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A B S T R A C T   

Air pollution accountability studies examine the relationship(s) between an intervention, regulation, or event 
and the resulting downstream impacts, if any, on emissions, exposure, and/or health. The sequence of events has 
been schematically described as an accountability chain. Here, we update the existing framework to capture real- 
life complexities and to highlight important factors that fall outside the linear chain. This new “accountability 
web” is intended to convey the intricacies associated with conducting an accountability study to various audi
ences, including researchers, policy makers, and stakeholders. We also identify data considerations for planning 
and completing a robust accountability study, including those relevant to novel and innovative air pollution and 
exposure data. Finally, we present a series of recommendations for the accountability research community that 
can serve as a guide for the next generation of accountability studies.   

Introduction 

Air pollution accountability studies examine the relationship(s) be
tween an intervention whose intention (or consequence) is to change air 
pollution levels and downstream impacts on pollutant emissions, 
exposure, and/or health. These interventions include policy changes (e. 
g., London's congestion charging system), regulations (e.g., a lower air 
quality standard), and events (e.g., factory closure), and may be 
impacted by environmental justice issues. Accountability studies are 
useful for assessing the effectiveness of interventions and guiding plans 
for future actions. These studies are versatile and can focus on the 
impact of interventions that cover multiple spatial and temporal scales. 

For example, an accountability study could quantify the observed air 
quality changes and health benefits resulting from a national air quality 
standard, or it might focus on changes in emissions following a well- 
specified, immediate, local regulation (e.g., a regulated fuel retrofit at 
a power plant). The Health Effects Institute [1] described the steps that 
connect an air pollution intervention or a policy change with a down
stream effect on health. These steps, called the accountability chain, 
include: Regulatory or Other Action → Emissions → Ambient Air Quality 
→ Exposure and Dose → Human Health Response (Fig. 1). 

The accountability chain has provided a framework for guiding 
accountability studies over the past two decades. In the same period, 
knowledge has increased about challenges associated with estimating 
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impacts resulting from the intervention on changes to emissions, expo
sures, and/or health effects. In particular, downstream impacts, if any, 
from a national standard may be more difficult to identify and/or 
quantify than a well-specified local regulation because many more fac
tors can impact the potential cause-and-effect relationship between the 
policy and downstream impacts. Hypothetical counterfactual emissions 
and air pollution exposure fields, along with literature-based concen
tration-response functions, are often used to quantify air quality and 
health benefits of interventions [2,3]; however, these methods rarely 
assess regulatory implications on the areas and populations directly 
impacted by the intervention. Due to potentially significant costs asso
ciated with interventions, an understanding of the benefits they do or do 
not deliver is critical feedback for policy makers. 

As an example of accountability study complexities, implementation 
of some interventions, such as the US Environmental Protection Agen
cy's (US EPA) National Ambient Air Quality Standards (NAAQS), can 
take years and occur concurrently with local and regional actions that 
also result in changes in air pollution concentrations and/or population 
health. This makes it difficult to disentangle their respective effects. An 
additional complication relates to understanding the impact of popula
tion changes that occur as an intervention is implemented, including 
behavior fluctuations that impact exposure or health, which may or may 
not be related to the intervention of interest. Broader socioeconomic 
shifts, including economic or social opportunities and new medical fa
cilities, may induce differential population migration [4,5]. 

Accountability studies rely upon an evidence base that has already 
integrated and synthesized data which may be incomplete or a mix of 
modeled, observational, and interventional data at personal and 
ecological scales. Still, epidemiologists, risk assessors, and other scien
tists conducting accountability studies should acknowledge and account 
for imperfect data, and carefully and thoughtfully select and utilize the 
most valid exposure and outcome data available. As a result, there are 
opportunities to improve the status quo. Some of the potential oppor
tunities are included in the recent National Academies report, 
Advancing the Framework for Assessing Causality of Health and Welfare 
Effects to Inform National Ambient Air Quality Standard Reviews [6]. In 
2010, the Health Effects Institute [7] called for “a concerted effort to 
assemble and make widely available longitudinal data on major health 

outcomes, air pollution concentrations, and, critically, factors that may 
confound or modify estimates of the effects of air quality regulations.” In 
the interim, researchers have endeavored to better quantify emissions, 
air quality, and health changes associated with interventions. However, 
limitations and complications in accountability research remain. To
day's increased availability of methods and large datasets provides an 
opportunity for renewed exploration of air pollution accountability 
methods in general, and approaches to handle temporally or spatially 
co-varying factors outside the accountability chain in particular. 

Here, we describe the outcome of a workshop (Workshop on 
Accountability in Air Pollution Regulations and Research: Advancing the 
Science on Temporality Issues; Baltimore, Maryland; April 2023) in which 
an interdisciplinary group of scientists was convened with the goals of 
examining key factors in air pollution accountability research and 
developing recommendations for obtaining and incorporating informa
tion on those factors into future accountability research. The objectives 
of this workshop were to: 1) offer a modified accountability chain 
framework for evaluating the relationships between an air pollution 
policy change and potential downstream impacts on population health 
outcomes; 2) identify research gaps and challenges; and 3) recommend 
research to improve the design and conduct of accountability studies. 

Results and discussion 

Framework: from a chain to a web 

The accountability chain relating an air pollution intervention to 
emissions, air quality, exposure/dose, and a human health response is 
shown in Fig. 1. While elegant in its simplicity, this chain does not fully 
capture the complexities of the steps from a policy to a change in a 
health outcome. A more detailed description of the path from beginning 
to end would help to identify key research needs and assist in commu
nicating the difficulties in performing this kind of research. Fig. 2 shows 
the adaptation of the accountability chain to an accountability web by 
highlighting the complex factors both inside and outside of the linear 
chain when linking policies and actions (blue circles) to downstream 

Fig. 1. Chain of accountability. Source: HEI Accountability Working Group, 2003 [1].  
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impacts (green circles).1 The light blue arrows connecting each circle 
provide examples of information (i.e., mediators) necessary to inform or 
predict the next circle in the central chain. Temporal changes in these 
mediators, driven by external factors (yellow boxes), can introduce error 
in estimating downstream impacts. The red boxes are factors that may 
be correlated with the policy or action of interest and have the potential 
to confound the relationship between the impact of the policy or action 
and the downstream steps. The gray dashed boxes outline broad areas 
where potential knowledge and/or data gaps exist in the accountability 
chain, specifically when considering temporal complexities [8], and the 
parts of the accountability chain most affected by such complexities. As 
shown in Fig. 2, these include 1) moving from policy to intervention; 2) 
the accurate estimation of changes in personal exposure; and 3) 
adequately characterizing the health status of the population. Failure to 
adequately understand and evaluate these factors can impact our ability 
to effectively and precisely identify and quantify the impacts, if any, of 
policy changes on emissions, exposure, and health outcomes. We 
explore these three areas as examples to highlight the intricacies of 
accountability studies. 

From regulation to intervention (Fig. 2, Box 1) 

While the original accountability chain (Fig. 1) shows regulations 
acting directly on emissions, the accountability web (Fig. 2) introduces an 
intermediate step – the active intervention taken to reduce emissions (e. 
g., installation of a pollution control device on a power plant) – that is 

both necessary and difficult to quantify. The relationship between a 
specific policy, the intervention taken, and an emissions change is 
confounded by, for example, multiple policies acting on the source of 
interest (e.g., separate federal and state rules that also apply to power 
plants); multiple organizations contributing to actions taken on the 
pollution source (such as companies, environmental regulators, utility 
commissions); varying implementation effectiveness; and costs of envi
ronmental control decisions (Fig. 2, a.). Further, interventions taken to 
comply with regulations are not always transparent [5,9]. Some in
terventions – for example, vehicle software modifications used to adjust 
automotive emissions controls – are not readily observable. While other 
interventions are observable (e.g., a scrubber installation or newer ve
hicles with lower-emitting engines replace older vehicles), their rela
tionship with a particular regulatory action may be influenced by 
various factors, including regulatory policy at multiple governmental 
levels, as well as societal and market-based drivers. 

It is also difficult to account for and quantify changes in factors 
impacting the effectiveness of the intervention on emissions (Fig. 2, i.). 
Controls on emissions are generally not directly measured (large point 
sources in the United States are an exception). They also may not work 
as efficiently as planned and can degrade. Improved quantification of 
emissions using models (as opposed to measurements) are potentially 
useful in this step. Accountability studies quantifying emissions changes 
over time could utilize satellite data and large-scale analyses of emis
sions estimates that are then compared to observations using 
chemically-detailed observations. For example, satellite-derived emis
sions estimation methods, which have challenges such as uncertainty 
associated with measurements and attributions, are increasingly being 
used to assess emissions changes from point and non-point sources 
[10–18]. 

Fig. 2. Adapted web of accountability. The web of accountability highlights the complex factors outside the accountability chain when linking policies and 
resulting actions (light blue circles) to emissions and exposures (dark blue circles) and eventually to downstream impacts (green circles). The light blue arrows 
connecting each circle to the next are examples of information (i.e., mediators) necessary to inform or predict the next circle in the chain. Temporal changes in these 
mediators, driven by external factors (yellow boxes), can introduce error in estimating downstream impacts. The red boxes are factors that may be correlated with the 
policy or action of interest that have the potential to confound the impact of the policy or action on the downstream steps. The gray dashed boxes outline broad areas 
where potential knowledge and/or data gaps exist, specifically when considering temporal complexities, and the parts of the accountability chain most affected by 
such complexities. Δ – change. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

1 We note that neither the chain nor the web addresses all aspects of risk 
management decision-making. 
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If one is to assess the effectiveness of a policy, it is crucial to accu
rately characterize and quantify the regulatory impacts on both relevant 
intervention(s) and emissions. While it may not be possible to provide a 
simple answer as to why a specific control or operational framework was 
implemented to conform to air quality regulations, case studies and 
system wide analyses can help quantify changes in the first three steps in 
the accountability web. 

Estimation of personal exposure (Fig. 2, Box 2) 

Ambient concentrations of a specific pollutant naturally impact in
dividuals' personal exposures to that ambient pollutant. Personal expo
sures may lead to inhaled doses that may ultimately impact downstream 
health outcomes, which are of key interest for public health (Fig. 2). The 
accurate assessment of personal exposure is a well-documented limita
tion in environmental epidemiology studies, and it persists in air 
pollution accountability studies. Data from ambient air quality monitors 
– assumed to represent the population average personal exposures – are 
often used as the measure of exposure in epidemiology studies on air 
pollution and health [19,20]. While measurements from such monitors 
can provide accurate location-specific information on ambient pollutant 
concentrations, the degree to which these data represent personal ex
posures to ambient pollution varies due to time-activity-location pat
terns and outdoor-to-indoor pollutant infiltration (Fig. 2). It is important 
to note that the framework of accountability studies is less focused on 
the magnitude of the relationship or the absolute differences between 
ambient concentrations and personal exposures to a specific pollutant of 
interest, and more on whether these relationships change over time and/ 
or are different between populations, which may obscure the impact of 
an intervention of interest (Fig. 2 (iii)). 

Accountability researchers often lack access to empirical data on 
factors changing over time that may impact how individuals are exposed 
to ambient concentrations. For example, personal exposures vary in 
space and time due to the combination of individuals' activities and 
emission sources impacting air pollutant levels in the different locations 
where their activities occur [21–23]. In addition, people spend much of 
their time indoors [24], and as such the fraction of ambient air infil
trating a building (i.e., the infiltration rate) is an important factor in the 
degree of personal exposure to ambient source pollution. Some pollut
ants, like fine particles with small size and low volatility and reactivity, 
have relatively high infiltration, while others like PM10 or ozone have 
relatively low infiltration [25–27]. Characteristics such as the air ex
change rate can also affect how outdoor air infiltrates indoors, and in 
turn, the amount of outdoor air to which an individual is exposed 
[27,28]. In particular, air conditioning (A/C) is promoted as an effective 
climate adaptation measure, thus, the prevalence of tighter buildings is 
increasing along with, the presence of A/C in homes and indoor work
places [29] among those who can afford it. However, existing data 
sources for these factors do not have the resolution needed for assessing 
trends over time or across geographic regions. Behaviors related to how 
and where people spend their time also change over time in relation to 
season, age, and socioeconomic patterns [30]. In recent years in 
particular, employment and labor patterns related to telecommuting and 
employment types have changed [31]. Environmental health awareness 
may have also changed over time, with more people having access to 
and being interested in air quality alerts, which may alter their behavior 
regarding time spent outdoors on high pollution days [32]. Historical 
time-activity data [24] that are often accessed for personal exposure 
estimation may no longer be accurate. While some acknowledge the lack 
of relevant data (e.g., CARB, 2021 [33]), more work is needed to char
acterize current time-activity-location patterns. More fully assessing 
variability in personal air pollution exposure to ambient pollutants of 
concern across time, space, and populations has clear potential to inform 
epidemiological research in general and will illuminate how changes in 
ambient concentrations from policies or interventions influence health 
in accountability studies. 

Population health status (Fig. 2, Box 3) 

When estimating the downstream health impacts in an account
ability study, it is important to consider the underlying health status of 
the study population (Fig. 2, (iv)), especially those factors that may drive 
susceptibility or vulnerability to the pollutants of concern. In particular, 
changes in the underlying health status of a population can directly 
confound the assessment of health impacts attributable to a policy- 
related change in air pollution exposure. Changes in underlying health 
status may be driven by complex sets of factors, as indicated by Fig. 2. 
For example, socioeconomic position (SEP) can impact both air pollu
tion exposure and health status. While challenging, properly charac
terizing SEP, and temporal and spatial changes in SEP, is critical [34]. 
Accountability studies often include measures of SEP as a proxy because 
it is highly correlated with underlying population health status and 
underlying population health status is not readily observable. However, 
as suggested by Fig. 2, numerous additional factors can impact health 
status of a population and changes in health status over time. 

Given the recent advances in data availability, accountability studies 
might be improved by direct observations and controlling for factors 
that may affect or predict underlying health status as an approach for 
reducing confounding concerns. These may include: changes in the 
population structure (e.g., immigration or emigration in or out of the 
study area over time); changes in socioeconomic status occurring over 
time (e.g., due to gentrification); temporal changes in health care access 
such as changes in health insurance, and opening/closing of health care 
facilities; or differences in co-occurring exposures including heat, pol
len, and indoor air pollutants. 

Research recommendations 

Future successful accountability research will need to rely on 
improved data, appropriate designs and statistical methods, and 
enhanced collaboration with experts. We present here eight recom
mendations as guides to design, conduct, and interpret future account
ability studies. 

1. Increase multidisciplinary collaboration: Due to the multidis
ciplinary breadth of accountability studies that address the linkages 
described by the accountability web, collaboration among air pollution 
and exposure scientists, epidemiologists, statisticians, toxicologists, and 
policymakers would facilitate the development of robust study designs, 
data analysis techniques, and policy-relevant interpretations. In addi
tion, we recommend that future research addressing the complexities 
and challenges in accountability studies integrate scientific disciplines 
not typically included in such research, for example, social and behav
ioral researchers (to inform areas iii and iv from Fig. 2) and exposure 
scientists (to inform area ii from Fig. 2). 

2. Invest in methods for studying local-scale policy impacts: As 
regulations to reduce emissions evolve, two major anthropogenic source 
categories – electricity-generating units and mobile sources – contribute 
less and less to overall emissions (Fig. 2 (i)). Future policies targeting 
emissions sources are expected to have increasingly smaller impacts to 
health outcomes and will likely focus more on local-scale effects [5]. 
This shift necessitates greater attention to studying specific character
istics of local areas and populations to assess the effectiveness of these 
policies. We recommend investing in expanded and improved local 
monitoring networks that provide comprehensive spatial and temporal 
coverage in order to improve exposure measurements at increasingly 
local scales [35]. Leveraging emerging technologies like satellite remote 
sensing, sensor networks, and wearable sensors can address gaps in air 
quality monitoring network data to improve exposure assessment. 

3. Improve estimates of personal exposure: Accurately estimating 
personal exposure to ambient air pollutants of concern is a key challenge 
in accountability studies (Fig. 2 (Box 2)). Estimating personal exposure 
is complex and costly, as it requires combining ambient monitoring data 
with an understanding of pollutant infiltration into buildings (where 
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people spend most of their time) and information on individual activ
ities. Accounting for variations in exposure over time and space poses 
further difficulties [36]. As air quality can vary substantially over small 
geographic areas and over short periods, we recommend incorporating 
high spatial and temporal resolution data to accurately measure ambient 
air concentrations [9]. Further, we recommend integrating machine 
learning to develop updated and targeted time-activity profiles, as well 
as air exchange rate models based on realistic housing conditions and 
consideration of indoor pollutant sources. Together, these data may be 
used to improve estimates of personal exposure to ambient pollutants of 
concern in the context of an accountability study. 

4.Harmonize and improve access to data resources: Data access, 
collection, and manipulation can be challenging aspects of any research 
project, including accountability research. Relevant data sources must be 
identified, and then harmonized to appropriate spatial or temporal scales. 

Innovative data sources are becoming more widely available for 
deployment in accountability research. Data gathered from satellites, 
sensors, and wearable technologies have brought significant advances in 
the scale, resolution, and quality of air pollution data available. In 
particular, satellite remote observations [11,37–41] and space-based 
observations (e.g., new missions such as TEMPO [https://tempo.si. 
edu/] and MAIA [https://maia.jpl.nasa.gov/]) provide data to inform 
top-down estimates of air emissions [10,17]. In addition, low-cost sen
sors (such as PurpleAir) provide readily available, crowd-sourced data 
(https://www2.purpleair.com/ [42]). Intelligent (“smart”) wearable 
sensors can acquire, process, store, and transmit electrical signals 
generated by physical and/or chemical changes occurring in the envi
ronment, making them potential tools for measuring personal exposures 
[43,44]. 

These new data along with a myriad of other data sources (de
mographic, energy, land use, traffic) bring exciting possibilities for 
accountability research. Some of these entail developing air pollutant 
exposure fields [45–51]; allow for linking of location- and time-specific 
emissions estimates to resulting air quality; or produce estimated ex
posures based on enhanced air quality data that can be linked to health 
outcomes (see Kim, 2020 [52]; Li et al., 2022 [53]; Xia et al., 2022 [54]). 
However, these data also bring challenges related to accuracy and us
ability as well as ethical and privacy considerations in occupational and 
community settings. As an example, advantages and disadvantages of 
wearable sensors are provided in Supplemental Table 1. Furthermore, 
with advances in the resolution of air pollution data, attention must be 
paid to the granularity of confounder and effect modifier data because 
biased risk estimates may result from a relatively higher degree of 
misclassification in the specification of these covariates [55]. 

We recommend the development of publicly available repositories 
for information and datasets useful in accountability research. Supple
mental Table 2 contains a library of selected data sources that could be 
incorporated into accountability studies, including air pollution data, 
health statistics, other regulatory/non-regulatory events (e.g., changes 
in motor vehicle use), population changes, SEP changes, information 
about lifestyle, health, medical practice, personal activity data, and 
changes in exposure to other sources such as indoor air pollution. 
Additionally, the research community would benefit from readily 
available data science tools for harmonizing datasets to the scales of 
interest for any given accountability study. 

5. Focus on health outcomes causally related to the ambient 
pollutant of concern: Determining health outcomes causally related to 
changes in ambient air pollution exposure can be challenging due to the 
latency period between exposure and manifestation of the health 
outcome, and general limitations of epidemiological methods. Addi
tionally, confounding variables such as socioeconomic factors, lifestyle 
behaviors, population demographics, pre-existing health conditions, 
and co-pollutant exposures can influence both pollutant exposures and 
health outcomes [56–58]. We recommend that accountability studies 
focus on health outcomes for which there is adequate certainty in the 
causal nature of the relationship between the pollutant(s) of concern and 

the health outcome(s) examined. Researchers may refer to the US EPA 
Integrated Science Assessments for detailed syntheses and evaluations of 
the existing literature on criteria pollutants and health outcomes (http 
s://www.epa.gov/isa). 

6. Incorporate appropriate study designs and statistical tools: 
The statistical analysis and modeling techniques used in air quality 
accountability studies vary considerably depending on the particular 
focus of the study. We see the accountability web as agnostic in term of 
time scales (i.e., it is applicable to both long-term and short-term 
studies). The specific methods would be chosen based on the time 
scales involved. Accountability research can be (and has been) applied 
at multiple time scales, including from rapid interventions over a short 
time scale (e.g., for the Olympic Games) to longer term studies (e.g., 
impacts of the Clean Air Act Amendments and regulations), and the 
chosen methods should reflect this for each step. Defining a “structural” 
approach that attempts to understand the series of steps in the 
accountability web is complex due to the multifaceted nature of the is
sues, such as differentiating the effects of a policy change from larger 
underlying background trends in air pollution emissions, and the diffi
culty in obtaining the data required to carry out the approach. Air 
quality is influenced by complex meteorological, chemical, and physical 
processes, making it challenging to model and predict pollutant con
centrations accurately. In addition, for epidemiological modeling, 
handling spatial and temporal correlations, accounting for confounding 
factors, and addressing uncertainties require advanced study design, 
statistical methods, and modeling approaches [59,60]. 

Studies that focus on understanding the relationship between one 
particular step in the accountability web and downstream health im
pacts can utilize varied approaches. Methods to help disentangle inter
vention effects from background trends, for example, include robust 
time-series analysis methods such as interrupted time series, regres
sion discontinuity design, difference-in-differences analyses, and 
instrumental variables [61]. These approaches attempt to mimic the 
properties of randomized experiments by identifying treatment and 
control groups, such that they limit the concern for confounding when 
properly applied. Recent methodological advances have enhanced the 
options for selecting control groups to minimize potential bias, such as 
propensity score matching [62] and synthetic control methods [63]. 
With these approaches, an important step involves assessing the sensi
tivity of estimates to potential confounding variables. With an appro
priate control group and adequate inclusion of confounding variables, 
adding further control variables to the statistical model should have 
minimal impacts on parameter estimates (see Altonji et al., 2005 [64] 
and Oster, 2019 [65] for suggestions on implementation and 
interpretation). 

7. Distinguish between effects of simultaneous policy in
terventions: Specific air pollutants may be targeted by several in
terventions (and in response to multiple policies) at the same time, 
making it difficult to attribute changes to a particular policy or inter
vention. This is further complicated when interventions occur at mul
tiple temporal and regional scales; for example, the impact of short- 
term, localized interventions on air quality and health outcomes may 
be overshadowed by long-term and/or larger-scale interventions [5]. 
Additionally, the effects of temporary interventions may not be sus
tained over time. This underscores the importance of working to ascribe 
changes in emissions to particular interventions and in response to 
particular policy changes (Fig. 2 (Box 1)). To address these challenges, 
we recommend researchers conduct sensitivity analyses and evaluate 
the differential impacts of multiple interventions affecting the same 
location to help disentangle their individual contributions. Alterna
tively, researchers may consider the cumulative effects of multiple in
terventions when evaluating long-term trends in air quality and health 
outcomes. 

8. Improve generalizability of accountability studies: All pop
ulations are not impacted equally by a particular policy, making it 
challenging to accurately isolate the specific effects of a given 
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intervention and attribute a specific health outcome to a specific change 
in air pollutant concentration. We recommend improved techniques for 
identifying appropriate control populations, and that accountability 
studies explicitly state the population(s) or sub-population(s) to which 
their results are most relevant, as well as identify those to which their 
results may not be generalizable (or generalized with less certainty). 

Conclusions 

At the April 2023 workshop, the authors of this paper discussed the 
accountability chain that describes the relationship between the 
following steps: the intervention, followed by changes in emissions 
levels, air quality, exposure/dose, and human health responses. While it 
is impossible to not appreciate the simplicity and elegance of the linear 
chain, it does not adequately capture the real-life complexities of each 
step. We re-envisioned the chain as an accountability web, clearly 
highlighting (i) the factors outside the chain that impact accountability 
research, and (ii) the connections these factors have to each step along 
the path from policy to health response. The accountability web is 
designed to better convey the difficulties and nuances associated with 
conducting accountability studies to various audiences, including sci
entists and researchers, policy makers, stakeholders, and others, and to 
highlight factors that should be considered when designing these 
studies. 

In developing the accountability web, we identified a number of data 
considerations for planning and completing a robust accountability 
study. First among these are the recent advances (within the last decade) 
in the scale, resolution, and quality of air pollution data available for 
accountability research. Incorporation of high-quality and well- 
validated modeled air quality data, in addition to or in place of 
measured air quality data, can greatly enhance accountability studies. 
Novel and innovative sources of exposure data can augment measured 
and modeled air quality data to provide person-level air pollutant 
exposure and health data. We note the need to test the accuracy and 
usability of wearable technology and to evaluate performance and cross- 
validations of these technologies before they are relied upon. Finally, we 
stress the importance of compiling, harmonizing, and openly sharing 
sources of air pollution data, health statistics, data describing 
regulatory/non-regulatory events (e.g., changes in motor vehicle use), 
population changes, SEP changes, information about lifestyle, health, 
and medical practices, personal activity data, and changes in exposure to 
other stressors (e.g., indoor air pollution) with the accountability 
research community. 

While we recognize that no single set of recommendations could 
realistically address all aspects of the accountability web, we hope those 
provided here will serve as guides for the next generation of account
ability studies. 
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