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n vacancies by Zn atom doping to
anchor and disperse promoter Ba on MgO support
to improve Ru-based catalysts activity for ammonia
synthesis†

Yuanjie Chen, a Junqiao He,a Haiyan Lei,a Qunyao Tu,a Chen Huang,a

Xiangwei Cheng,*b Xiazhen Yang,a Huazhang Liua and Chao Huo *a

In heterogeneous catalysis, surface defects are widely regarded as an effective means to enhance the

catalytic performance of catalysts. In this study, the oxygen vacancy-rich Mg(1−X)ZnXO solid solution

support was successfully prepared by doping a small amount of Zn into MgO nanocrystals. Based on this

support, Ru/Ba–Mg(1−X)ZnXO catalyst for ammonia synthesis was prepared. Characterization using TEM,

EPR, XPS, and DFT calculations confirmed the successful substitution of Zn atoms for Mg atoms leading

to the formation of more oxygen vacancies (OVs). N2-TPD, SEM and TEM analyses revealed that a small

amount of Zn had minimal influence on the surface morphology and the size of Ru nanoparticles. The

abundance of OVs in the support was identified as the primary factor enhancing the catalytic activity.

XPS, H2-TPD and kinetics experiment studies further elucidated the mechanism by which OVs promote

the reaction, with OVs serving as an anchor point for the promoter Ba on the MgO support and

promoted the dispersion of Ba. This anchoring effect not only enhanced the electron density on Ru,

favoring the dissociation of the N^N bond, but also mitigated hydrogen poisoning. As a result,the

ammonia synthesis rate reached 1.73 mmol g−1 h−1. Furthermore, the CO2-TPD and H2-TPR analyses

indicated that Zn doping effectively promotes the metal-support interaction (MSI) and surface alkalinity.

The findings of this study offers valuable insights for the design of defective modified catalyst supports.
1. Introduction

Ammonia synthesis technology, a crucial invention of the 20th
century, sustains the food supply chain for about 40% of the
global population.1 Additionally, ammonia is regarded as
a promising carbon-free energy support due to its high energy
density (12.8 GJ m−3) and high hydrogen storage capacity
(17.8 wt%).2,3 However, the conventional Haber–Bosch process,
which employs Fe catalysts, operates under high temperature
(>450 °C) and pressure (>20 MPa) conditions, consuming nearly
2% of the global energy and resulting in signicant CO2 emis-
sions.4 Consequently, there is an urgent need to develop
advanced catalysts that exhibit high activity at low pressures to
mitigate process costs and emissions. In the context of ammonia
synthesis, nano-sized Ru metal particles possess a unique B5 site
structure, which can effectively adsorb and dissociate N2. These
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particles exhibit superior catalytic efficiency compared to tradi-
tional Fe based catalysts, particularly under low pressure condi-
tions. Therefore, the supported Ru catalyst is considered as the
second generation ammonia synthesis catalyst.5–9 Various mate-
rials, including nitrides,10,11 perovskites,12 carbon,13,14 and metal
oxides15,16 have been developed as supports. Among these, MgO,
due to its low cost, stability, and strong electron donating ability,
is widely regarded as a promising support for Ru-based ammonia
synthesis catalysts; and the alkaline earth metal Ba is one of the
most effective promoters in Ru/MgO ammonia synthesis catalyst
systems.17–19 Despite this, the ammonia synthesis rate of Ru/Ba–
MgO catalyst has not reached the standards required for indus-
trial application. Researchers are therefore seeking to improve
the activity of the catalyst by modifying the MgO support.20–22

In recent years, there has been growing interest in altering
the properties of supports by introducing defects on their
surfaces.23–29 However, limited research has been conducted on
the modication of MgO supports through surface defects.
Oxygen vacancy (OVs), a type of surface defect, have effects on
the stability of the support,30 and change the acid-base site on
the support surface to promote H2 adsorption.31,32 Furthermore,
OVs facilitate electrons transfer from OVs to nitrogen molecules
adsorbed on Ru nanoparticles (Ru NPs), which enhances the
RSC Adv., 2024, 14, 13157–13167 | 13157
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electron-donating capacity of Ru and promotes the dissociation
of N^N.12,33 Atom doping, a prevalent technique for generating
OVs,34 involves the substitution of original metal cations with
other metal atoms within the metal oxide support, thereby
promoting the generation of OVs.35

In this work, we aimed to incorporate Zn atoms into MgO
supports to generate OVs. Specically, we examined the inu-
ence of Zn atoms doping on MgO supports and Ru/Ba–MgO
ammonia synthesis catalysts, delving into the underlying
mechanism. It was found that Zn atoms substituted Mg atoms
in the MgO cubic crystal lattice, forming Mg(1−X)ZnXO solid
solution. The doping of Zn reduced the oxygen vacancy forma-
tion energy (EOV) on the MgO crystal planes, leading to an
elevated concentration of OVs. Additionally, these OVs served as
anchor sites for Ba, enhancing its dispersion, This improved
dispersion mitigated hydrogen poisoning and increasing the
electron density of the active metal Ru, ultimately increasing the
catalyst's ammonia synthesis rate.

2. Experimental procedures
2.1 Ba–MgO(1−X)ZnXO synthesis

A certain amount of Mg(NO3)2$6H2O and Ba(NO3)2 was dis-
solved in 400 mL of deionized water, (maintaining a molar ratio
of Ba to Mg of 1 : 5). Then the corresponding molar amount of
Zn(NO3)2$6H2O was added into the above mixed solution and
stirred until complete dissolution occurred. Following this, the
alkaline precipitant was added to adjust the pH of the solution
to 10.0. Aer ultrasonic treatment for 50 min, the solution was
le standing for 24 h. Then Ba–Mg(1−X)ZnXO with varying X
values (X = 0, 0.01, 0.03, 0.05, 0.1, 0.15, 0.20 and 0.30, X = the
mole ratio of Zn/Mg) were obtained through extraction, ltra-
tion, washing and drying at 110 °C for 12 h, followed by calci-
nation at 500 °C for 6 h.

2.2 MgO(1−X)ZnXO synthesis

The procedure was the same as the above experiment, but
without adding Ba(NO3)2.

2.3 Ru/Ba–Mg(1−X)ZnXO and Ru/Mg(1−X)ZnXO catalysts
synthesis

The catalyst was prepared by excessive impregnation method.
First, the prepared Ba–Mg(1−X)ZnXO and Mg(1−X)ZnXO were
impregnated with Ru3(CO)12 in a certain amount of tetrahy-
drofuran solution, while being continuously stirred at room
temperature for 12 h. The mixture was dried in a water bath at
50 °C, followed dried in a drying oven at 60 °C. Then it was
decomposed in a vacuum of 450 °C for 3 h, aer which it was
cooled down to room temperature under an atmosphere of H2.
Finally, it was pressed, crushed and screened to obtain catalyst
with a Ru loading capacity of 2 wt%.

2.4 Catalytic performance test

The catalytic activity of the prepared catalyst for ammonia
synthesis was evaluated in a xed bed ow reactor containing
0.5mL of catalyst. Prior to the test, the catalyst was heated in a gas
13158 | RSC Adv., 2024, 14, 13157–13167
mixture of 25%N2–75%H2 from 400 °C to 500 °C, with a temper-
ature gradient of 25 °C activated for 2 h at each temperature, and
the heating rate was 10 °C min−1. This step aimed to reduce Ru
and Ba species. Then, the temperature was decreased to 425 °C,
400 °C and 375 °C, respectively, and the reaction rate was eval-
uated at each temperature. The test conditions were 18 000 h−1,
0.2 MPa and H2 : N2 = 3 : 1. The performance data for each
catalyst was tested triplicate and averaged.
3. Results and discussions
3.1 Catalytic performance

A comprehensive evaluation of Ru/Ba–Mg(1−X)ZnXO (0.10 > X >
0) catalysts for ammonia synthesis performance was shown in
Fig. 1a. Under test conditions of 18 000 h−1, 0.2 MPa and 400 °C,
the Ru/Ba–MgO catalyst has an ammonia synthesis rate of
1.11 mmol g−1 h−1. Introduction of Zn doping resulted in
a signicant enhancement of the ammonia synthesis rate for
the Ru/Ba–Mg0.97Zn0.03O catalyst, reaching 1.73 mmol g−1 h−1.
This observation indicates an optimal Zn doping level was
benecial for enhancing ammonia synthesis activity. However,
as X increased from 0.03 to 0.10, the ammonia synthesis rate of
the catalyst decreased to 1.38 mmol g−1 h−1, indicating that
excessive Zn doping would inhibit ammonia synthesis.
Concurrently, the activation energy of the Ru/Ba–Mg(1−X)ZnXO
catalysts was tted by Arrhenius equation and shown in Fig. 1b.
Over the temperature range was 425 °C to 375 °C, the activation
energy (Ea) value of Ru/Ba–Mg(1−X)ZnXO catalysts initially
decreased and then increased, reaching the minimum of
65.35 kJ mol−1 when X = 0.03. This indicates that the Zn
addition accelerated the reaction rate of H2 and N2 on Ru/MgO
catalyst.
3.2 Structural characterizations of the catalysts

The crystal structure of the Ru/Ba–Mg(1−X)ZnXO catalyst was
characterized by XRD. As shown in Fig. 2a, the Bragg diffraction
peaks at 2q values of 36.7°, 42.7°, 62.1°, 74.5°, and 78.4° cor-
responded to the (111), (200), (220), (311), and (222) crystal
planes of the MgO, respectively. Because MgO support
possesses Fm3m space group with a face-centered cubic (fcc)
structure (PDF#04-009-5446). The high crystallinity of the MgO
support was evident from the sharp Bragg diffraction peaks
observed in the Ru/Ba–MgO catalyst. And no signicant
changes were observed in the Bragg diffraction peak of the Zn-
doped Ru/Ba–Mg(1−X)ZnXO catalyst. However, no ZnO phases
were present. Upon increasing the value of X to 0.3, the phase of
ZnO (PDF#04-001-7297) with wurtzite structure appeared in the
sample, indicating the formation of Mg(1−X)ZnXO solid solution
at X below 0.3 (Fig. S1†). Given that the ionic radius of Zn2+

(0.074 Å) is slightly larger than that Mg2+ (0.072 Å), Zn2+ incor-
poration into the MgO lattice leads to an increase in lattice
spacing. This was evident from the enlarged Bragg diffraction
prole of MgO (200) crystal plane in Fig. 2a, where a shi in the
Bragg diffraction peak was observed upon Zn doping. Further-
more, the HRTEM images in Fig. 2b and c showed that the
substitution of Mg2+ by Zn2+ resulted in an expanded lattice
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 1 (a) Ammonia synthesis rate of Ru/Ba–Mg(1−X)ZnXO catalysts. Test condition: 0.2 MPa, 400 °C, 18 000 h−1. (b) Ea of Ru/Ba–Mg(1−X)ZnXO
catalysts (375–425 °C).

Fig. 2 (a) XRD results of Ru/Ba–Mg(1−X)ZnXO catalysts and amplifica-
tion of the position at 42–44° and 22–26° of 2q angle. (b) Lattice
spacing of the (200) and (111) crystal planes of Ru/Ba–MgO (c) lattice
spacing of the (200) and (111) crystal planes of Ru/Ba–Mg0.97Zn0.03O
catalysts.
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spacing, with the (111) and (200) crystal planes of MgO
increasing from 0.243 nm and 0.209 nm (Ru/Ba–MgO) to
0.259 nm and 0.215 nm (Ru/Ba–Mg0.97Zn0.03O), respectively.
Collectively, these results conrmed the substitution of Mg2+ by
Zn2+ to form a solid solution structure.

The microscopic surface structure and morphology were
characterized by SEM and N2-TPD. The Ba–Mg(1−X)ZnXO
supports exhibited an irregular nanoparticle shape (Fig. 3a–e).
© 2024 The Author(s). Published by the Royal Society of Chemistry
When X = 0, 0.01 and 0.03, there was no signicant change in
particle size, ranging from 40–60 nm. However, at X = 0.05 and
0.10, a slight increase in the support was observed. This indi-
cated that Zn doping could inuence the particle size of the
support, but the effect was less pronounced at lower Zn content.
The grain sizes calculated by Williamson–Hall formula, were
listed in Table S1.† It was observed that the trend in grain size
change was not particularly evident, except for a notable
increase to 35.2 nm at X = 0.10. This slight alteration in grain
size indicated a weak inuence of Zn micro-doping on the
support particles. The N2-TPD curves of the Ba–Mg(1−X)ZnXO
supports uniformly exhibited type IV characteristics, featuring
a distinct H4-type hysteresis loop at higher relative pressures (P/
P0 = 0.9∼1.0). This observation indicated the presence of
mesoporous structures in all modied supports (Fig. S2a†). The
pore size distribution plot of Fig. S2a† showed two primary pore
sizes: approximately 7 nmmesopores and approximately 60 nm
macropores, respectively. The micropores were attributed to the
internal pores of the supports, while the size of the macropores
was close to that of the support particles, possibly due to
particle accumulation. With the increase of X, the average pore
size decreased, reecting an increase in the number of meso-
pores. Conversely, the number of macropores decreased,
leading to an increase in pore size (Table S1†). Furthermore, the
pore volume generally increased with X (Table S1†). At the same
time, the specic surface area (SBET) of the supports obtained by
BET method remained relatively consistent for X values of 0,
0.01 and 0.03. However, as X increased to 0.05 and 0.1, the SBET
reached ∼130 m2 g−1, showing a general upward trend (Table
S1†). This trend was similar to that of catalyst morphology.
Nevertheless, as showed in Fig. 1a, the SBET, pore and
morphology were not the primary determinants of the catalytic
performance, and no discernible correlation was observed
between them.

The size of Ru NPs has a signicant effect on the activity of
Ru-based ammonia synthesis catalysts. The B5 site, which is the
active site for the Ru in Ru based ammonia synthesis
RSC Adv., 2024, 14, 13157–13167 | 13159



Fig. 3 SEM of Ru/Ba–Mg(1−X)ZnXO catalysts (a) X = 0 (b) X = 0.01 (c) X = 0.03 (d) X = 0.05 (e) X = 0.10. (f) Size distribution of Ru nanoparticles in
Ru/Ba–MgO catalyst. (g) Size distribution of Ru nanoparticles in Ru/Ba–Mg0.97Zn0.03O catalyst. (h) TEM-Mapping of Ru/Ba–MgO catalyst. (i)
TEM-Mapping of Ru/Ba–Mg0.97Zn0.03O catalyst.
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catalysts,36,37 is primarily inuenced by the size of Ru NPs.
Notably, and Ru nanoparticles within the range of 1.8–2.5 nm
have the highest concentration of B5 active site.38 Therefore, we
focused on examining the inuence of Zn doping on the size of
Ru NPs in Ru/Ba–MgO and Ru/Ba–Mg0.97Zn0.03O catalysts. The
average sizes of Ru NPs in both catalysts were obtained by TEM
and particle size statistics soware (Fig. 3f and g). The average
size of the Ru NPs of the Ru/Ba–MgO and Ru/Ba–Mg0.97Zn0.03O
catalysts was 1.82 nm and 1.94 nm, respectively. Both sizes fell
within the optimal range of 1.8–2.5 nm. It was found that the
doping of Zn did not signicantly change the size of Ru NPs.
This may be due to the fact that both supports possessed
sufficient specic surface areas for effective for Ru dispersion,
and the average pore size did not reach a point where it
impacted the dispersion of the Ru nanoparticles. Nevertheless,
while the size of Ru NPs was very important, it was not the s
determinant of catalytic activity for Ru/Ba–Mg(1−X)ZnXO
catalysts.

Alkali metal or alkaline earth metal auxiliaries play an
important role in increasing the ammonia synthesis rate.39 For
Ru-based catalysts, amorphous Ba was more benecial for
ammonia synthesis reaction.40 Recent studies have suggested
that this may be attributed to the formation of the Ba–Ru
interface through the highly dispersed Ba in proximity to Ru
NPs.41 Therefore, it was imperative to achieve higher dis-
persibility of Ba. The EDS results of the catalyst were shown in
13160 | RSC Adv., 2024, 14, 13157–13167
Table S2.† In Ru/Ba–Mg(1−X)ZnXO catalysts, the Ba content was
relatively similar. Therefore, the content of additive Ba had q
limited impact on the performance of catalyst. However, when X
= 0, Ba had the sharpest Bragg diffraction peak, and the content
of Ba was 1.93 wt%. In contrast, when X= 0.03, the sharpness of
Ba Bragg diffraction peak decreased signicantly, and the
content of Ba reached its highest value of 2.68 wt% (Fig. 1). This
indicated that the optimal level of Zn doping slightly facilitates
the incorporation of Ba on the support but signicantly
promoted its dispersion. However, TEM-Mapping showed that
the distribution of Ba in the Ru/Ba–Mg0.97Zn0.03O catalyst was
signicantly more dispersed, with almost no lumpy Ba,
compared to the Ru/Ba–MgO (Fig. 3h and i). Additionally,
Fig. S3† showed the H2-TPD curves of Ru/Ba–Mg0.97Zn0.03O and
Ru/Ba–MgO catalysts, and the hydrogen desorption peak at
350–600 °C was attributed to the adsorption of hydrogen by
Ru.42 The desorption peak at 700–800 °C of Ru/Ba–
Mg0.97Zn0.03O catalyst was attributed to the adsorption of
hydrogen by Ba, when Ru and highly dispersed Ba form Ru–Ba
interfaces.41 The peak area of Ru/Ba–Mg0.97Zn0.03O catalyst was
higher than that of Ru/Ba–MgO catalyst, indicating that the
majority of the highly dispersed Ba in Ru/Ba–Mg0.97Zn0.03O
catalyst was in close contact with Ru, promoting the formation
of Ba–Ru interfaces. In contrast, in Ru/Ba–MgO catalysts, only
a fraction of Ba was dispersed and was in contact with Ru. The
results of H2-TPD and TEM proved that Zn doping promoted Ba
© 2024 The Author(s). Published by the Royal Society of Chemistry
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dispersion. Furthermore, the sharpness of Ba's Bragg diffrac-
tion peak proved this observation, as shown the enlarged
section in Fig. 1. Therefore, the improved catalyst performance
was attributed to the change in Ba morphology from bulk to
amorphous.

In order to further elucidate the impact of Zn doping on
catalyst support, electron paramagnetic resonance (EPR) was
used to demonstrate the enhancement of OVs formation due to
Zn doping. As shown in Fig. 4a, both Ru/MgO and Ru/
Mg0.97Zn0.03O catalysts had a symmetric EPR signal peak at g =
2.003. This peak was attributed to unpaired electrons at the OVs
point of the nanomaterials.43 It could be seen that the Zn doping
was enhanced EPR signal, indicating that the Zn doping
promoted the formation of OVs.

Further, DFT calculation conrmed that Zn doping
promoted the generation of OVs in MgO. And the Mg2+ substi-
tution energy (Esub) was calculated for various crystal planes
(Table S3†). Specically, the Esub value for Mg2+ in MgO (200)
crystal plane was 322 kJ mol−1, while it was only 58.1 kJ mol−1 in
MgO (111) crystal plane (Fig. 4b). This nding indicated that
Zn2+ was more likely to displace Mg2+ on the (111) crystal plane
of MgO. Additionally, the oxygen vacancy formation energy
(EOV) was calculated both before and aer Zn doping (Fig. S4, S5
and Table S4†). The EOV of the (200) crystal plane was 6.29 eV, in
contrast to only 2.98 eV for the (111) crystal plane (Fig. 4c and d).
A comparison of the EOV values before and aer Zn doping
showed that Zn doping signicantly reduced the EOV. Speci-
cally, the EOV of the (200) crystal plane decreased by 0.73 eV
(from 6.29 eV to 5.56 eV), while the EOV of the (111) crystal plane
decreased by 0.12 eV (from 2.98 eV to 2.86 eV). The above results
indicated that Zn2+ prefers to replace Mg2+ at the (111) crystal
Fig. 4 (a) EPR spectrums of Ru/Mg(1−X)ZnXO and Ru/MgO catalysts (b)
substitution energy (Esub) on different crystal faces of MgO. (c) Oxygen
vacancy formation energy (EOV) before Zn doping on (200) and (111)
crystal planes of MgO. (d) Oxygen vacancy formation energy (EOV) after
Zn doping on (200) and (111) crystal planes of Mg(1−X)ZnXO.

© 2024 The Author(s). Published by the Royal Society of Chemistry
plane, thereby promoting the formation of OVs at this plane.
The results were corroborated with EPR.
3.3 Oxygen vacancies anchored and dispersed Ba

The relationship between OVs and Ba dispersion in Ru/Ba–
Mg(1−X)ZnXO catalysts was studied by XPS. In order to investi-
gate the inuence of OVs on Ba, Ru/Ba–Mg(1−X)ZnXO and Ru/
Mg(1−X)ZnXO catalysts were prepared for analysing OVs in the
presence and absence of Ba. The O 1s XPS spectrum of the Ru/
Mg(1−X)ZnXO (0.10 > X > 0), shown in Fig. 5a, was used to verify
OVs generation. This spectrum could be deconvoluted into
three peaks, attributed to surface adsorbed oxygen (M-OH),
OVs, and lattice oxygen (LO), respectively.44–46 By studying the
trend, it was observed that with the increase of X, the OVs
content initially increased, then decreased, and nally
increased again. And the OVs content reached its maximum at
X = 0.03. Specically, When X = 0, OVs content in MgO was
25.20%, and when X = 0.03, the OVs content signicantly
increased to 35.12%. Fig. 5b showed the O 1s XPS spectra of the
Ru/Ba–Mg(1−X)ZnXO catalysts. Since Ba existed on the surface of
Ru/Ba–MgZnO as bulks of BaCO3, it generates a strong CO3

2−

signal, which overlays the lattice oxygen (LO) signal (Fig. 3h).
Moreover, the XPS peak position of the O atom in CO3

2− closely
aligns with that of the OVs.47 Therefore, the O 1s XPS spectrum
of Ru/Ba–Mg(1−X)ZnXO was deconvolved into four peaks, and
the peak trends were analyzed. With the increase of X, the
content of OVs in the Ru/Ba–Mg(1−X)ZnXO catalysts showed
a trend of decreasing followed by an increase, reaching
a minimum of 12.7% at X= 0.03. This result was opposite to the
trend of OVs content in Ru/Mg(1−X)ZnXO without Ba (Fig. 5a).
This was due to the generation of numerous OVs upon Zn
doping, and this OVs served as anchored points for Ba, facili-
tating its dispersion from a large-sized bulk to a highly
dispersed morphology. However, the OVs as anchor points
could not be characterized by XPS due to their coverage by Ba
(Fig. 6). The increased anchoring of Ba by OVs resulted in
a decrease in the number of detectable OVs, leading to a corre-
sponding decrease in their detection. Analysis of the O 1s XPS
spectrum for both the Ru/Mg(1−X)ZnXO (0.10 > X > 0) and Ru/Ba–
Mg(1−X)ZnXO indicated a positive correlation between OVs
content and Ba anchoring, resulting in improved Ba dispersion.
This was consistent with the Ba dispersion obtained by
Mapping, H2-TPD and XRD.

Further, with the increase of X, the OVs peaks of Ru/Ba–
Mg(1−X)ZnXO catalysts showed a distinct trend of initially
shiing towards the high binding energy direction, followed by
a shi towards the low binding energy direction, which was
opposite to the Ru/Mg(1−X)ZnXO catalysts (Fig. 5a and b). In
general, the magnitude of the electron binding energy reects
the electron density of that metal. The lower the binding energy,
the higher the electron density of the surface metal.48 The Ba
3d5/2 XPS peak of Ru/Ba–Mg(1−X)ZnXO catalyst had a consistent
trend with O 1s XPS peak, while it was opposite to that of Ru 3d5/
2 XPS peak (Fig. 5c and d). This was due to the close contact
formed by OVs, Ba, and Ru. In this conguration, electrons
from Ba and OVs were transferred to Ru, leading to an increase
RSC Adv., 2024, 14, 13157–13167 | 13161



Fig. 5 (a) O 1s XPS spectrums of Ru/Ba–MgZnO catalysts and its deconvolution results. (b) O 1s XPS spectrums of Ru/Ba–Mg(1−X)ZnXO catalysts
and its deconvolution results. (c) Ba 3d3/2 and 3d5/2 XPS spectrums of Ru/Ba–Mg(1−X)ZnXO catalysts. (d) Ru 3d XPS spectrums of Ru/Ba–
Mg(1−X)ZnXO catalysts and its deconvolution results.

Fig. 6 The oxygen vacancy generated by atom doping was used to anchor and disperse the promoter Ba on the MgO support to improve
ammonia synthesis activity.

13162 | RSC Adv., 2024, 14, 13157–13167 © 2024 The Author(s). Published by the Royal Society of Chemistry
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in the electron density on Ru's surface. Electrons on the OVs
were more apt to be transferred to Ru via Ba than directly. For
the active component Ru, the increase of its electron density
facilitates its ability to dissociate and adsorb N2.
Fig. 8 CO2-TPD curve of Ru/Ba–Mg(1−X)ZnXO catalysts.
3.4 Kinetics experiment

To investigate the impact of Ba morphology and support OVs on
ammonia synthesis, the reaction orders of N2, H2, and NH3 were
studied for Ru/MgO, Ru/Ba–MgO, Ru/Mg0.97Zn0.03O and Ru/Ba–
Mg0.97Zn0.03O catalysts (Fig. 7a, b and S6†). Specically, the
Reaction orders of H2 and N2 for Ru/MgO and Ru/Mg0.97Zn0.03O
catalysts were compared to assess the inuence of OVs on
catalytic performance. The reaction order of N2 increased from
0.46 to 0.53, while that of H2 rose from −0.45 to −0.41. This
indicated that oxygen vacancy can promote the dissociative
adsorption of nitrogen and hydrogen, which was attributed to
the adsorption of hydrogen onto oxygen vacancy, thereby miti-
gating hydrogen poisoning.31,32 However, the OVs seem to be
detrimental to ammonia decomposition. By comparing the
reaction orders of Ru/Mg0.97Zn0.03O and Ru/Ba–Mg0.97Zn0.03O
catalysts, it could be seen that the H2 reaction order of Ru/Ba–
Mg0.97Zn0.03O catalyst was 0.08, higher than that of Ru/Ba–MgO
catalyst, and the N2 reaction order of Ru/Ba–Mg0.97Zn0.03O
catalyst was higher. This was attributed to the fact that
dispersed Ba could adsorb H2, compared to agglomerated Ba,
reducing the competitive adsorption of H2 and N2 on Ru.41 In
summary, OVs did have the capacity to inhibit hydrogen
poisoning, but this capacity was weaker than Ba. The mecha-
nism of inhibiting hydrogen poisoning by Zn doping was
elucidated by kinetic experiments. The transformation of the
aggregated Ba into a highly dispersed state by OVs was the
primary reason for inhibiting hydrogen poisoning in the Ru/Ba–
Mg0.97Zn0.03O catalyst.
3.5 Surface acid-alkalinity and MSI

Fig. 8 showed the CO2-TPD results of Ru/Ba–Mg(1−X)ZnXO
catalysts. The analysis of all the CO2-TPD curves of the catalysts
could be divided into two distinct CO2 desorption zones: the
weakly basic adsorption site (a) at 50–200 °C and themoderately
Fig. 7 (a) Reaction orders of H2 for Ru/MgO, Ru/Ba–MgO, Ru/Mg0.97Zn0
Ru/MgO, Ru/Ba–MgO, Ru/Mg0.97Zn0.03O and Ru/Ba–Mg0.97Zn0.03O cat

© 2024 The Author(s). Published by the Royal Society of Chemistry
basic adsorption site (b) at 200–500 °C. These zones may be
related to the two basic sites of OH− and metal–oxygen pairs,
respectively.49 The peak areas of the two CO2 desorption peaks
were calculated and shown in Table S5.† It is noteworthy that
the peak areas for the weakly basic sites (a) remained relatively
constant with increasing Zn doping (X). In contrast, the peak
areas for the moderately basic sites (b) exhibited signicant
variations. In comparison to the undoped catalysts, the Zn-
doped catalysts exhibited an increase in peak areas for the
weakly basic sites, following a trend of initial increase followed
by a decrease. On the other hand, the peak areas of the
moderately basic sites showed more substantial changes, albeit
without a discernible pattern. Overall, in the Ru/Ba–Mg(1−X)-
ZnXO catalysts, as the Zn doping amount increases, the basicity
rst decreased, then increased and nally gradually decreased.
When the Zn doping amount was 0.03, the Ru/Ba–Mg(1−X)ZnXO
catalysts had the maximum basicity density which was bene-
cial for the catalytic reaction. CO2-TPD results showed that the
moderate doping of Zn could promote the generation of more
basic sites on the Ru/Ba–Mg(1−X)ZnXO catalysts, with stronger
.03O and Ru/Ba–Mg0.97Zn0.03O catalysts. (b) Reaction orders of N2 for
alysts.
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Fig. 9 H2-TPR curves of Ru/Ba–Mg(1−X)ZnXO catalysts.
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electron-donating ability. This could help generate highly active
electron-rich ruthenium, thereby improving its ammonia
synthesis reaction activity.50,51

The metal-support interaction was closely related to the
activity of the catalyst.52 Therefore, the reduction performance
of Ru/Ba–Mg(1−X)ZnXO catalysts was investigated by H2-TPR,
and the results were shown in Fig. 9. Three distinct hydrogen-
consuming peaks appeared in H2-TPR curves, located at 50–
150 °C, 200–300 °C and 400–500 °C, respectively. The hydrogen-
consumption peaks at 50–150 °C and 200–300 °C were attrib-
uted to the two-stage reduction of Ru oxygen species (RuOX) in
the catalyst,53,54 which was observed not only in MgO supports
but also in Ru-based catalysts with cerium dioxide as the
support. These peaks represent the strong and weak interac-
tions of RuOX with the support, respectively.55 The peak at 400–
500 °C was attributed to the low-temperature decomposition of
BaCO3 (LT-BaCO3).56 The peak temperature of RuOX shied
initially to high-temperature direction, and then gradually to
the low-temperature direction with increasing X. This change
may be inuenced by the OVs on the surface of the support. It is
hypothesized that the microcosmic surface complexity of the
support increased due to the surface defect of OVs, subse-
quently enhancing the metal-support interaction.
4. Conclusion

In this study, Zn atom doping was employed to modify Ru/Ba–
MgO catalyst support. Our ndings indicated that a minor
amount of Zn doping did not signicantly alter the support
surface morphology, surface texture and the dispersion of the
active Ru component. However, Zn doping did promote the
increase of OVs content in the support. This elevated OVs
content effectively inhibited the aggregation of Ba, serving as
anchor points for Ba promoter. This led to promote the
dispersion of Ba, formation of additional Ba–Ru interfaces, and
mitigation of hydrogen poisoning in the catalyst. Concurrently,
13164 | RSC Adv., 2024, 14, 13157–13167
the dispersed Ba also promoted electron transfer to the active
Ru component, increasing its electron density of Ru, and
signicantly improving the performance of the Zn-doped MgO
supported Ru-based ammonia synthesis catalyst.
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