the transmissivity
of vertically and horizontally polarised light respectively, to produce a non-
deterministic controlled-Z operation32. Two of the PPBSs were oriented 90°
(around the photon propagation axis) such that ηv= 1 and ηh= 1/3, as illustrated
in Fig. 2. Two HWPs oriented at 22.5° with respect to the optical axis were used to
perform the Hadamard operations required for the correct operation of the CNOT
gate. The successful operation of the gate is heralded by the presence of one photon
in each output mode of the gate, with overall success probability of 1/9. At the core
of this realisation is the non-classical interference that occurs between vertically
polarised photons in modes C and T impinging on the central PPBS, Fig. 2. The
maximum interference visibility that can be observed with ηv= 1/3 transmissivity
is 0.8. We observed 0.790 ± 0.005 visibility (Supplementary Fig. 1)
Hong–Ou–Mandel interference33, indicating excellent performance of the gate. In
the measurement with three uncorrelated resources, input photon polarisations
were set to |h〉, so the photons propagated through the gate without undergoing
non-classical interference, but still suffering 2/3 loss in each mode. Photons in
mode C were sent to a SPCM and acted as heralds for photons in mode T, which in
turn were used to perform the shot-noise-limited interferometry.

Phase shifts and probabilistic adaptive measurements. To encode both
unknown and classically controllable phases we proceeded as follows.
The prepared state at the end of the entangling gate is ideally in the form of
|ψopt〉= c0|Φ+〉+ c1|Ψ+〉, Eq. (2), which is a superposition of the Bell states,
jΦþi ¼ ðjhhi þ jvviÞ= ffiffiffi

2
p

, and jΨþi ¼ ðjhvi þ jvhiÞ= ffiffiffi
2

p
. Here h and v are

horizontal and vertical, respectively, polarisation states of a single photon, and
encode the logical |0〉 and |1〉 states of a qubit. The linear polarisations were
transformed to circular ones prior to the application of the phase shift. This
was done by a QWP set at π/4, yielding

jhi
jvi

� �
�!
U ðπ=4Þ
Q eiπ=4jri

e�iπ=4jli

 !
: ð4Þ

Here U ðγÞ
Q is the unitary operation for a QWP with optic axis oriented at γ with

respect to horizontal axis. The phase shift of ϕ between the right (r) and left (l)
circular polarisations could then be applied by setting the 2-inch HWP in Fig. 2 at
ϕ/4+ π/8, producing the transformation

eiπ=4jri
e�iπ=4jli

 !
�!U ð�ϕ=4þπ=8Þ

H eiϕjli
jri

� �
; ð5Þ

where we have ignored the global phase factor, and U ðγÞ
H is the operator of a HWP

with optic axis set at γ. We implemented the feedforward operation through the
same procedure. By analogy with (4) and (5), implementing the feedforward
operation by itself, setting the corresponding HWP at θ/4+ π/8, gives

jhi
jvi

� �
�!
U ðπ=4Þ
Q eiπ=4jri

e�iπ=4jli

 !
�!U ðθ=4þπ=8Þ
H jli

eiθjri
� �

: ð6Þ

Combining both allowed us to encode the phase shift ϕ� θ between the two
arms of the interferometer.

The next step was to perform the adaptive measurements, which we
implemented in a probabilistic manner. As the feedback-controlled unitary
operationRðθÞ has only two settings in this scheme, we set the corresponding HWP
at θ ¼ 0 and collected data for a fixed period of time. We recorded only those
coincidence events where detector C (Fig. 2) registered a d-polarised photon, as
shown in Table 1. We repeated this for θ ¼ π=8 and detection of a polarisation at
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Fig. 5 Probability distribution of measurement outcomes. The probabilities
of obtaining the four possible fdd; ad; da; aag measurement outcomes
which correspond to four possible ϕest values, for each phase value shown
in Fig. 4. The variance Vϕ

H is minimised for those ϕ values when one of the
probabilities is maximum. Dots are experimental values and lines are
numerical simulations that use the experimentally generated ρexp as input.
Error bars, representing the statistical uncertainty due to the finite number
of measurement sets, are smaller than the dot size

Table 2 The Holevo variance for different schemes

Symmetric
entanglement

Multipass Adaptive
measurement

VH

✓ ✓ ✓ 0.5278
✓ ✓ ✓ 0.5497(7) (Exp.)
✓ ✗ ✓ 0.556926

✗ ✓ ✓ 0.5609
✓ ✓ ✗ 0.6547
✗ ✗ ✗ 0.7778
✗ ✗ ✗ 0.7870(7) (Exp.)
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detector C. In other words, when the photon in mode C is projected onto |d〉 (|a〉)
state, it is expected that the feedforward unit is in an OFF (ON) setting, equivalent
to dialling θ ¼ 0ðθ ¼ π=8Þ for the HWP acting on the photon in mode T. This
provides for characterisation of the protocol performance without active switching.

Each single shot detection (recorded coincidence) provides
ϕest ¼ πðϕ0 ´ 20 þ ϕ1 ´ 2

1Þ=2. Here, ϕ0ϕ1 2 f00; 01; 10; 11g $ fdd; ad; da; aag.
The probability of obtaining the ϕ0ϕ1 result is equal to the number of times nϕ0ϕ1
that this measurement result occurs, divided by the size of the ensemble nens over
which the Holevo variance is calculated. Thus from the measurement record we
evaluated the true phase ϕ using the relation

ϕ � arg
1

nens

X1
ϕ0¼0

X1
ϕ1¼0

nϕ0ϕ1 exp iϕest
� 	2

4
3
5; ð7Þ

which becomes exact when nens ! 1. The conditional Holevo variance Vϕ
H is then

calculated according to Vϕ
H ¼ Sh iϕest

��� ����2
�1, with S ¼ exp½iðϕ� ϕestÞ�. Finally, the

unconditional Holevo variance18,24 is calculated as VH ¼ Sh iϕest ;ϕ
��� ����2

�1, or,

equivalently,

VH ¼ ðVϕ
H þ 1Þ�1=2

D E
ϕ

����
����
�2

�1:

Data availability
The data sets generated during the current study are available from the corre-
sponding authors on reasonable request.
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