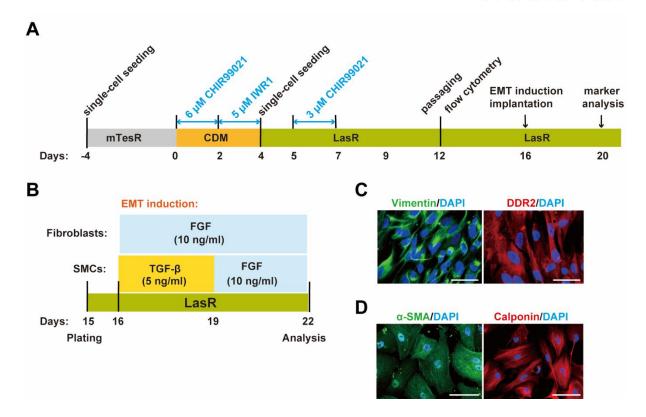
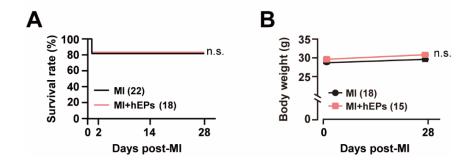


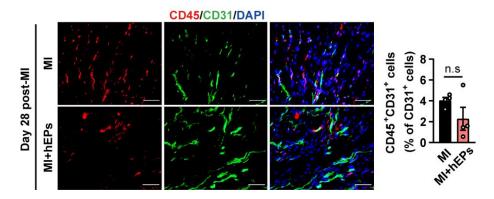
#### Supporting Information


for Adv. Sci., DOI 10.1002/advs.202300470

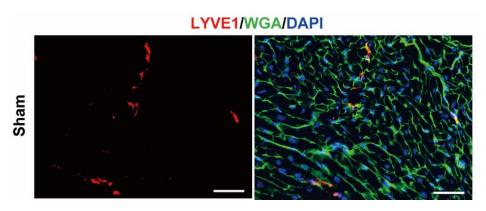
hESC-Derived Epicardial Cells Promote Repair of Infarcted Hearts in Mouse and Swine


Xiao-Ling Luo, Yun Jiang, Qiang Li, Xiu-Jian Yu, Teng Ma, Hao Cao, Min-Xia Ke, Peng Zhang, Ji-Liang Tan, Yan-Shan Gong, Li Wang, Ling Gao\* and Huang-Tian Yang\*

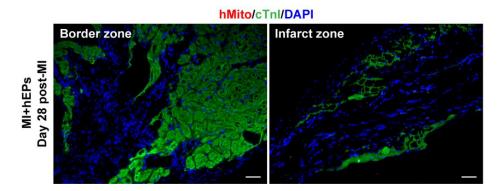
#### hESC-Derived Epicardial Cells Promote Repair of Infarcted Hearts in Mouse and Swine


Xiao-Ling Luo<sup>†</sup>, Yun Jiang<sup>†</sup>, Qiang Li, Xiu-Jian Yu, Teng Ma, Hao Cao, Min-Xia Ke, Peng Zhang, Ji-Liang Tan, Yan-Shan Gong, Li Wang, Ling Gao<sup>\*</sup>, Huang-Tian Yang<sup>\*</sup>

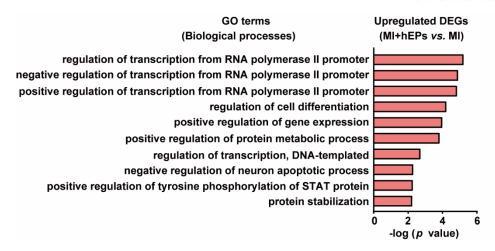



**Figure S1.** Schematic for differentiation of human embryonic stem cells to epicardial cells (hEPs) and EMT property of hEPs. A) Schematic for hEP differentiation. CDM, chemical defined medium (RPMI-1640 supplement with 213 μg mL<sup>-1</sup> L-ascorbic acid 2-phosphate, and 2 mg mL<sup>-1</sup> bovine serum albumin); LasR, advanced DMEM/F12 supplement with  $1\times$  GlutaMax, and  $100 \mu g$  mL<sup>-1</sup> L-ascorbic acid. B) Schematic for EMT induction from hEPs to fibroblasts and smooth muscle cells (SMCs). FGF, fibroblast growth factor; TGF-β, transforming growth factor β. C, D) Representative images of immunocytochemical staining for fibroblast markers (C) and SMC markers (D) following the EMT induction of hEPs. n = 3. Scale bar,  $50 \mu m$ .

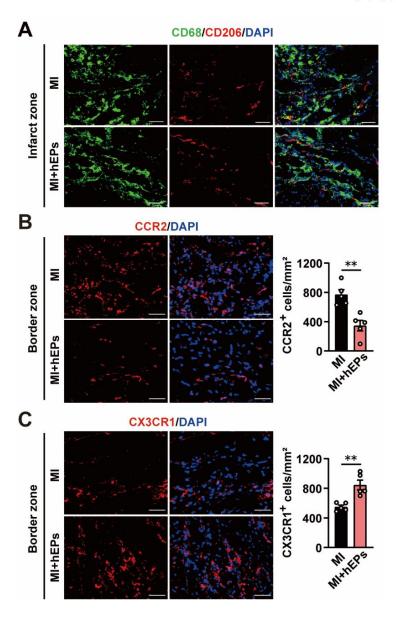


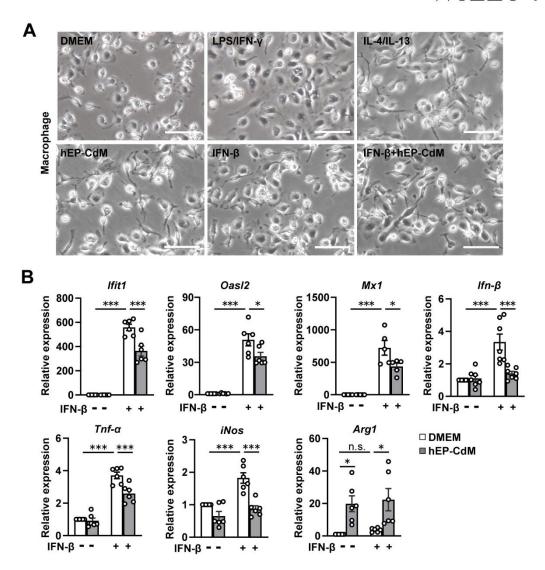

**Figure S2.** Survival rates and body weights of myocardial infarction (MI) mice with and without hEP treatment. A) Kaplan-Meier survival curves of mice. B) Body weights of the survived mice. Data are means  $\pm$  S.E.M. Two-way ANOVA followed by Bonferroni's multiple analysis. n.s., no significant difference.



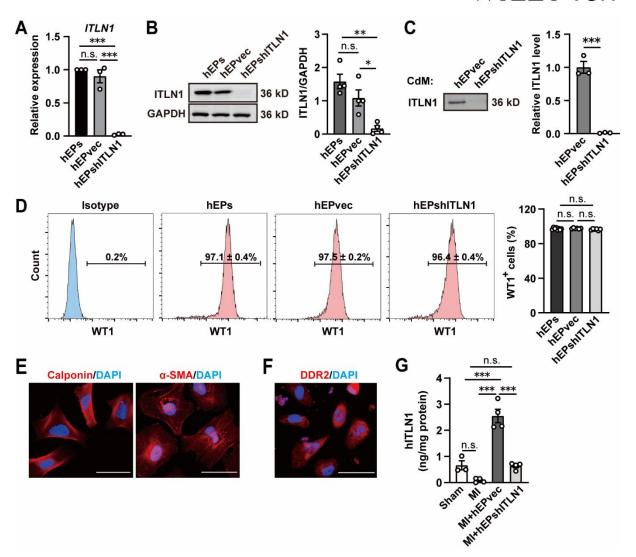

**Figure S3.** Representative images and quantitative data of immunofluorescent staining for the ratio of CD45<sup>+</sup>CD31<sup>+</sup> cells to total CD31<sup>+</sup> cells in the border zones at day 28 post-MI. n = 4 hearts each. Scale bar, 50  $\mu$ m. Data are means  $\pm$  S.E.M. Unpaired student's t-test. n.s., no significant difference.




**Figure S4.** Representative images of immunofluorescent staining for lymphatic vessel endothelial hyaluronan receptor positive (LYVE1<sup>+</sup>) lymphatic vessels. n = 3. Scale bar, 50  $\mu$ m.

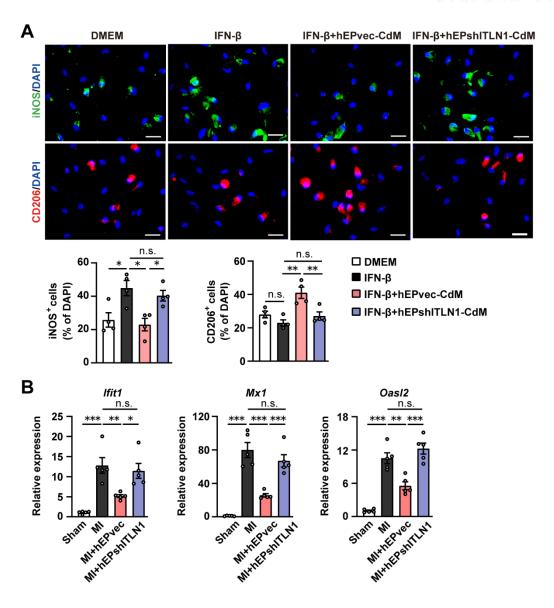



**Figure S5.** Immunofluorescent staining hardly detected human mitochondria positive (hMito $^+$ ) cells in the border and infarct zones of infarcted mouse hearts at day 28 post-MI. n = 6. For each heart, three sections from atrium to apex were analyzed. Whole visual fields were viewed, and three fields were captured for each section. Scale bar, 50  $\mu$ m.

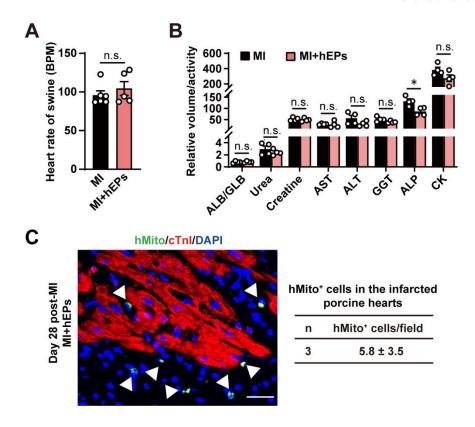



**Figure S6.** GO analysis of the biological processes in hEP-upregulated differentially expressed genes (DEGs). DEGs with p value < 0.05 and fold change  $\geq$ 1.2 were analyzed.






**Figure S8.** The hEP-conditioned medium (hEP-CdM) inhibits the transcript level of type I interferon-stimulated genes (ISGs) and pro-inflammatory genes while increases the reparative marker transcript in mouse peritoneal macrophages. A) Representative images showing the morphology of macrophages after being treated with serum-free DMEM vehicle control, LPS (50 ng mL<sup>-1</sup>)/IFN-γ (100 ng mL<sup>-1</sup>), IL-4 (10 ng mL<sup>-1</sup>)/IL-13 (10 ng mL<sup>-1</sup>), hEP-CdM, IFN-β (100 U mL<sup>-1</sup>), or IFN-β + hEP-CdM for 24 h. n = 4. Scale bar, 50 μm. B) qPCR analysis of the transcript levels of ISGs and macrophage subtype markers with or without the 24 h-treatment of IFN-β (100 U mL<sup>-1</sup>) and/or hEP-CdM. n = 5 to 7. Data are means ± S.E.M. Twoway ANOVA followed by Bonferroni's multiple analysis. p < 0.05, p < 0.001. n.s., no significant difference.




**Figure S9.** Effects of ITLN1 knockdown in hEPs. A) qRT-PCR analysis of the *ITLN1* level in hEPs at 5 days post-lentivirus transfection. n = 3. hEPvec, hEPs transfected with lentivirus packaged with the vector control; hEPshITLN1, hEPs transfected with lentivirus packaged with *ITLN1* shRNA. B, C) Western blotting analysis of the ITLN1 level in the hEPs (B, n = 4) and the CdM collected from hEPs (C, n = 3) at 5 days post-lentiviral transfection. D) Flow cytometry analysis and quantitative data of the percentage of WT1<sup>+</sup> hEPs at 5 days post-lentivirus transfection. n = 4. E, F) Immunocytochemical staining of the SMC markers (E, n = 3) and fibroblast marker (F, n = 3) at day 6 after EMT induction of the hEPshITLN1. Scale bar, 50 μm. G) ELISA analysis of the hITLN1 level in the infarct and border zones of LV tissues at day 1 post-MI. n = 3 to 4. Data are means ± S.E.M. One-way ANOVA followed by

Tukey's multiple comparison test in A, B, D, and G. Unpaired student's *t*-test in C. p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001; n.s., no significant difference.



**Figure S10.** The effects of ITLN1 knockdown hEPs on macrophage polarization *in vitro* and IFN-I responses *in vivo*. A) Representative images and quantification of immunofluorescent staining for iNOS<sup>+</sup> and CD206<sup>+</sup> macrophages *in vitro*. n = 4. Scale bar, 20  $\mu$ m. B) qRT-PCR analysis of the transcriptional levels of ISGs in the LV tissues at day 3 post-MI. n = 5 hearts each. Data are means  $\pm$  S.E.M. One-way ANOVA followed by Tukey's multiple comparison test.  ${}^*p < 0.05$ ,  ${}^{**}p < 0.01$ ,  ${}^{***}p < 0.001$ . n.s., no significant difference.



**Figure S11.** Heart rate measurements and serum chemistry analysis in swine at day 28 post-MI. A) Heart rate of swine was measured via LabChart. n = 6. B) Analysis of serum chemistry on renal (ALB/GLB ratio, urea, and creatine), hepatic (AST, ALT, GGT, and ALP), and cardiac (CK) indicators. n = 4. C) Representative image and quantitative data of hMito<sup>+</sup> cells in the infarcted porcine hearts. n = 3 hearts. Two to four fields from two sections of each heart were analyzed. Scale bar, 50 μm. Data are means  $\pm$  S.E.M. Unpaired student's t-test. p < 0.05. n.s., no significant difference. ALB/GLB, albumin/globulin ratio; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, p-glutamyl transferase, ALP, alkaline phosphatase; CK, creatine kinase.

Table S1. GO annotation of the hEP-downregulated genes in the infarcted left ventricles

| ID         | Term                                                                              | Count | Genes                                                                                                                                                                                                                                      | P value  |
|------------|-----------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| GO:0002376 | Immune system process                                                             | 30    | Ifitm3, Cd5l, Pik3cd, Mefv, Ifi30,<br>Ly9, Pycard, Adgre1, Inpp5d,<br>Cd300lb, Slamf7, Cd300lf, Cd177,<br>Eomes, Cd74, H2-eb1, Fcer1g, Icosl,<br>H2-aa, Tlr1, Lat2, Bst2, Tyrobp,<br>Themis2, Naip6, Btk, Sh2d1b2,<br>Padi4, Myd88, H2-ab1 | 1.93E-24 |
| GO:0006954 | Inflammatory response                                                             | 16    | Ccl12, Slc11a1, Ptafr, Cd5l, Pik3cd,<br>Cyba, Tcirg1, Mefv, Pycard, Tlr1,<br>Cxcl10, Themis2, Naip6, Chil3,<br>Myd88, Ccr2                                                                                                                 | 9.24E-11 |
| GO:0045087 | Innate immune response                                                            | 19    | Ifitm3, Fcer1g, Mx1, Pik3cd, Cyba,<br>Mefv, Ly9, Rnaset2a, Pycard, Tlr1,<br>Bst2, Ifi27, Naip6, Btk, Sh2d1b2,<br>Slamf7, Padi4, Myd88, Cd177                                                                                               | 8.61E-10 |
| GO:0002250 | Adaptive immune response                                                          | 13    | Eomes, Cd74, H2-eb1, Pik3cd, Icosl, H2-aa, Ly9, Adgre1, Lat2, Btk, Sh2d1b2, Slamf7, H2-ab1                                                                                                                                                 | 1.81E-09 |
| GO:0006955 | Immune response                                                                   | 16    | Cd74, Ccl12, H2-eb1, H2-t10, H2-bl,<br>Was, H2-aa, Vav1, Gm8909, Tlr1,<br>Cxcl10, Pnp, Enpp2, Myd88, Ccr2,<br>H2-ab1                                                                                                                       | 2.16E-09 |
| GO:0034341 | Response to interferongamma                                                       | 7     | Ifitm3, Bst2, Cd74, H2-eb1, Slc11a1,<br>Mefv, H2-aa                                                                                                                                                                                        | 4.88E-09 |
| GO:0019886 | Antigen processing and presentation of exogenous peptide antigen via MHC class II | 6     | Cd74, H2-eb1, Fcer1g, Ifi30, H2-aa,<br>H2-ab1                                                                                                                                                                                              | 1.76E-08 |
| GO:0050870 | Positive regulation of T cell activation                                          | 6     | Pycard, H2-eb1, H2-aa, H2-ab1,<br>Ccr2, Sirpb1c                                                                                                                                                                                            | 4.05E-07 |
| GO:0032755 | Positive regulation of interleukin-6 production                                   | 8     | Pycard, Tlr1, Cd74, Tyrobp, Fcer1g,<br>Ptafr, Cyba, Myd88                                                                                                                                                                                  | 5.18E-07 |
| GO:0032760 | Positive regulation of tumor necrosis factor production                           | 8     | Pycard, Tlr1, Tyrobp, Fcer1g, Ptafr,<br>Cyba, Myd88, Ccr2                                                                                                                                                                                  | 7.79E-07 |

Table S2. Primer sequences for qRT-PCR

| Names                                   | Primer sequences (5'-3')                                                                                                                           |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Il-6                                    | F- GATGGATGCTACCAAACTGGAT<br>R- CCAGGTAGCTATGGTACTCCAGA                                                                                            |
| Ccl7                                    | F- GCTGCTTTCAGCATCCAAGTG<br>R- CCAGGGACACCGACTACTG                                                                                                 |
| Cxcl10                                  | F- CCAAGTGCTGCCGTCATTTTC<br>R- GGCTCGCAGGGATGATTTCAA                                                                                               |
| Ifit1                                   | F- CTGAGATGTCACTTCACATGGAA<br>R- GTGCATCCCCAATGGGTTCT                                                                                              |
| Mx1                                     | F- GACCATAGGGGTCTTGACCAA<br>R- AGACTTGCTCTTTCTGAAAAGCC                                                                                             |
| Oasl2                                   | F- TTGTGCGGAGGATCAGGTACT<br>R- TGATGGTGTCGCAGTCTTTGA                                                                                               |
| Ifn-β                                   | F- TGGGTGGAATGAGACTATTGTTG<br>R- CTCCCACGTCAATCTTTCCTC                                                                                             |
| Tnf-a                                   | F- GGGACAGTGACCTGGACTGT<br>R- CTCCCTTTGCAGAACTCAGG                                                                                                 |
| iNos                                    | F- ATGTCCGAAGCAAACATCAC<br>R- TAATGTCCAGGAAGTAGGTG                                                                                                 |
| Gapdh                                   | F- GTGGCAAAGTGGAGATTGTTG<br>R- CTCCTGGAAGATGGTGATGG                                                                                                |
| APOE                                    | F- GTTGCTGGTCACATTCCTGG<br>R- GCAGGTAATCCCAAAAGCGAC                                                                                                |
| ITLN1                                   | F- ACGTGCCCAATAAGTCCCC<br>R- CCGTTGTCAGTCCAACACTTTC                                                                                                |
| IGFBP2                                  | F- GACAATGGCGATGACCACTCA<br>R- CAGCTCCTTCATACCCGACTT                                                                                               |
| ANXA2                                   | F- GAGCGGGATGCTTTGAACATT<br>R- TAGGCGAAGGCAATATCCTGT                                                                                               |
| GAPDH                                   | F- GGAGCGAGATCCCTCCAAAAT<br>R- GGCTGTTGTCATACTTCTCATGG                                                                                             |
| hITLN1<br>shRNA<br>(TRCN0000<br>159401) | F- 5'-CCGGGAATGTCCTAGTGCATTTGATCTC<br>GAGATCAAATGCACTAGGACATTCTTTTTG-3'<br>R- 5'-AATTCAAAAAGAATGTCCTAGTGCATTT<br>GATCTCGAGATCAAATGCACTAGGACATTC-3' |

<sup>&</sup>lt;sup>a)</sup>F, forward; R, reverse; <sup>b)</sup>Gapdh, mouse primer; GAPDH, human primer.