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Morphogenesis of liquid crystal topological defects
during the nematic-smectic A phase transition
Min-Jun Gim1, Daniel A. Beller2 & Dong Ki Yoon1

The liquid crystalline phases of matter each possess distinct types of defects that have drawn

great interest in areas such as topology, self-assembly and material micropatterning.

However, relatively little is known about how defects in one liquid crystalline phase arise from

defects or deformations in another phase upon crossing a phase transition. Here, we directly

examine defects in the in situ thermal phase transition from nematic to smectic A in

hybrid-aligned liquid crystal droplets on water substrates, using experimental, theoretical and

numerical analyses. The hybrid-aligned nematic droplet spontaneously generates boojum

defects. During cooling, toric focal conic domains arise through a sequence of morphological

transformations involving nematic stripes and locally aligned focal conic domains. This simple

experiment reveals a surprisingly complex pathway by which very different types of defects

may be related across the nematic–smectic A phase transition, and presents new possibilities

for controlled deformation and patterning of liquid crystals.
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M
aterials composed of anisotropic organic molecules may
display a number of mesophases called liquid crystals
(LCs), with order and material properties intermediate

between fluid and crystalline solids1. When the molecular order
relaxes after a phase transition or the application of an externally
imposed stimulus, there commonly appear defects where the
LC order locally breaks down, either as kinetically trapped
metastable objects or as components of free energy-minimizing
configurations2. In most currently used LC-based optoelectronic
applications, such as displays and modulators, the presence of
defects would inhibit device performance and is avoided3.
However, once they are well controlled, defects hold the
potential to dramatically broaden the applications of LCs, such
as in micropatterned surfaces4,5, microlenses6,7, vortex beam
generators8,9 and particle manipulation systems10,11.

Besides these technological applications, LC defects have been a
subject of study for over a century as a tool for fundamental
scientific studies of topological singularities in physics, ever since
the discovery of liquid crystallinity2. Topological defects in liquid
crystals have been studied in analogy with defects related to
symmetry breaking in the early universe (the Kibble–Zurek
mechanism)12 and topological defects in other condensed matter
systems, including superconductors13, superfluids14 and soft
ferromagnets15. Liquid crystal defects are often strikingly visible
under optical microscopy, facilitating their study in comparison
with the smaller or cosmologically larger deformations in the
analogous systems mentioned above. Furthermore, LC defects are
interesting not just as analogues for other systems but also for a
wide variety of unique phenomena arising from their interaction
with external fields16,17 and colloidal particles18–21.

However, very little is known about the fate of defects during
the phase transition between two of the most common LC phases,
the nematic (N) and the smectic A (SmA) phases, or how this
phase transition determines the final structure of the SmA defect
patterns upon cooling. At this phase transition, the broken
rotational symmetry of the N phase, characterized by a director
field n(r), is augmented by a further broken translational
symmetry along the n direction. The density becomes modulated,
forming equally spaced smectic layers to which n(r) is normal.

Studying topological defects at phase transitions is especially
important in light of the crucial role that such defects play in
order–disorder transitions such as the celebrated Kosterlitz–
Thouless transition in the two-dimensional XY model22 and a
related theory of melting in two-dimensional solids23. The
paucity of information about defects at the N–SmA phase
transition is partly due to an apparent complete reorganization
of the LC order at the transition in some systems, driven
by strong anchoring at the boundaries (for example, see
Supplementary Fig. 1) in which it is hard to discern a
relationship between defects in the two phases. Yet, some
recent studies have demonstrated continuous and quantifiable
changes in LC defects as the N phase is cooled into the SmA
phase; these systems include LC shells24–28 and samples with
micron-scale colloidal inclusions29,30, as well as thin films with
multidirectional rubbing at the substrate31. These observations
raise important questions about the pathways and history
dependence of defect transformations across the N–SmA phase
transition, and about the role of these transformations in SmA
phase defect pattern formation.

Here, we use films of the LC material 8CB, open to the air
above and resting on a water substrate below, to study LC defects
during the N–SmA phase transition upon cooling by polarized
optical microscopy (POM)31. The surface anchoring is strongly
homeotropic at the LC/air interface, and strongly degenerate
planar at the water interface, creating a hybrid-aligned cell32. The
choice of water as the lower substrate provides a useful and
striking new view on the phase transition, as this system provides
a uniform thin LC thickness with no azimuthal anchoring
potential and a minimal thermal gradient. Because the surface
tension dominates over liquid crystalline anchoring energies, the
LC/water interface is not significantly perturbed from flatness by
director distortions or defects. We observe a dramatic sequence of
morphological changes in the director field geometry during the
phase transition that reveals surprising connections between the
initial N geometry and the subsequent defect configurations32

(Figs 1 and 2, Supplementary Movie 1). Boojums at the water
surface in the N phase (Fig. 1a) become the organizing centres for
stripe undulations in the N director n. These stripes break up into
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Figure 1 | Typical defect structures of N and SmA phases. (a) Schematic diagrams of molecular configuration surrounding boojum at NLC phase in

square-outlined area of d. The yellow sphere is a surface point defect (boojum). (b) Schematic diagram of a TFCD in the SmA phase in square-outlined area

of g. The yellow lines are the TFCD focal curves, the purple surfaces represent smectic layers and the cyan arrows represent the director.

(c) Schematic diagram of an elliptic–hyperbolic FCD with nonzero eccentricity e. (d–g) Polarized optical microscopy observations of morphological changes

of ±1 surface defects during the N to SmA phase transition. (d) � 1 and þ 1 defects (white and black allows) showing four dark brushes spontaneously

appear at the NLC phase temperature (33 �C). (e) Stripe patterns appear at the vicinity of SmA phase temperature (32.3 �C). (f) After the transition to SmA

phase, the stripes are divided into small domains (FCDs) having line singularities (32.1 �C). (g) FCDs are replaced by scattered TFCDs after further

decrease in temperature (31.5 �C). The black area between TFCDs is due to homeotropically aligning LC molecules.
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rows of aligned focal conic domains (FCDs), well-known defects
of the SmA phase, with nonzero eccentricity and orientations
determined by the initial boojum patterning, recalling their N
history. Finally, the FCDs relax into toric FCDs (TFCDs)
(Fig. 1b)31,33. Meanwhile, we observe the direct transformation
of certain special N boojums into large TFCDs early in the
cooling process. We rationalize our findings through geometrical
modelling, along with a theoretical and numerical study of the
stripe instability. These results shed significant light on the self-
assembly pathway of defects in LC phases, revealing unexpected
intermediate states with a strong history dependence, and
opening new avenues for potential applications beyond
LC-based displays.

Results
Morphological changes during the phase transition. When a
drop of 8CB is placed on a water surface with a temperature in
the isotropic range of 8CB, the LC drop spreads until achieving a
uniform thickness. The drop is then cooled to the N phase in
which the molecules are subjected to the antagonistic boundary
conditions of hybrid alignment32. From top to bottom of the LC
film, the director field must rotate by 90� from vertical to
horizontal to satisfy these boundary conditions. However, the
director’s azimuthal angle in the plane of the water substrate is a
spontaneously broken continuous symmetry, a unit vector field
analogous to the XY model of magnetism and the c-director of
the smectic C phase. As in those cases, vortices may arise in the
projected director field. In the full three-dimensional director
field, these vortices are boojums34,35, point defects at the LC/
water interface (Fig. 1a). They arise spontaneously upon cooling
from the isotropic phase into the N phase, and are clearly visible
as the intersection of four dark and four bright brushes under
crossed polarizers (Fig. 1d). In such schlieren textures, the
number of dark brushes meeting at a point is four times the
absolute value of the winding number of the defect |s|2,32. The
sign of s can be experimentally determined by rotating the crossed
polarizers; when the brushes rotate in the same or opposite
direction as the polarizers do, the sign is positive or negative,
respectively (black or white arrow in Fig. 1d)36.

Upon cooling sufficiently below the N–SmA transition
temperature TNA¼ 32.2 �C, we observe the TFCD arrays
(Fig. 1b,g) that are typical of SmA films under hybrid
anchoring4–6,11,31. A TFCD consists of a family of smectic
layers shaped as nested tori, with a circular defect line at the
centre of the tori and a vertical cusp line in the centre (Fig. 1b).
The SmA ground state under hybrid anchoring is typically an

array of TFCDs, each bounded by a vertical cylinder as in Fig. 1b,
with the interstices between TFCDs filled by planar, horizontal
layers. The TFCD is a special, zero-eccentricity case of the FCD,
in which the smectic layers take the form of surfaces known as
Dupin cyclides, and the defect lines are an ellipse and a
hyperbola33 (Fig. 1c). The FCD is said to have an eccentricity e,
0reo1, equal to the eccentricity of its elliptical defect,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2=b2
p

, where a and b are the lengths of semi-major and
semi-minor axes, respectively. FCDs of nonzero eccentricity are
often called ‘elliptic–hyperbolic FCDs’.

Our study reveals two intricate intermediate states during the
cooling process between nematic boojums and smectic TFCDs.
First, the nematic director n develops stripe undulations, with the
stripes running parallel to the initial n at the water substrate
(Fig. 1e). Then, as the temperature falls below TNA, these stripes
break up into rows of FCDs (Fig. 1f). Such FCDs have an
orientation given by the long axis of their elliptical base, or
equivalently by the projection of their hyperbolic cusp defects
onto the horizontal plane. We observe that the orientations of the
FCDs follow the orientations of the stripes that precede them,
which are themselves inherited from the boojum arrangement in
the N phase. Only after further cooling do the FCDs relax into
TFCDs, with zero eccentricity and azimuthal symmetry (Fig. 1g).

To more precisely determine the director field around the
defects during the phase transition, we insert a first-order
retardation plate (l¼ 530 nm) between the sample and the
analyser (Fig. 2). The sample then appears magenta where n is
parallel, perpendicula, or vertical with respect to the polarizers.
Cyan-blue and yellow colours appear where n is parallel and
perpendicular, respectively, to the slow axis of the first-order
retardation plate37. In the N phase, the region around a boojum
consists of two large yellow areas and two large blue areas, all
meeting at the boojum site (Fig. 2a,e). In the stripes regime
(Fig. 2b,f), the predominant colour in each region is the same as
in the boojum regime, but the colour oscillates over the stripe
wavelength. This implies large-angle azimuthal undulations of n
in the direction transverse to the stripes, oscillating about the
locally average direction parallel to the stripe direction, inherited
from the boojum regime. In the case of Fig. 2b, the stripes are
oriented radially outward from the initial boojum. The stripes
arise as a result of the diverging ratio of the bend and splay elastic
constants, K3/K1 (refs 38,39), as the N phase is cooled into the
SmA phase; we will investigate this phenomenon theoretically
and numerically below.

Upon further cooling below TNA, FCDs appear throughout the
system (Fig. 2c,g). These FCDs at first have a high eccentricity, as
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Figure 2 | POM images of ±1 boojums under a retardation plate during the phase transition. (a,e) ±1 boojums at N phase. (b,f) Stripes. (c,g) FCDs,

with one TFCD at the site of the former þ 1 boojum. (d,h) TFCDs. Gray arrows in inset of images indicate the direction of slow axis of the retardation plate.
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evidenced by the asymmetry of the yellow and cyan-blue lobes of
each domain about the point where they meet, in contrast with
the symmetric arrangement of the four lobes of the TFCDs
(Fig. 2d,h). The lobes also reveal the orientation of each FCD that
in the case of Fig. 2c is generally radially inward toward the site
of the initial boojum. A closer comparison of Fig. 2b,c reveals
that the FCDs are arranged in rows parallel to the domain
orientations, and that these rows are the same as the stripes of
Fig. 2b. Therefore, the N–SmA phase transition here involves the
breaking up of stripes along their lengths into rows of FCDs
oriented along the stripe direction, with the minor axis length of
the FCDs equal to the stripe wavelength. Even the dislocations
of the stripes in Fig. 2b persist as dislocations in the FCD rows of
Fig. 2c, creating FCD ‘defects of defects’. Finally, further cooling
causes a relaxation of the FCD array into an array of TFCDs, with
the eccentricity diminishing to zero continuously.

The boojums of the N phase have a winding number of either
þ 1 or � 1 in the plane of the substrate, describing the sense of
rotation of the director field on a loop around the boojum. The
stripes and FCD rows are organized radially around a þ 1
boojum (Fig. 2a–d). In the case of the � 1 boojum, which
involves a hyperbolic director field in the N phase (in the plane of
the substrate), the stripes and FCDs follow a diamond-shaped
pattern around the defect site (Fig. 2e–h)28. Because the stripes
form parallel to the N phase’s horizontal n component, the radial
or diamond arrangement of stripes inherits and reveals the þ 1
(radial) or � 1 (hyperbolic) windings of the original boojum
configuration.

We also observe the direct transformation of a special class of
boojums, which we term þ 1 converging, into TFCDs. In the
hybrid-aligned N, the þ 1 boojums can be divided into
converging and diverging types (Fig. 3). While it is well known
that the nematic symmetry n¼ �n generally forbids such a
choice of orientation to be made consistently3, here the lack of
half-integer defects in our system makes it possible32, and useful,
to describe n as a unit vector field. In traversing from the air
interface to the substrate, the director rotates by 90� to point
either inward (converging) or outward (diverging), as shown
schematically in Fig. 3b,d–f, where we adopt the convention that
the director points up at the air interface. The þ 1 converging

boojum is frequently referred to in the literature as ‘hyperbolic’,
and the þ 1 diverging boojum as ‘radial’. The converging/
diverging distinction has a clear physical manifestation in the
SmA phase: the FCDs are oriented towards the boojum site in
the converging case, meaning that the hyperbolic focal curve faces
the boojum site, with POM showing lobes positioned on the
radially outward side (Fig. 3a). In the diverging case, the FCDs are
oriented away from the boojum site, with the lobes positioned
on the radially inward side (Fig. 3c). The reason the FCD
orientations reveal the rotation sense of the N director in the
vertical cross-section will be discussed below, in the section
‘Geometrical discussion of the stripe–FCD transition’.

It is the þ 1 converging boojums that transform directly into
TFCDs (Figs 2a and 3a) during the breaking up of the stripes
into eccentric FCDs. This is because the TFCD, like the þ 1
converging boojum, has azimuthal symmetry and a converging
director field from top to bottom (Fig. 1b). These early-forming
TFCDs are larger than the surrounding FCDs, but the size
distinction is gradually lost as the FCDs evolve into TFCDs upon
further cooling. The þ 1 diverging boojums, on the other hand,
do not evolve directly into TFCDs (Fig. 3c). The � 1 boojums
also cannot evolve directly into TFCDs because they lack the
azimuthal symmetry of TFCDs, as revealed by the diamond-like
configurations of the stripes parallel to the original n field
(Fig. 2f).

Theory of the nematic stripe instability. Stripe instabilities in N
have a rich and diverse history in the study of LCs, both deep in
the N phase and close to the N–SmA transition. In contrast to
previous studies32,38–46, we observe a stripe instability in 8CB on
a water substrate upon cooling towards TNA in which the LC
thickness is micron-scale and the boundary conditions are those
of the hybrid-aligned N (HAN). The planar-anchoring substrate
is ‘degenerate’ planar unlike in ref. 47, while the proximity to TNA

makes the bend elastic constant K3 far greater than the splay
elastic constant K1. As we will see, stripes arise to decrease the
bend distortion of the nematic director field48.

To develop a theoretical understanding of the stripe instability
in our system, we begin with the uniformly distorted HAN
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Figure 3 | Enlarged cores region of two distinguishable þ 1 defects in the SmA phase. FCDs orient inward (a) and outward (c) from different þ 1 surface

defects (POM images using a first-order retardation plate with slow axis along the gray arrow). Schematic diagrams shows convergence (b) and divergence

(d) of direction of FCDs (cyan arrows) in a,b, respectively. For the þ 1 boojum defects of the N phase, schematic diagrams of a cross-section of the director

field are shown for the converging (e) and diverging (f) cases. Cyan arrows represent the director with a consistent choice of orientation, and yellow

spheres are surface point defects (boojums).
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director field before the stripes appear, and we perform a linear
stability analysis to predict when stripes become energetically
favourable. The details of the calculation can be found in the
Methods section. The elastic energy of deformations is calculated
using the Frank free energy

Felastic ¼
1
2

Z
dV K1 r � nð Þ2þK2 n � r�nð Þð Þ2þK3 n � rð Þnð Þ2
�

� 2K24r � n r � nð Þ� n � rð Þn½ �g :
ð1Þ

The distortion modes in the integrand are respectively the splay,
twist, bend and saddle-splay modes. The water substrate
contributes a degenerate planar anchoring potential
Fanchoring ¼ 1

2 W
R

dA n � ẑð Þ2. We assume infinitely strong anchor-
ing at the homeotropic air interface, so that n is strictly vertical
there, which is probably appropriate close to TNA where
homeotropic anchoring strengths increase by orders of magni-
tude38. As the transition temperature TNA is approached from
above, the ratio K3/K1 of bend to splay elastic constants diverges.
In the limit of large K3/K1, the HAN director field has a polar
angle profile y0(z) similar to that shown in Fig. 6a. The director’s
azimuthal angle f is taken to be zero everywhere.

Then, as a function of K3/K1, we test whether the total energy
can be decreased by small sinusoidal undulations of wavelength
l in both y and f. We find that energy-decreasing stripes do exist
when K3 is greater than a critical value Kw

3 but less than HW
where H is the LC thickness. The stripes must have a wavelength
l above a stability boundary l* as shown in Fig. 4a. The smallest
possible wavelength l*, is typically of the same order as the LC
thickness. The critical bend elastic constant Kw

3 , above which
stripes are expected, depends strongly on both the anchoring
strength W and the saddle-splay elastic constant K24, as shown in
Fig. 4b.

The energetic stability of stripes comes from the bend term in
Felastic. This is seen in Fig. 4c, where the stripe wavelength is
chosen to be 1.01 times l*. For each of the elastic and anchoring
energy terms, Fig. 4c plots its second derivative with respect to
stripe amplitude A. All terms are positive, indicating an energy
cost, except for the bend term that is negative. Note that the
reference configuration, the uniform HAN state, contains
considerable splay and bend distortions; the stripe undulations
form to relieve the increasing cost of bend distortions by shifting
elastic energy into all of the other distortion modes. As shown in
Fig. 4d, the savings in bend energy is sufficient to give the total
energy a negative second derivative with respect to A, meaning
that some nonzero stripe amplitude will minimize the total
energy. Illustrations of such sinusoidal stripes in the HAN
director field are shown in Fig. 5a,b,e.

We also perform Landau-de Gennes numerical modelling49 of
the HAN system at high K3/K1, the results of which validate the
above linear stability analysis and yield further insights into the
nematic stripe structure. In this approach, the nematic state is
modelled as a 3-by-3 Q-tensor defined on a two-dimensional
square lattice, from which the director field n (a unit vector in
three dimensions) is extracted as the eigenvector with the greatest
eigenvalue. Details of the numerical technique are given in the
Methods section.

The numerically calculated HAN director fields show the
presence of stripe deformations over an interval of K3/K1 values
similar to that predicted by linear stability theory, as shown in
Fig. 4a. Moreover, Fig. 4a shows that the numerically calculated
stripe wavelengths l are generally quite close to the theoretically
determined stability boundary l*. Thus, our linear stability
analysis, while only meant to predict the onset of the stripe
instability, turns out to provide a reasonably good prediction for

the energy-minimizing stripe wavelength after the instability.
Furthermore, the calculated stripe wavelengths are typically
comparable to the film thickness, a result that agrees with the
experimental situation and that probably contributes to FCD
formation from the stripes, since the semimajor axis length of an
FCD cannot exceed the film thickness.

The numerically calculated director field with stripes is
illustrated in Fig. 5c,d. The azimuthal and polar angles of n are
plotted in Fig. 5f,g as a function of the coordinate y transverse to
the stripes. Comparing Fig. 5e,f, we see that in the midplane
z¼H/2, the numerically calculated f and y both oscillate
sinusoidally, with relative phase and magnitude similar to those
expected from the linear stability calculation. (The wavelength is
slightly larger in the numerical results, as seen in Fig. 4a.)
However, Fig. 5g shows that at the water substrate, the
numerically calculated f and y do not oscillate as simple sine
waves; multiple Fourier modes are superposed. In particular,
f alternates between slow increases and sudden decreases,
resulting in the qualitative dissimilarities between Fig. 5b,d. This
pattern allows splay distortions to take up more space and
confines the costlier bend distortions to smaller regions. The
sudden decreases in f are the precursors to curvature walls in the
smectic phase between FCD rows, while the slow increases
accommodate the FCD structure, as discussed below.

Geometrical discussion of the stripe–FCD transition. Why do
the nematic stripes evolve into elliptic–hyperbolic FCDs at the
N–SmA transition? We propose that such FCDs, in particular
incomplete FCDs50,51, provide a field of smectic layer normals in
close agreement with the director field of the N stripes, from
which the FCDs evolve. Incompleteness of the FCDs refers to
the fact that the domains are generally missing a portion
of the elliptical focal curve on the side that the hyperbola faces,
and a corresponding volume of the FCD is missing as well. This
missing volume is occupied by the next FCD in the row. We
know the FCDs to be incomplete in part because the bright lobes
seen in POM appear only behind the convergence point of the
lobes, marking the hyperbola location (Fig. 2c,g), whereas a
complete FCD would have small lobes on the forward side as well.
In addition, bright-field optical microscopy directly reveals
incomplete elliptical defect lines (Supplementary Fig. 2).

A schematic illustration of the system geometry is presented in
Fig. 6b, with the incomplete FCDs occupying portions of vertical
circular cylinders52. The asymptotic direction of the upper
portion of the hyperbola is then along the vertical, so that the
layers at the air interface are mostly horizontal, smoothly joining
onto horizontal layers in the interstices52,53. This geometry
requires the ellipses to be somewhat tilted out of the plane of the
substrate, and a small portion of the FCD under the ellipse is
contained within a tilted circular cylinder53. Degenerate planar
anchoring at the substrate is not strictly satisfied, but this
energetic sacrifice is not unusual for hybrid-aligned systems with
stronger anchoring at the homeotropic interface53. Our optical
microscopy measurements show that the hyperbola, viewed from
above, appears to be oriented opposite to the FCD orientation,
as Fig. 6b would suggest. Incompleteness of an FCD requires
curvature walls or many dislocations between neighbouring
FCDs, but the energetic cost of such smectic defects may
not be prohibitive near TNA (ref. 51). As the defect cost increases
upon cooling deeper into the smectic phase, the FCDs relax into
complete (or more nearly complete) TFCDs, with their
circular focal curves resting on the substrate. Complete
TFCDs join smoothly to one another and to interstitial
regions of horizontal layers.

Comparing a side view of the HAN director field profile
(Fig. 6a) with the polar angle of the smectic layer normal in the
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Gennes calculation of the director field in (c) the yz plane and (d) the xy plane at z¼0, using the same parameters as in a,b. The colour legend at right

applies to the y-component of the director in a–d. (e–g) Director field azimuthal angle f and polar angle y plotted against y for (e) the theoretical director

field of (a,b) at z¼H/2, (f) the numerical director field of (c,d) at z¼H/2, and (g) the numerical director field of (c,d) at z¼0. While (f) shows

y and f oscillating sinusoidally with relative amplitudes similar to those shown in (e,g) reveals that higher Fourier modes superpose at the substrate:

f drops suddenly from its maximum to its minimum value, a precursor to curvature walls in the smectic phase.
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elliptic–hyperbolic FCDs behind the hyperbola (Fig. 6b), we see
that the rotation of the director from the homeotropic air
interface to the degenerate planar substrate is qualitatively the
same in both cases, provided that the FCD orientation agrees with
the N in-plane orientation before the stripe onset. On the forward
side of the FCDs, which is the side faced by the hyperbola, the
director would rotate in the sense opposite to the HAN n profile.
However, the combination of high eccentricity and incomplete-
ness of the FCDs removes most of this volume.

Meanwhile, in the plane of the substrate, the FCD layer normal
direction splays out behind the hyperbola (Fig. 6d) in a way
similar to the numerically calculated nematic director field at the
substrate (Fig. 6c). This suggests that the structure of the stripes is
connected with FCD formation: the monotonic variation of f
over most of the stripe period (Fig. 5d,g) allows n to evolve easily
into the rear portions of the FCDs (hence incomplete), while the
quick jump in f in the small remainder of the stripe period seeds
a curvature wall between adjacent FCD rows. Again, the forward
side of the FCDs would have an in-plane director field opposite to
the N stripe undulation, but high eccentricity and incompleteness
of the FCDs remove most of this problematic portion. Thus, rows
of incomplete elliptic–hyperbolic FCDs, with the FCDs oriented
along the row direction, provide a natural smectic successor
structure to the N stripe state, with a very similar director field.
This allows the N stripe pattern, organized around the original
boojums, to persist in the complex arrangement of the FCDs.

The exact structure of the curvature walls, between FCDs
within a row and between adjacent FCD rows, is likely to involve
many dislocations and is beyond the scope of this work both
experimentally and theoretically. However, it is reasonable to
assume that the curvature walls become increasingly energetically
costly as the temperature is lowered deeper into the SmA phase
and the smectic layer compression modulus increases1,33,52. This
energetic cost, and the resulting tendency to anneal away the
curvature walls as the sample is cooled, drives the continuous
evolution of tilted, incomplete, nonzero-eccentricity FCDs into

upright, complete, zero-eccentricity TFCDs that need no
curvature walls to fill space with smectic layers.

Discussion
Using water as a substrate for a hybrid-aligned LC film, we have
demonstrated two new pathways of defect transformation at the
N-SmA transition: a direct transformation of þ 1 converging
boojums to TFCDs, and a sequence of morphological changes
from HAN to N stripe undulations, then to rows of incomplete
elliptic–hyperbolic FCDs and finally to a packing of TFCDs in the
rest of the sample. The original boojum network strongly
influences the geometry of the subsequent states. The orientations
of the FCDs reveal the sense of rotation of the director field along
the vertical direction in the N phase—distinguishing, for example,
converging and diverging þ 1 boojums—that is otherwise
difficult to determine using optical microscopy. Through linear
stability analysis and Landau-de Gennes numerical modelling, we
have provided an explanation for the N stripe instability as the
elastic constant ratio K3/K1 diverges near TNA. Moreover, we have
rationalized the transition from N stripes to smectic FCD rows by
illustrating the similarity in their director fields. These results
reveal new connections between the defects of the N and SmA
phases, and demonstrate a strong history dependence in the
geometries of the defect configurations. Such temperature-
controlled transformations and orientational memory provide
avenues for switchable behaviour in applications that exploit the
interactions of light, colloidal particles or nanoparticles with
liquid crystalline materials.

Methods
Sample preparation. As a reservoir, we used a silicon wafer that has a circular
hole with a 50mm depth and 4 mm diameter. To reduce the meniscus of the water,
we treated the O2 plasma to minimize the meniscus before we dropped the water
into the reservoir, and we casted 8CB (Sigma-Aldrich) on the water filled in the
reservoir. The LC film thickness is B1.5 mm that varies with an amount of LC
materials. The temperature control to induce the phase transition of LCs was
performed on a heating stage (LINKAM LTS420) using a temperature controller
(LINKAM TMS94).

Optical characterization. All the experimental results are directly shown by POM
with and without a retardation plate.

Linear stability analysis of nematic stripe distortions. Here we calculate the
director field of the uniformly distorted HAN state, and then perform linear sta-
bility analysis to predict the appearance of stripe deformations. We first seek the
reference nematic (N) configuration before the onset of stripe undulations. The
Frank elastic energy is

Felastic ¼
1
2

Z
dV K1 r � nð Þ2 þK2 n � r�nð Þð Þ2 þK3 n � rð Þnð Þ2
�

� 2K24r � n r � nð Þ� n � rð Þn½ � g:
ð2Þ

The saddle-splay divergence term can be transformed into a surface integral that in
our thin cell of (constant) thickness H becomes

�K24 ẑ � n r � nð Þ� n � rð Þn½ �z¼H � ẑ � n r � nð Þ� n � rð Þn½ �z¼0

� �
: ð3Þ

We will describe the director field with the usual polar and azimuthal angles y
and f, both of which may be functions of spatial coordinates: n¼ (sin y cos f,
sin y sin f, cos y). In the HAN state, before the onset of stripes, the director has
constant azimuthal component, so we can set f¼ 0, and y depends only on
z: n¼ (sin y(z),0, cos y(z)). This director field has no twist or saddle-splay,
and the splay and bend terms in F give a bulk elastic energy density of
1
2 K1y

0 zð Þ2 sin2yþ k3 cos2y½ �, where k3�K3/K1. The corresponding Euler–Lagrange
equation is 0¼y00 zð Þ 1� k sin2y½ � � y0 zð Þ2 k sin 2yð Þ½ � where k�1� k� 1

3 . This Euler–
Lagrange equation is solved by y(z)¼ E� 1(azþ b,k), the inverse function of the
elliptic integral of the second kind with parameter k47. With boundary conditions
y(0)¼ y1, y(H)¼ y2, we have

E y zð Þ;kð Þ ¼ z=Hð Þ E y2;kð Þ� E y1; kð Þð Þþ E y1; kð Þ : ð4Þ
For K3¼K1, a simplifying assumption commonly employed deep in the
N phase, we have k¼ 0, and since E(u, 0)¼ u, the solution is the well-known
linear form y(z)¼ (z/H)(y2� y1)þ y1. As we approach the N–SmA transition,
k� 1

3 ¼K1/K3-0 so k-1. Noting that E(u, 1)¼ sin u, the solution becomes
y(z)¼ arcsin [(z/H)(sin y2� sin y1)þ sin y1].

z

x

FCD orientation
y

y

x x

a b

c d

Figure 6 | Geometry of the stripe–FCD transition. (a) Side view of

numerically calculated hybrid-aligned nematic director field in Fig. 5c,d,

with an orientation chosen such that n points up at the air interface.

(b) Illustration of a row of incomplete FCDs with eccentricity e¼0.3

(smectic layers in purple, defect lines in yellow) with representative rodlike

molecules along the layer normal in cyan. (c) Top view of numerically

calculated director field, showing precursors to curvature walls at the top

and bottom. (d) Illustrated top view of the director field in the base of the

same row of FCDs as in b.
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We now assume infinitely strong anchoring at the homeotropic interface,
y(H)¼ y2¼ 0, which is probably appropriate close to TNA where homeotropic
anchoring strengths increase by orders of magnitude38. Then in the large
K3=K1limit,

y zð Þ ¼ arcsin s1 1� z
H

� �� �
� y0 zð Þ ; ð5Þ

where s1� sin y1. To keep the calculation tractable, we ignore the corrections to
y0(z) in small K1/K3, the first such term being

þ 1
2

K1
K3

1� z
Hð Þarctanh s1½ � � arctanh 1� z

Hð Þs1½ �ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s1 1� z=Hð Þ2ð

p : ð6Þ

After integrating the elastic energy density of this y0(z) profile along z through the
thickness 0rzrH, we obtain a reduced elastic free energy per unit area
�felastic ¼ 2H=K1ð Þfelastic ¼ s1 arctanh s1 þ k3 � 1ð Þs2

1. To this we now add the
degenerate planar anchoring energy per unit area from the substrate, using the
Rapini-Papoular form, �fsurface ¼ 2H=K1ð Þfsurface ¼ h cos2y1 ¼ h 1� s2

1

� �
where

h¼HW/K1 is the ratio of the thickness H to the anchoring extrapolation
length L¼K1/W. In the undistorted homeotropic state, the only energy per unit
area is �fsurface ¼ h. Therefore, the total reduced energy per unit area in the
homogeneous HAN state, relative to the undistorted homeotropic state, is
�ftot ¼ �felastic þD�fsurface ¼ s1 arctanh s1 þ k3 � h� 1ð Þs2

1. Minimizing �ftot with respect
to s1, we find 0 ¼ s1 1� s2

1

� �� 1 þ arctanh s1ð Þþ 2 k3 � h� 1ð Þs1. If hrk3, the only
solution is s1¼ 0, the uniform homeotropic state. Nonzero solutions for s1 exist if
and only if h4k3, in which case the HAN state is stable over the undistorted
homeotropic state. Because the HAN state does not revert to the homeotropic state
in experiment as the temperature is cooled towards TNA, it follows that the
degenerate planar anchoring strength W increases during cooling at least as fast as
k3¼K3/K1, so that h� k3¼ (HW�K3)/K1 remains positive.

To calculate the energy of an infinitesimal stripe perturbation to the reference
state following refs 38,39, we assume that the director has polar and azimuthal
angles of the form y(y, z)¼ y0(z)þ W sin (qy), f(y, z)¼j sin (qyþ b), where
W,j51, q is the stripe wavenumber and b is an unknown phase shift. The
assumption that W and j are independent of z is not justified a priori, but we do not
venture here to solve the coupled differential equations that otherwise arise for W(z)
and j(z). Rather than numerically solving those Euler–Lagrange equations, we
compare the analytic results here with the results of the numerically calculated
configurations obtained using the Q-tensor approach. A phase shift b¼ p/2
between the y and f undulations is found generally to give the most energetically
favourable stripes and the broadest k3 interval of stripe instability, and hence we
assume b¼ p/2 hereafter.

The reduced energy per unit area is

�ftot ¼
2H
K1

ftot¼
w

2p

ZH

0

dz
Z2pq

0

dy r � nð Þ2 þ k2 n � r�nð Þð Þ2 þ k3 n � rð Þnð Þ2
� �

þ qh
2p

R2pq
0

dy cos2 y z¼0ð Þ½ � þ 2wk24
2p

R2pq
0

dy ẑ � n r � nð Þ� n � rð Þn½ �z¼0;

ð7Þ
where w� qH and ki�Ki/K1. Expanding to second order in W and j, and
performing the integrations, gives an energy difference relative to the reference
state (W¼j¼ 0) of D�ftot ¼ AW2 þBj2 � 2CWj, where
A ¼ �ðh=2Þ� k3 � h� 1ð Þs2

1 þ 1
2 k2w2 þ 1

2 k3 � 1ð Þs1 arctanh s1½ �, B¼ 1
6 s2

1w
2,

C ¼ 1
4 k3 þ 1� 4k24ð Þs2

1w.
The onset of the instability of the homogeneous HAN state to the stripe

state is marked by the determinant of the matrix of second derivatives of D�ftot

(with respect to W and j) changing from positive to negative, that is, 0¼AB�C2,
which gives

0 ¼ 1
12

s2
1w

2 k2w2 þ k3 � 1ð Þs1 arctanh s1½ � � h
�

þ 2 h� k3 þ 1ð Þ� 3
4

k3 � 4k24 þ 1ð Þ2
	 


s2
1

�
:

ð8Þ

The homogeneous HAN state is unstable when the right-hand side is negative,
requiring the factor in square brackets to be negative. Because w appears there only
in the positive quantity k2w2, the instability exists for w2 smaller than the critical
value w2

*
that makes the term in square brackets vanish:

w2ow2
? ¼

h� k3 � 1ð Þs1 arctanh s1½ � þ 3
4 k3 � 4k24 þ 1ð Þ2 � 2 h� k3 þ 1ð Þ
� �

s2
1

k2
:

ð9Þ
The numerator must be positive in order for the stripe solution to exist. The
vanishing of the numerator implicitly defines the critical value kw3of k3, above which
stripes appear as the N phase is cooled (Fig. 4b). Unfortunately, a closed-form
expression for kw3 cannot be written because s1 depends nontrivially on k3. The
critical stripe wavelength corresponding to w? is l? ¼ 2pH=

ffiffiffiffiffi
w2
?

p
(Fig. 4a), and the

allowed stripe wavelengths are lZl*. The predicted stripe wavelength diverges as
k3 approaches h, where, as noted above, the HAN configuration would become
unstable to the uniform homeotropic configuration.

Finally, we note that the bend energy-driven stripe instability as demonstrated in
Fig. 4c requires K344K24. If K3o4K24, then a different stripe instability occurs, with a
cost in bend energy and driven by a decrease in the saddle-splay energy term.

Numerical modelling. Numerical modelling of the N stripe instability is con-
ducted using the Landau-de Gennes numerical modelling technique49. The N
configuration is represented by a traceless, symmetric, rank-3 tensor Q(r) that, in a
uniaxial N, is related to the director n by Qij ¼ 3

2 S ninj � 1
3 dij

� �
. Here S is the N

degree of order. The following nondimensionalized Landau-de Gennes free energy
is minimized over Q(r):

FLdG ¼
R

d3r fphase þ ~Lfelastic
� �

þ
R

dS fanch ; ð10Þ

fphase ¼ � 1
2 tr Q2ð Þþ 1

3
~Btr Q3ð Þþ 1

4
~C tr Q2ð Þð Þ2 ; ð11Þ

felastic ¼
1
2
@Qij

@xk

@Qij

@xk
þ 1

2
‘2
@Qij

@xj

@Qik

@xk
þ 1

2
‘3Qij

@Qkl

@xi

@Qkl

@xj

� ‘24 @iQij@kQjk � @iQjk@kQij
� �

:

ð12Þ

Here, the first integral in FLdG integrates the phase and elastic free energy densities
over the bulk, while the second integral contains the surface anchoring
contribution from the bottom (water) substrate. The top (air) interface is assumed
to impose infinitely strong homeotropic anchoring, fixing Q(r) there in a uniaxial
configuration with n||ẑ. The ‘phase’ free energy parameters ~B and ~C are respectively
taken to be � 12.3 and 10.1, values commonly assumed in modelling 5CB49, giving
preferred bulk degree of order S¼ S0¼ 0.533. ~L is a dimensionless parameter
controlling the importance of the elastic free energy compared with the phase free
energy; we set this to a small value ~L¼0:1 so that the N is approximately uniaxial
everywhere, enabling comparison to the predictions of the Frank free energy.
Because of the strong uniaxiality and the absence of defects, the exact values of
~B and ~C are not important. All lengths are implicitly in units of the simulation
mesh spacing, such that ~L is proportional to the ratio of the mesh spacing to the
N correlation length.

The Frank elastic constant ratios ki¼Ki/K1 are related to the Q-tensor elastic constant
ratios ‘i by ‘2 ¼ � 6 k2 � 1ð Þ= k3 þ 3k2 � 1ð Þ, ‘3 ¼ 2=S0ð Þ k3 � 1ð Þ= k3 þ 3k2 � 1ð Þ,
‘24 ¼ 6 k24 � 1

2 k2
� �

= k3 þ 3k2 � 1ð Þ. In the anchoring energy density fanch,
degenerate planar anchoring at the water interface is modelled using the
orientational anchoring component of Fournier and Galatola’s anchoring

potential54, fanch ¼W1 ~Qab � ~Q?ab

� 

~Qab � ~Q?ab

� 

, where ~Qab¼Qab þ 1

2 S0dab ,

~Q?ab ¼ Pag ~QgdPdb, using the projection operator Pab¼ dab� nanb with substrate
normal n̂ ¼ ẑ.

In the uniaxial limit, if the director makes an angle y with the surface normal,
fanch reduces to fanch¼ 9

8 S2
0W1 cos2y 3� cos 2yð Þ. The dependence on y is different

from that of the Rapini-Papoular form fanch ¼ 1
2 W cos2y, but the two forms agree

near y¼ p/2 if we make the correspondence W¼9S2
0W1. In terms of the reduced

cell thickness h ¼ HW=K1, W1 ¼ hK1= 9S2
0H

� �
¼ h~L
� �

= 4Hð Þ 2þ ‘2 � S0‘3ð Þ.
The total free energy FLdG is then minimized using a finite difference scheme on

a regular square mesh, using a conjugate gradient algorithm from the ALGLIB
package (http://www.alglib.net).

As predicted by the Frank elasticity theory approach, the nematic is uniformly
homeotropic for hrk3, and adopts a homogenous HAN deformation if k3 is
smaller than both h and kw3, the critical elastic constant ratio for the onset of stripes.
When kw3ok3oh, stripe undulations appear in the energy-minimizing director
field (Fig. 5c,d,f,g). The stripe wavelength generally decreases with increasing k3

and is close to l* predicted from the linear stability analysis (Fig. 4a). The critical
ratio kw3 and the stripe wavelength l at a given k3 depend on k2, k24 and h.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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