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Abstract
Neoadjuvant chemotherapy is the current standard of care for large, advanced, and/
or inoperable tumors, including triple-negative breast cancer. Although the clinical 
benefits of neoadjuvant chemotherapy have been illustrated through numerous clini-
cal trials, more than half of the patients do not experience therapeutic benefit and 
needlessly suffer from side effects. Currently, no clinically applicable biomarkers 
are available for predicting neoadjuvant chemotherapy response in triple-negative 
breast cancer; the discovery of such a predictive biomarker or marker profile is an 
unmet need. In this study, we introduce a generic computational framework to cal-
culate a response-probability score (RPS), based on patient transcriptomic profiles, 
to predict their response to neoadjuvant chemotherapy. We first validated this frame-
work in ER-positive breast cancer patients and showed that it predicted neoadjuvant 
chemotherapy response with equal performance to several clinically used gene sig-
natures, including Oncotype DX and MammaPrint. Then, we applied this framework 
to triple-negative breast cancer data and, for each patient, we calculated a response 
probability score (TNBC-RPS). Our results indicate that the TNBC-RPS achieved 
the highest accuracy for predicting neoadjuvant chemotherapy response compared 
to previously proposed 143 gene signatures. When combined with additional clini-
cal factors, the TNBC-RPS achieved a high prediction accuracy for triple-negative 
breast cancer patients, which was comparable to the prediction accuracy of Oncotype 
DX and MammaPrint in ER-positive patients. In conclusion, the TNBC-RPS accu-
rately predicts neoadjuvant chemotherapy response in triple-negative breast cancer 
patients and has the potential to be clinically used to aid physicians in stratifying 
patients for more effective neoadjuvant chemotherapy.
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1 |  INTRODUCTION

Neo-adjuvant chemotherapy (NCT) is the standard-of-care 
for breast cancer and can improve treatment options for pa-
tients with large, inoperable, or advanced tumors.1 Multiple 
clinical trials have illustrated the clinical benefits of NCT; in 
large or inoperable tumors, it has been shown to significantly 
reduce tumor size and enable conservative breast surgery for 
certain patients. The survival benefit of NCT is identical to 
adjuvant chemotherapy (the traditional option) in early-stage 
breast cancer patients.2–5 However, in contrast with adjuvant 
chemotherapy, which is given in the absence of any measur-
able parameter for response evaluation, the response to NCT 
is often evaluated by MRI or PET/CT and can be classified 
as a pathologic complete response (pCR). Of note, patients 
with pCR have prolonged survival compared to patients with 
residual disease.2,6,7 Despite its clinical advantages, however, 
only 30% of patients responded to NCT; the majority presents 
with residual disease (RD) and suffers from side effects that 
can hamper further surgical options.

To address this issue, a number of genetic signatures have 
been proposed to predict patient response to NCT and inform 
treatment decision.8–13 In ER-positive breast cancer patients, 
several cell cycle pathway associated gene signatures have 
been commercialized due to their high accuracy in predicting 
response to NCT. One of the most widely utilized signatures 
is Oncotype DX, which predicts NCT response in ER-
positive breast cancer patients based on the expression of 21 
genes.14–18 Patients with high Oncotype DX risk scores are 
more likely to respond to the NCT.17 Other gene assays, such 
as EndoPredict and PROSIGNA, were also introduced to pre-
dict the NCT response in ER-positive patients.19,20 While the 
success of ER-positive commercialized gene signatures has 
been promising, very few predictive gene signatures in ER-
negative patients have been reported.

TNBC is a subset of ER-negative breast cancer, which ac-
counts for 10-20% of all breast cancers. TNBC tumors fail 
to express estrogen receptors (ER), progesterone receptors 
(PR), and the epidermal growth factor receptor-2 (Her2).21,22 
Compared to other subtypes, TNBC is the most aggressive 
and is characterized by larger tumor size, higher grade, in-
creased number of lymph node metastases at diagnosis, and 
the worst survival outcomes. Unfortunately, current treat-
ment options for TNBC are very limited.21,23,24 Indeed, no 
targeted therapies for TNBC are available, with the excep-
tion of PARP inhibitors in germline BRCA1/2-mutated tu-
mors.25 This makes chemotherapy the only treatment option 
for most TNBC patients. Due to the presence of a high in-
tertumoral heterogeneity, the same NCT regimen may yield 
diverse responses in different patients.26 This presents a need 
for the identification of predictive biomarkers that can be 
applied to help tailor care. Previously, Stover et al reported 
that both proliferation and immune-related gene signatures 

are associated with response in TNBC patients.27,28 Farmer 
et al reported that a stroma-related gene signature was pre-
dictive of NCT response in TNBC patients.29 However, com-
pared to the Oncotype DX prediction accuracy in ER-positive 
patients, none of these signatures achieve a high prediction 
accuracy, which limits their potential for clinical utilization. 
Currently, there is no clinically predictive gene signature for 
TNBC patients.27,30 Therefore, developing clinically applica-
ble biomarkers for TNBC to predict NCT response is critical 
and would spare nonresponder patients from experiencing 
severe side effects.

In this study, we propose a computational framework to 
define a whole-transcriptome signature to quantify the prob-
ability of a patient to respond to NCT. To this end, we uti-
lized pretreated patient gene expression data by comparing 
the NCT responders vs nonresponders to define the gene 
signature associated with NCT response. Our rationale is 
that treatment response in cancer involves complicated cel-
lular and molecular interactions in the tumor environment in 
which, for example, cell metabolism and cell-cell interactions 
are important. While most published signatures focus on a 
single tumor-associated pathway, we included all genes to 
capture the complicated cellular and molecular interactions, 
which more accurately predicts NCT response. Here, we 
present NCT response associated gene signatures to calculate 
response probability scores (RPS) in breast cancer patients. 
Our results indicate the utility of our computational frame-
work for identifying novel predictive biomarker(s) and have 
identified a powerful biomarker for NCT response prediction 
in TNBC.

2 |  MATERIALS AND METHODS

2.1 | Breast cancer gene expression datasets

The Gene Expression Omnibus (GEO) and MD Anderson 
Cancer Center public databases were queried for available 
gene expression datasets using the following search terms: 
(breast cancer) AND (preoperative chemotherapy OR neo-
adjuvant chemotherapy). Only microarray datasets gener-
ated using Affymetrix (U133 and U133Plus2.0 arrays) and 
having more than 80 samples were included to limit the 
cross-platform variability. Patient samples were excluded 
if the biopsies were obtained after NCT, if the patient sam-
ple did not have ER-status or Her2-status information, if 
pathologic response was not available, or if comparable 
treatment agents were not found (Figure  S1). Duplicate 
records were removed by careful review of GEO annota-
tions. Based on these criteria, we identified seven datasets. 
The GEO accession numbers and the dataset downloaded 
from the MD Anderson Cancer Center public database 
were: GSE25055, GSE20194, GSE25065, GSE20271, 

http://GSE25055
http://GSE20194
http://GSE25065
http://GSE20271
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GSE32646, GSE22093, and Hess et al,31–36 with sample 
sizes of 306, 278, 182, 178, 115, 97, and 129 respectively 
(Table S1 and Figure S1). In total, 115 patient expression 
profiles were measured by Affymetrix U133Plus2.0 ar-
rays and 1170 patient expression profiles were measured 
by Affymetrix U133 array. The gene expression data were 
downloaded as matrices containing the expression level of 
all probes and then converted into gene-level expression. 
For genes with multiple probesets, the probeset with the 
largest average expression value across samples was se-
lected to represent the expression of that gene.

GSE25055 was used as training dataset for constructing 
the RPS and TNBC-RPS signatures, while the other datasets 
were used as validation datasets. We constructed a valida-
tion metadata dataset by applying quantile normalization to 
re-scale the RMA normalized gene expression and then ap-
plying the ComBat function (“sva” R package)37 to remove 
batch effects (Figure S2).

2.2 | Define RPS and TNBC-RPS 
gene signatures

To capture the transcriptome difference between pCR 
and RD patients, the RPS gene signature was defined by 
identifying differentially expressed genes between pCR 
and RD patients (Table  S2). A logistic regression model 
was constructed for each gene using patient class as the 
response variable (Y = 1 for pCR patients, and Y = 0 for 
RD patients).

Log2-transformed gene expression data were included 
as a predictive variable in the model (X1). The coefficients 
(β1-values) and statistical significance (P-values) for each 
gene were estimated by applying these models to the train-
ing data (GSE25055). Then, given these values (β, P) for all 
genes, the RPS gene signature was constructed by using a 
pair of weight profiles, w+ and w-, that assigned all genes 
which had two weights in the following way: for gene i, 
w+

i
=−log

(
pi

)
I(𝛽 i >0) and w−

i
=−log

(
pi

)
I(𝛽 i <0), where 

I represents the indicator function. Weights were trimmed 
at 10 to avoid extreme values and transformed into values 
within [0,1] by subtracting the minimum value and then di-
viding by the range. If a gene i was more significantly up-reg-
ulated in pCR vs RD samples, it received a high weight in the 
w+

i
 profile and a weight of zero in the w−

i
 profile. Conversely, 

a more significantly down-regulated gene in pCR vs RD sam-
ples was assigned a high weight in the w−

i
 profile and weight 

of zero in the w+

i
 profile. The TNBC-RPS gene signature 

was derived based on the same framework, but the logistic 

regression model was performed for each gene in TNBC pa-
tients only (Table S3).

2.3 | Calculation of RPS and TNBC-RPS in 
pretreated breast cancer samples

Given the expression profiles for a number of breast can-
cer patients, sample-specific RPSs were calculated for all 
samples based on the RPS gene signature. Specifically, a 
modified version of a statistical method called BASE38–42 
was applied as follows: first, gene expression profiles were 
median normalized to relative gene expression for each 
gene across samples. Second, for each sample, its gene 
expression profile was sorted in a descending order based 
on the relative expression to obtain an expression profile 
(e1, e2,…, eg), where g was the total number of genes. The 
skewed distribution of up-regulated (with large values in 
w+) and down-regulated (with large values in w−) genes in 
pCR and RD samples were examined by comparing two 
cumulative functions, a foreground f(i) and a background 
b(i):

If genes with large weights in w (w+

i
 for up-regulated 

genes and w−
i
 for down-regulated genes in breast cancer sam-

ples) also had high gene expression values in a breast can-
cer sample expression profile e, f (i) would accumulate more 
rapidly than b (i) as i increases. Third, for genes in w+

i
, RPS+ 

was defined as the maximum deviation between the f (i) and 
b (i) and then normalized against null distribution that was 
generated by 1,000 iterations of a randomized tumor expres-
sion profile. The same process was applied for genes in w−

i
 to 

generate the RPS-. The final RPS was determined by taking 
the difference between RPS+ and RPS- (RPS+-RPS-). Using 
this approach, patients receiving high RPSs had profiles sim-
ilar to gene expression profiles of patients with known pCR, 
while patients receiving low RPSs had profiles similar to 
gene expression profiles of patients with known RD.

For the TNBC-RPS calculation, the TNBC-RPS signature 
was applied in the TNBC patients. Following the method 
above, the foreground f(i) and background b(i) functions 
were used to calculate TNBC-RPS for each TNBC patient. 
Specifically, for global prediction power comparison, we cal-
culated RPS and TNBC-RPS based on the expression of meta-
data. For individual cohort prediction power comparison, we 
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calculated RPS and TNBC-RPS based on the original nor-
malized expression data.

2.4 | Previously defined predictive gene 
signature calculation

Gene signatures were collected from published studies de-
scribing a variety of biological processes implicated in 
chemosensitivity or resistance. Three categories of gene sig-
natures were collected in our study for comparison: Category 
1 (ER-positive patient): Commercialized gene signatures 
were used for prediction and comparison. Oncotype DX 
risk scores,8 MammaPrint signature scores,9 EndoPredict 
scores,43 Gene76 scores,44 Genomic Grade Index (GGI),45 
and risk of recurrence scores (RORs) 46 were calculated using 
the “oncotypeDX”, “gene70”, “endoPredict”, “gene76”, 
“ggi”, and “rorS” functions, respectively, from the genefu R 
package.47 Moreover, Stover et al 48 reported Module scores 
of MammaPrint and GGI were also included. In addition, 
Ignatiadis et al 28 examined and compared the predictive 
power of a total of 17 signatures. We only chose eight signa-
tures that have been examined to be predictive in ER-positive 
patients. The Module score of each signature was calculated 
as follows:

where wi referred to the weight of the genes in the module and 
ei referred to the expression of these genes.

Category 2 (ER-negative and TNBC patient): The search 
terms: (predict OR biomarker) AND Breast cancer AND (ER 
negative OR Triple negative) AND (neoadjuvant OR preoper-
ative chemotherapy) were used to find relevant publications. 
After excluding publications with no gene expression-based 
signature, or which were not validated in at least two indepen-
dent datasets, 19 gene signatures remained.28,49–51 The meth-
ods of calculating those 19 gene signatures were as follows:

Signature 1: Witkiewicz et al reported that cell-cycle-re-
lated genes are important for NCT and used nine genes to 
quantify the related pathway activity.49 The average expres-
sion of these nine genes were calculated as the metric for 
prediction.

Signature 2: Turner et al presented a Consensus Signature 
50 that captured the combined effect of immune function, 
tumor proliferation, and the tumor proliferation regulators. 
In detail, this signature was composed of the sum of the 
STAT1 module score (immune function), TOP2A (tumor 
proliferation), and LAPTM4B (tumor proliferation regulator) 
gene expression. The Module score was calculated used the 
equation above. We then scaled the Module score to have an 
inter-quartile range of 1 and a median of 0. The expression 

level of TOP2A and LAPTM4B was rescaled by the same 
method. The final score was calculated as the sum of these 
three scaled scores.

Signature 3: Desmedt et al51 combined the modules asso-
ciated with different tumor microenvironment components for 
prediction. Module scores of the Immune response, Stromal 
signature, and TOP2A signature (cell proliferation) were cal-
culated through the equation described above. Specifically, 
the application of the signature was determined by the Her2 
status. In ER-negative/Her2-negative patients, the final score 
was calculated as the sum of the Immune response, Module 
score, and Stromal Module score. In ER-negative/Her2-
positive patients, the final score was calculated as the sum of 
the Immune response, Module score, Stromal Module score, 
and the TOP2A signature Module score.

Signatures 4-13: Ignatiadis et al28 reported 10 of 17 signa-
tures that have been examined to be predictive in ER-negative 
patients. Similarly, the Module score of each signature was 
calculated through the equation above.

Signatures 14-17: MammaPrint scores,43 GGI,45 
MammaPrint Module Score and GGI Module Score calcu-
lated above were used for prediction.

Signature 18: Juul et al52 identified that the mitotic and 
ceramide modules were associated with the pCR and defined 
the paclitaxel response metagene score as the difference be-
tween mitotic Module score and ceramide Module score.

Signature 19: Farmer et al29 used the stromal-cell-asso-
ciated signature for prediction, which was calculated as the 
average gene expression of 48 genes.

Category 3 (Non-ER-status dependent): Stover et al48 re-
ported and summarized 125 signatures from previous studies 
for NCT prediction. For each gene signature, its Module score 
was calculated as the metric for prediction. In summary, a 
total number of 143 signatures were calculated, as described 
in the accompanying publications, and were validated in cor-
responding datasets from the original studies (Table S4-S5). 
Specifically, for global prediction power comparison, we 
calculated 143 signature scores based on the expression of 
metadata. For individual cohort prediction power compari-
son, we calculated 143 signature scores based on the original 
normalized expression data.

2.5 | NCT response prediction

Patients were predicted to have pCR or RD based on scores 
derived from the RPS, the TNBC-RPS, and the other 143 
signatures collected from previous publications. For each 
signature, we ranked patients based on signature scores 
from low to high. For each patient, a threshold was set, be-
ginning with the lowest score, where patients with a score 
higher than the threshold were predicted to be pCR and 
patients below the threshold were predicted to be RD. The 

Module score=

∑n

i=1
wiei

∑n

i=1
��wi

��
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sensitivity and specificity were then calculated for each 
threshold by comparing the predicted pCR to the actual 
pCR. Prediction accuracy of each signature was repre-
sented by calculating the area under the receiver operating 
characteristics curve (AUC).

To evaluate the performance of each signature in combi-
nation with established clinical predictors, a Random Forest 
model was trained to predict pCR and RD status using the 
RPS, the TNBC-RPS, and other signatures as predicting fea-
tures, integrated with clinical predictors including age, tumor 
stage, and tumor grade. Random Forest classification was 
performed in R through the  randomForest  package, while 
setting the sample size of pCR and RD patients to be equal.53 
The performance of the model was evaluated by a 10-fold 
cross validation, where samples were randomly divided into 
10 subgroups, with nine subgroups being used to train the 
Random Forest model and one subgroup used for NCT re-
sponse prediction. To make each sample part of the validation 
set at least once, this process was repeated 10 times. Model 
prediction accuracy was evaluated by calculating AUC. This 
overall cross-validation procedure was repeated 100 times to 
obtain an overall average AUC.

2.6 | Pathway enrichment 
analysis and tumor microenvironment 
component decomposition

The MsigDB C2 dataset 54 was downloaded for pathway en-
richment analysis. KEGG gene sets, BioCarta genes sets, and 
Reactome gene sets were chosen for analysis. Gene sets with 
less than 20 genes were excluded, which lead to the inclusion 
of 798 pathways. For each pathway gene set, the enrichment 
score was calculated based on the rank of pathway genes in 
the RPS and TNBC-RPS gene signatures. Specifically, the 
enrichment score was calculated through a walking sum 
method:

where gi referred to the accumulative hits of genes in the 
gene set, di referred to the gene rank difference between two 
continuous hits in the RPS or TNBC-RPS signatures, n re-
ferred to the total number of genes in the gene set, and N re-
ferred to the total number of genes in the RPS or TNBC-RPS 
gene signatures.

The tumor microenvironment was decomposed into three 
general components: infiltrating immune cells, stromal cells, 
and tumor cells. In detail, the abundance of infiltrating im-
mune cells and stromal cells in the tumor microenvironment 
were estimated using the ESTIMATE package in R.55 The 

proliferation rate of tumor cells was estimated using the nor-
malized expression level of MKI67.56

3 |  RESULTS

3.1 | Overview of the study

We developed a computational framework that could be uti-
lized to identify predictive gene signatures associated with 
neoadjuvant chemotherapy (NCT) response in triple-neg-
ative breast cancer (TNBC) and then conducted a series of 
analyses as summarized in Figure 1. We compared pretreat-
ment gene expression profiles between pathologic complete 
response (pCR) and residual disease (RD) patients from a 
prospective clinical study (GSE25055) to identify a weighted 
whole-gene signature associated with NCT response, where 
genes are weighted based on their capacity to discriminate 
pCR vs RD patients. A response probability score (RPS) 
was calculated for each patient in the metadata (see meth-
ods) through a rank-based algorithm called BASE.38 Patients 
having high similarities between their gene expression pro-
file and NCT response associated signature would have high 
RPS scores, leading to high probability of being pCR. After 
illustrating the efficacy of the framework by showing that the 
RPS has similar predictive power as the leading commercial-
ized signatures, such as Oncotype DX and MammaPrint in 
ER-positive patients. We expanded the framework in TNBC 
patients, generated a novel TNBC response-associated signa-
ture, calculated TNBC response probability scores (TNBC-
RPS) for TNBC patients in the metadata, and examined its 
predictive power in TNBC. Moreover, we annotated RPS and 
the TNBC-RPS by correlating the scores with immune cell 
infiltration, stromal cell abundance, and tumor cell prolifera-
tion rate in the tumor microenvironment.

3.2 | The RPS predicts patient response with 
high accuracy in ER-positive breast cancer

A number of gene signatures have been proposed for ER-
positive breast cancer, including several commercialized as-
says such as Oncotype DX.8–13 We first tested our framework 
in ER-positive breast cancer by comparing its performance 
with commercialized assays. The efficacy of our developed 
computational framework was validated by investigating the 
predictive power of the RPS for NCT response (Figure S3A-B 
and Figure 2). As shown in Figure 2A, patients with pCR had 
a significantly higher RPS than patients with RD (P = 7e-
35, Figure 2A). Because ER-negative patients had a higher 
response rate to NCT than ER-positive patients,57 we sepa-
rated the patients by ER status. In both ER-positive and 
-negative patients, pCR patients had a significantly higher 

Enrichment score=

�∑n

i=1
gi ∗di

n∗N
−0.5

�

∗2,
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RPS than RD patients (P  =  5e-14, ER-positive patients; 
P = 9e-7, ER-negative patients; Figure 2A). Similar results 
were observed in the enrichment analysis, that pCR patients 
were significantly enriched in the high RPS group compared 
to other groups (P  =  1e-28, All patients; P  =  1e-12, ER-
positive patients; P = 1e-4, ER-negative patients Figure 2B). 
Furthermore, to quantify the predictive power of the RPS, 
we utilized the RPS as a predictor to classify patients as pCR 
or RD. As shown in Figure 2C, RPS was predictive to NCT 
response and Higher predictive power was observed in ER-
positive patients (AUC  =  0.77, All patients; AUC  =  0.78, 
ER-positive patients; AUC  =  0.64, ER-negative patients, 
Figure 2C and Table S6).

To compare the predictive performance of RPS to the 
commercialized signatures, we collected 143 predictive 
signatures in breast cancer from previous publications (see 
methods). These signatures could be stratified based on their 
applicable range, including ER-positive-specific signatures, 
ER-negative-specific signatures, and nonspecific signatures 
(see methods). We applied all collected signatures in the 
metadata to examine and compare their AUC with the RPS 
in ER-positive and -negative patients. Compared with ER-
positive-specific predictive signatures, the RPS had similar or 
higher AUC performance in ER-positive patients compared 
to most of the ER-positive-specific signatures (Figure 2D and 
Table S6). Interestingly, MammaPrint and Oncotype DX had 

an AUC of 0.78 and 0.77 in ER-positive patients, respectively, 
while the RPS had an AUC of 0.78 in ER-positive patients 
(Figure 2D and Table S6). For convenience, we grouped ER-
negative-specific and nonspecific signatures together and 
named this group “ER-positive-nonspecific signatures”. In 
these nonspecific signatures, the loss of RB1 expression, a 
cell proliferation signature, and the epithelial-mesenchymal 
transition (EMT) signature had the highest AUC of 0.76 in 
ER-positive patients. Notably, no robust signatures were 
identified in ER-negative patients (Figure 2D and Table S6).

To show that the predictive accuracy of RPS in the meta-
data was not driven by a single dataset, we then examined 
and compared the predictive consistency of RPS with 143 
other signatures in ER-positive patients from each dataset. As 
shown in Figure 2E, the RPS was predictive of the response 
in each individual dataset, with the lowest AUC  =  0.71 in 
the GSE20271 dataset. This was similar to other commer-
cially available predictive signatures, including Oncotype DX 
(lowest AUC = 0.69 in GSE20271) and MammaPrint (lowest 
AUC  =  0.69 in GSE20271) (Table  S6). However, the pre-
dictive ability of RPS in ER-negative patients was relatively 
lower compared to its prediction ability in ER-positive pa-
tients with the lowest AUC = 0.64 in the Hess et al dataset 
(Figure 2F and Table S6). In summary, we validated the effi-
cacy of our computational framework by showing the RPS’s 
predictive power in breast cancer, particularly its comparative 

F I G U R E  1  The schematic diagram of this study. GSE25055 microarray data were used to determine the gene signature that captures the 
gene expression difference between pCR and RD patients. The signature was applied to the breast cancer metadata to calculate the patient-specific 
response probability score (RPS). RPS predicts response better in ER-positive patients than ER-negative patients. Following this, the TNBC gene 
signature was defined by using TNBC only in the GSE25055 microarray data. The signature was applied to the TNBC patients in the metadata 
to calculate the TNBC response probability score (TNBC-RPS) and was validated in the TNBC. The annotation of the gene signatures was 
performed by correlating the RPS or TNBC-RPS with the immune cell, stromal cell abundance, and tumor cell proliferation rate in the tumor 
microenvironment

http://GSE20271
http://GSE20271
http://GSE20271
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prediction power with commercialized signatures in ER-
positive patients.

3.3 | The TNBC-RPS predicts NCT 
response in TNBC patients

After showing the efficacy of the framework in ER-positive 
breast cancer, we aimed to define a signature that could pre-
dict NCT response of ER-negative patients. Here, we focused 
on triple-negative breast cancer (TNBC), an aggressive and 
heterogeneous subtype. No clinically practical signatures are 
currently available for predicting patient response to NCT in 
these patients. We applied our framework to TNBC patients in 

the previous training dataset (GSE25055) and built a TNBC-
specific signature to capture gene expression differences be-
tween pCR and RD of TNBC patients. Unsurprisingly, the 
TNBC-RPS calculated in the training dataset is predictive 
of NCT response (P = 5e-11, AUC = 0.87, Figure S3C-D). 
We then integrated the TNBC-RPS signature with TNBC 
patient expression profile in the validation metadata to cal-
culate the TNBC-RPSs. The pCR patients had significantly 
higher TNBC-RPS than RD patients (P = 3e-12, Figure 3A). 
Moreover, the pCR patients were significantly enriched in 
the high-TNBC-RPS group compared to other groups, with a 
pCR rate of 61.2% compared to a baseline pCR rate of 33.2% 
(P  =  5e-10, Figure  3B). We further quantified the predic-
tive power of the TNBC-RPS in TNBC patients from our 

F I G U R E  2  The RPS predicts NAC response better in ER-positive patients than ER-negative patients. (A) RPS is higher in pCR than RD 
samples. All patients, ER-positive, and ER-negative patients are labeled as “ALL,” “ER+”, and “ER-“ respectively. The statistical significance 
is calculated by Wilcoxon rank sum test; (B) pCR patients are enriched in the high-RPS group. Patients are separated based on the tertile of their 
RPS. The pCR patients are significantly enriched in the high-RPS group. The statistical significance is calculated by Chi-square test; (C) RPS 
predicts patients’ response. Receiver Operating Characteristic (ROC) curves for pCR prediction using RPS as feature. ROC curves were generated 
for all (black), ER-positive (red), and ER-negative (blue) patients; (D) Comparison of RPS with public signature prediction power in ER-positive 
and ER-negative patients. Public signatures are separated into ER-positive-specific and -nonspecific predictive signatures. Barplot shows the area 
under the curve (AUC) difference between the RPS and other public signatures in ER-positive and ER-negative patients; (E) ER-positive patients 
in six individual datasets; (F) ER-negative patients in six individual datasets. Comparison of the RPS with other public signature prediction power 
in ER-positive and -negative patients across six individual datasets. “Up” panel corresponds to ER-positive-specific signatures and “down” panel is 
corresponding to non-ER-positive-specific signatures

−30

−20

−10

0

10

ALL ER+ ER-

R
P

S

P = 7E-35 P = 5E-14 P = 9E-7

Low medium High Low medium High Low medium High
0

10

20

30

P
at

ie
nt

s(
%

)

ALL ER+ ER-

pCR

RD

42.2%
19.6%

5.5% 24.9%
10.1%

0.53% 46.7%
41.6%

23.4%

ALL: P = 1E-28

ER+: P = 1E-12

ER-: P = 1E-4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Positive Rate (1−Specificity)

Tr
ue

 P
os

iti
ve

 R
at

e 
(S

en
si

tiv
ity

)

All (AUC = 0.77,N = 979)
ER+ (AUC = 0.78,N = 567)
ER− (AUC = 0.64,N = 411)

H
es

s 
et

 a
l.

G
SE

22
09

3

G
SE

20
27

1

G
SE

32
64

6

G
SE

20
19

4

G
SE

25
06

5

AUC

ER- patients

ER+ patients

RPS
Metadata ER+ ER-

H
es

s 
et

 a
l.

G
SE

22
09

3

G
SE

20
27

1

G
SE

32
64

6

G
SE

20
19

4

G
SE

25
06

5

A B C

D E

AUC

E
R

+
 s

pe
ci

fic
 (

N
 =

 1
6)

E
R

+
 n

on
 s

pe
ci

fic
 (

N
 =

 1
25

)

F

0.5 0.6 0.7

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Oncotype Dx

http://GSE25055


6288 |   ZHAO et Al.

metadata set and observed an AUC = 0.77 (Figure 3C). Also, 
the prediction power of TNBC-RPS could be observed in 
each individual dataset (Table S7 and S8).

The performance of the TNBC-RPS to predict NCT re-
sponse was compared to previously defined predictive sig-
natures. As stated in the previous section, we collected 143 
predictive signatures, which were composed of ER-positive-
specific signatures, ER-negative-specific signatures, and 

nonspecific signatures. From these, 19 ER-negative-specific 
signatures were identified, and the other 124 signatures 
were grouped into ER-negative-non-specific signatures for 
comparison. As shown in the upper panel of Figure 3D, the 
TNBC-RPS outperformed 19 ER-negative-specific predictive 
signatures in predicting NCT response, with an AUC of 0.77. 
The next-highest AUC was achieved by the loss of PTEN gene 
signature (AUC = 0.67, Table S7), which has been reported 

F I G U R E  3  The TNBC-RPS predicts NCT response in TNBC patients. (A) The TNBC-RPS is higher in pCR than RD samples. The statistical 
significance is calculated by Wilcoxon rank sum test; (B) pCR patients are enriched in the high-TNBC-RPS group. TNBC patients are separated 
based on the tertile of their TNBC-RPS. The pCR patients are significantly enriched in the high-TNBC-RPS group. The statistical significance 
is calculated by Chi-square test; (C) The ROC curve for pCR prediction in TNBC patients using the TNBC-RPS as a feature; (D) Comparison of 
the TNBC-RPS with the prediction power of other public signatures in TNBC patients. 143 signatures are separated into ER-negative- and non-
ER-negative-specific predictive signature. Barplot shows the area under the curve (AUC) difference between the TNBC-RPS and other public 
signatures in TNBC patients; (E) Comparison of the TNBC-RPS with the prediction power of other public signatures prediction power in TNBC 
patients across six individual datasets. “Up” panel is corresponding to ER-negative-specific signatures and “down” panel is corresponding to non-
ER-specific signatures; (F) T statistics show the AUC difference between the TNBC-RPS and other signatures in predicting response. Dashed line 
indicates the statistical cut-off (P < .05)
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to predict NCT response in TNBC patients.28,58 The TNBC-
RPS also outperformed all ER-negative-nonspecific predic-
tive signatures in the validation metadata (Figure  3D and 
Table S7). The highest AUC of the ER-negative-nonspecific 
predictive signature was achieved by an E2F1 pathway-re-
lated gene signature (AUC  =  0.68, Table  S7). We further 
examined the AUC of each signature across the individual 
dataset (Figure 3E) and found that the TNBC-RPS was pre-
dictive of NCT response in TNBC patients across all data-
sets, with the highest AUC = 0.91 in GSE20194 and Hess 
et al dataset (Table S7). In three of six datasets, the TNBC-
RPS had an AUC higher than 0.75 while other signatures did 
not present such consistent prediction power (Figure 3E and 
Table S7). To compare the predictive accuracy between the 
TNBC-RPS and other signatures, a paired T-test was used 
to measure the statistical significance of AUC differences 
across six individual datasets. As shown in Figure  3F, the 
TNBC-RPS significantly outperformed 129 of 143 signatures 
in predicting NCT response (P < .05, Figure 3F). In cases in 
which the TNBC-RPS was not statistically significant com-
pared to other signatures, a positive trend in the T-score was 
observed; this still indicates a better prediction ability when 
using the TNBC-RPS as the predictor.

3.4 | The TNBC-RPS predicts NCT 
response in each clinical stage and grade

Although the TNBC-RPS showed good prediction power in 
TNBC patients, we were concerned that tumor stage or grade 
might have confounded these findings; it has been reported 
that TNBC patients with a more advanced tumor stage or 
grade tend to have better response to NCT.59 To evaluate this, 
we first examined the predictive ability of the TNBC-RPS in 
the validation metadata for each tumor stage. By calculat-
ing the TNBC-RPS for each individual stage in both pCR 
and RD patients (Table S9), we found that pCR patients had 
significantly higher RPS than RD patients (P = .007, Stage I; 
P = 9e-6, Stage II; P = .004, Stage III; P = 1e-6, Stage IV; 
Table S9). Secondly, we calculated the AUC of the TNBC-
RPS in a stage-specific manner. As shown in Figure 4, the 
TNBC-RPS could predict stage-specific responses in TNBC 
patients, indicating that the predictive power was not af-
fected by stage stratification (Figure 4A-D). Interestingly, the 
TNBC-RPS showed a high predictive power within stage-I 
patients (AUC = 0.82, TNBC-RPS; Figure 4A), indicating 
that the TNBC-RPS could robustly predict NCT response in 
early-stage breast cancer patients. This is important since the 
development of diagnostic techniques increases the number 

F I G U R E  4  The TNBC-RPS predicts NCT response in each stage and grade. (A) Stage I; (B) Stage II; (C) Stage III; (D) Stage IV; (E) Grade 
II; and (F) Grade III. Receiver Operating Characteristic (ROC) curves for pCR prediction using the TNBC-RPS as feature
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of patients diagnosed at early stages, thus requiring predic-
tive markers that are effect at those stages.

Similar to tumor stage, tumor grade may also confound the 
prediction of the TNBC-RPS in TNBC patients. Hence, we 
performed the same analyses by using the TNBC-RPS as the 
predictor in each tumor grade and found that AUC = 0.64 and 
AUC = 0.75 in grade-II and grade-III patients (Figure 4E-
F) respectively. The conclusion of the TNBC-RPS being a 
grade-specific predictor was further validated by comparing 
the TNBC-RPS difference between pCR and RD patients 
(Table S9).

3.5 | The TNBC-PRS adds additional 
predictive power to current clinical predictors

We have demonstrated that the TNBC-RPS could predict 
pCR in each TNBC clinical stage and grade. In clinical 
practice, the combination of clinical stage, grade, and age is 
used to predict NCT response.60 Therefore, we investigated 
whether adding the TNBC-RPS to current clinical predictors 
could further improve prediction accuracy. First, we applied 
Random Forest algorithm to calculate AUC for clinical pre-
dictors in TNBC patients and performed 10-fold cross-vali-
dation. As shown in Figure 5A, the prediction accuracy only 
achieved an AUC of 0.69 with the use of clinical predictors. 

Then, by adding the TNBC-RPS to clinical predictors, we 
improved the AUC to 0.80 (Table S10). In order to further 
understand the contribution of the TNBC-RPS to the predic-
tion, we investigated the relative importance of the TNBC-
RPS and clinical factors through a 10-fold cross validation 
process. As expected, the relative importance of the TNBC-
RPS was significantly higher than other clinical predictors, 
which indicated the predominant predictive power of the 
TNBC-RPS in the TNBC NCT response prediction (P < 2e-
16, Figure 5B).

Next, we assessed whether other gene expression sig-
natures displayed similar properties. Thus, we repeated 
the same analysis as mentioned above and combined clin-
ical predictors with each of the 143 signatures to test the 
AUC change. As shown in Figure 5C, 90 of 143 signa-
tures had an AUC higher than 0.7, with TNBC-RPS hav-
ing the highest AUC = 0.80. The second-highest signature 
was reported by Witklewicz et al, with an AUC  =  0.74 
(Table S10). In summary, the TNBC-RPS combined with 
the clinical predictors outperformed the prediction accu-
racy compared to the previous signatures (AUC  =  0.80, 
Figure 5C and Table S10). In addition, we also performed 
the same analyses by using RPS in ER-positive patients 
and found that RPS could further improve the prediction 
accuracy of the current clinical predictors to AUC = 0.79 
(Table S11).

F I G U R E  5  The TNBC-RPS provides additional information to current clinical predictors in prediction. (A) The TNBC-RPS provides 
additional information over current clinical predictors in TNBC patients. Barplot shows the difference of the AUC by using clinical predictors 
and using the combination of clinical predictors and the TNBC-RPS. Error bars indicate the standard deviation calculated by performing 10-fold 
cross-validation 100 times; (B) The TNBC-RPS is dominant in the prediction process in TNBC patients. Boxplot shows the relative importance 
difference of the TNBC-RPS and other clinical predictors in the pCR classification model. P-value was calculated by analysis of variance 
(ANOVA); (C) The comparison of the TNBC-RPS with the predictive power of 143 signatures in TNBC patients. Barplot shows the area under 
the curve (AUC) difference between the TNBC-RPS and other signatures in TNBC patients in the pCR classification model combined with clinical 
predictors
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3.6 | The TNBC-RPS associates with 
immune cell infiltration, stromal cell 
abundance, and cell proliferation

To biologically annotated RPS and TNBC-RPS, which could 
potentially indicate the different mechanisms underlying the 
chemotherapeutic response between ER-positive and TNBC 
patients, we performed a pathway enrichment analysis in 
both gene signatures (Figure  6A and Table  S12). A posi-
tive enrichment score refers to the enrichment of pathways 
in the up-regulated genes of the signature, while a negative 
enrichment score refers to the enrichment of pathways in the 
down-regulated genes of signature. Interestingly, we found 
that some pathways were shared in both signatures, while 
some pathways were presented in a signature-specific way. 
Cell-cycle-related pathways were shared between the RPS 
and TNBC-RPS, indicating the involvement of cell-cycle 
pathways in the NCT response. For example, the KEGG 
cell cycle pathway was shared by the gene signatures of the 
RPS and TNBC-PRS, with an enrichment score 0.20 and 
0.16 respectively (Table  S12). Moreover, pathways related 
to immune response were also found in both the RPS and 
TNBC-RPS. The REACTOME antigen-presenting pathways 
were enriched in the TNBC-RPS gene signature (with en-
richment scores of −0.12) and the KEGG T-cell-receptor-
related pathways were enriched in the RPS gene signature 
(with enrichment scores of −0.11). In addition to shared 
pathways, we also identified signature-specific pathways. 
For example, protein transportation-related pathways, like 

the REACTOME Extracellular Matrix (ECM) pathway, were 
only enriched in the TNBC-RPS gene signature (with an en-
richment score of 0.11) (Table S12).

We next performed clustering analysis on the pathway-en-
richment scores in the RPS and TNBC-RPS to better compare 
these two signatures (Figure  6A). The enriched cell-cycle 
and immune-related pathways in both the RPS and TNBC-
RPS gene signatures clustered together, while the enriched 
ECM pathways only formed a unique cluster in the TNBC-
RPS gene signature. Moreover, by performing gene ontology 
(GO) enrichment analysis in the RPS and TNBC-RPS gene 
signatures, we validated biological processes that had been 
identified by the pathway analyses (Tables  S13 and S14). 
From both the pathway and GO enrichment analyses, we hy-
pothesized that the RPS and TNBC-RPS could capture tumor 
microenvironment characteristics, in which the RPS reflects 
both the cell-cycle and immune-related pathway activities, 
while the TNBC-RPS reflects the activities of pathways in-
cluding the cell-cycle, immune-related, and ECM pathways.

To examine our hypothesis, we deconvoluted the tumor 
microenvironment into three general components—infil-
trating immune cell abundance, stromal cell abundance, 
and tumor cell proliferation rate—to represent the acti-
vation of immune-related, ECM-related, and cell-prolif-
eration-related pathways (see methods) respectively. The 
association between the RPS and those three components 
in ER-positive patients was examined by Spearman correla-
tion. The RPS was positively correlated with immune cell 
infiltration and tumor cell proliferation rate (SCC = 0.27, 

F I G U R E  6  The RPS and TNBC-RPS capture the tumor microenvironment characteristics. (A) Pathway enrichment test of the RPS and 
TNBC-RPS gene signatures; (B) The RPS correlates with immune cell abundance and tumor proliferation rate in ER-positive patients; (C) The 
TNBC-RPS correlates with stromal cell abundance, immune cell infiltration, and tumor proliferation rate in TNBC patients. The Spearman 
correlation coefficient (SCC) is calculated by Spearman correlation
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immune cell infiltration; SCC = 0.28, tumor cell prolifer-
ation rate, Figure  6B), but was not associated with stro-
mal cell abundance (SCC  =  0.03, Figure  6B). Moreover, 
we performed similar analyses using the TNBC-RPS and 
demonstrated that it was strongly negatively correlated with 
stromal cell abundance and was weakly correlated with im-
mune cell infiltration and tumor cell proliferation rate (SCC 
= −0.57, stromal cell abundance; SCC = −0.17, immune 
cell infiltration; SCC = 0.11, tumor cell proliferation rate; 
Figure 6C). Given the fact that the TNBC-RPS mainly cor-
related with stromal cell abundance, we examined if stro-
mal cell abundance could be used for prediction. We found 
that stromal cell abundance was predictive for the NCT in 
TNBC patients, with an AUC = 0.55 (Figure S3E-F).

4 |  DISCUSSION

Neoadjuvant chemotherapy is being used more and more fre-
quently for treating breast cancer patients. This is due to its 
advantages in reducing tumor size, improving surgical op-
tions, and significantly increasing survival in responders. 
However, broad clinical application remains questionable 
because of a low response rate and the potential for signif-
icant side effects. The most extreme case is TNBC, which 
is the most aggressive subtype of breast cancer and has the 
worst prognostic outcome. Due to its heterogeneity, patients 
with TNBC respond differently to NCT. Numerous efforts 
have been put into developing the predictive signatures for 
TNBC, but, currently, there is no clinically applied predictive 
signature. Therefore, there is an urgent need for developing 
robust predictive biomarkers for TNBC patients. Although 
many studies have focused on the chemotherapy regulatory 
program difference between pCR and RD,61–63 the mecha-
nisms underlying the survival of resistant tumor cells remain 
poorly understood.

In this study, we developed a novel framework for iden-
tifying predictive gene signatures in breast cancer patients. 
We validated the efficacy of this framework by showing 
that the RPS predicted NCT response in breast cancer pa-
tients, particularly in ER-positive patients (Figure 2A-C and 
Table S6). In addition, compared to the commercialized sig-
natures, the RPS had a comparable prediction ability across 
each individual dataset (Figure 2D-E and Table S6). We then 
applied the framework to TNBC patients and calculated the 
TNBC-RPS. The TNBC-RPS was predictive of the response 
in TNBC patients (Figure  3A-C and Table  S7). Compared 
to the previously-developed ER-negative-specific and non-
specific prediction signatures, the TNBC-RPS outperformed 
143 predictive gene signatures and presented robust predic-
tion accuracy (Figure 3D-F and Table S7). Of importance, 
the TNBC-RPS leads to a higher AUC of up to 0.80 in TNBC 
patients (Figure 5A-B) and exceeded the performance of the 

143 predictive gene signatures when combined with clinical 
predictors (Figure 5C). We, therefore, provide a new frame-
work for identifying predictive markers of NCT response. In 
addition, to facilitate the clinical utility of RPS and TNBC-
RPS signatures, we also provided a revised version of those 
two gene signatures with fewer genes (Table S15).

Previous studies calculated the scores of different gene 
signatures using only a single method. This strategy does not 
take into account the variation in the methods used to cal-
culate the scores from the gene signatures. Instead of using 
this one-method-fits-all strategy, we validated the previ-
ously published signatures by applying the same algorithms 
that were used to calculate the scores of each signature to 
the same datasets and reproduced the published prediction 
performances. Then, we applied the gene signatures to the 
validation metadata for prediction. This made the prediction 
accuracy comparison more objective since we took the im-
pact of different methods into consideration (Figures 2 and 
3). In Table S4, we present the validation results of the pre-
vious signatures. We acquired consistent results by repeat-
ing previous published gene signatures in their validation 
datasets. Despite the subtle differences between the P-value 
reported previously and our calculated AUC (likely caused 
by the update or different normalization methods on the raw 
microarray data), we showed that our model significantly 
outperformed most of the reported signatures.

The drug-response mechanisms in breast cancer have 
been studied for many years but were still poorly understood. 
We investigated the association between the RPS and char-
acteristics of the ER-positive tumor microenvironment, as 
well as between the TNBC-RPS and characteristics of the 
TNBC tumor microenvironment respectively (Figure 6). Of 
note, the RPS identified changes in the tumor cell prolifera-
tion rate and immune cell infiltration in ER-positive patients, 
which was supported by previous studies showing that the 
cell-cycle-related16,64–66 and immune-infiltration-related 
gene signatures67–69 were associated with responsiveness. 
This observation could be further validated through the pre-
diction performance of the 143 predictive gene signatures. 
For example, Oncotype DX, a signature composed of cell-cy-
cle-related genes, and the Immune Signature Gene Module 
score were both predictive to the response in ER-positive 
patients (Table S6).16,28 The TNBC-RPS primarily captured 
the relative abundance of the stromal cells in the tumor mi-
croenvironment. Farmer et al reported the similar finding 
in TNBC patients, as well.29 Meanwhile, we also used the 
stromal cell abundance for prediction in TNBC patients and 
got an AUC = 0.55, indicating a predictive role of stromal 
cells in TNBC patients’ NCT response (Figure S3E-F).69–72 
Therefore, our findings provide an understanding of cancer 
biology in breast cancer by showing which aspect(s) of the 
tumor microenvironment might influence the response to the 
NCT.
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Although we have demonstrated the efficacy of the RPS 
and the TNBC-RPS in predicting the response to NCT, the 
prediction power and the applicable range of the model 
could be further improved. In addition to the gene signatures, 
other IHC-staining signatures or MRI imaging-based predic-
tion models were used to predict the response to NCT.73–75 
However, we lack the data to compare the performance of 
our signatures to these methods or to integrate them into the 
model for better prediction. Moreover, our signatures were 
applicable to the prediction of the combination of antimetab-
olite-, anthracycline-, alkylating agent-, and taxane-based 
chemotherapy-treated patients and have not been extended 
to investigate its predictive power with other chemotherapy 
agents or targeted therapy agents. With the release of more 
gene expression data, it may be possible to extend the appli-
cable range of our signatures or to develop drug-specific-pre-
dictive gene signatures.

In summary, we developed a framework for identifying 
a predictive gene signature in breast cancer and defined two 
gene signatures that could be used to predict NCT response 
in ER-positive and TNBC patients respectively. We have 
demonstrated that the RPS performed at a comparable level 
to the current commercialized signatures, while the TNBC-
RPS outperformed 143 gene signatures for TNBC patients 
in prediction. More importantly, integrating the RPS or 
TNBC-RPS with current established clinical predictors en-
hanced the predictive power, compared to using the clini-
cal predictors only. In addition, the RPS and TNBC-RPS 
captured different aspects of the tumor microenvironment, 
leading to tantalizing insights as to the potential biological 
mechanisms driving differences in the chemotherapeutic 
response. This computational framework can also be read-
ily extended to define predictive biomarkers in other cancer 
types.
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