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ABSTRACT

Despite the tremendous increase in omics data gen-
erated by modern sequencing technologies, their
analysis can be tricky and often requires substan-
tial expertise in bioinformatics. To address this con-
cern, we have developed a user-friendly pipeline to
analyze (cancer) genomic data that takes in raw se-
quencing data (FASTQ format) as input and outputs
insightful statistics. Our iCOMIC toolkit pipeline fea-
turing many independent workflows is embedded in
the popular Snakemake workflow management sys-
tem. It can analyze whole-genome and transcrip-
tome data and is characterized by a user-friendly
GUI that offers several advantages, including min-
imal execution steps and eliminating the need for
complex command-line arguments. Notably, we have
integrated algorithms developed in-house to predict
pathogenicity among cancer-causing mutations and
differentiate between tumor suppressor genes and
oncogenes from somatic mutation data. We bench-
marked our tool against Genome In A Bottle bench-
mark dataset (NA12878) and got the highest F1 score
of 0.971 and 0.988 for indels and SNPs, respectively,
using the BWA MEM––GATK HC DNA-Seq pipeline.
Similarly, we achieved a correlation coefficient of
r = 0.85 using the HISAT2-StringTie-ballgown and
STAR-StringTie-ballgown RNA-Seq pipelines on the
human monocyte dataset (SRP082682). Overall, our
tool enables easy analyses of omics datasets, signif-
icantly ameliorating complex data analysis pipelines.

INTRODUCTION

Over the past couple of decades, genomic research has de-
veloped tremendously due to the rise of Next-Generation
Sequencing (NGS) technologies. These rapid advances have
had a considerable impact in the realm of sequence-based
analysis: NGS has enabled researchers to discover novel
DNA and RNA variants (1), along with differentially
expressed genes (2). Whole Genome/Exome Sequencing
(DNA-Seq) pipelines identify nucleotide variants, while
RNA Sequencing (RNA-Seq) enables quantification of
gene expression. Whole Genome Sequencing further serves
as a powerful tool in analyzing mutations in the context of
cancer (3,4) and is also a bedrock for personalized medicine
(5). RNA-Seq further refines the essential interpretation of
various biological phenomena.

Various bioinformatics tools have been developed to an-
alyze the large amounts of data generated by NGS tech-
nologies. Data analysis poses a major hindrance to biolo-
gists, exacerbating the need for an automated pipeline. Even
though new tools for genomic data analysis are being devel-
oped from time to time, a comprehensive toolkit does not
exist. Extensive comparative studies that deal with different
combinations of tools have been conducted (6–8). Although
software suites consisting of a combination of few tools ex-
ist (9–14), a user-friendly toolkit to aid non-programmers,
incorporating a surplus number of bioinformatics tools, is
missing (15). Moreover, there is a dearth of open-source
bioinformatics pipelines that enables comprehensive anal-
ysis of large (cancer) genomic datasets (16).

To make life easier for clinical researchers and biolo-
gists, we developed iCOMIC (integrating the COntext of
Mutations In Cancer), an open-source, standalone tool
characterized by a Python-based Graphical User Interface
and automated Bioinformatics pipelines for DNA-Seq and
RNA-Seq data analysis. It serves as a point-and-click appli-
cation facilitating genomic data analysis accessible to users
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Figure 1. Schema for iCOMIC pipeline. Multiple workflows are embedded in iCOMIC providing users with the complete freedom to choose from the
integrated tools. Both DNA-Seq and RNA-Seq pipelines take in raw FASTQ files as input. Quality control and alignment are common steps in both
pipelines. FastQC and Cutadapt are the Quality control tools used and MultiQC is used to generate a consolidated report on Quality statistics. Analysis of
RNA-Seq data includes mapping of sequencing reads to a reference genome using Aligner, Quantification of expression levels using Expression modeller
and Differential expression analysis. On the other hand, steps in DNA-Seq analysis include Alignment followed by identifying the variants and annotating
them. Tools incorporated in iCOMIC are listed in Table 1.

Table 1. List of tools incorporated in iCOMIC along with their corresponding functions

Function DNA-Seq tools RNA-Seq tools

Quality control FastQC, MultiQC, Cutadapt FastQC, MultiQC, Cutadapt
Alignment GEM-Mapper v3, BWA-MEM, Bowtie2, STAR, HISAT2
Variant calling GATK HC, samtools mpileup, FreeBayes, GATK

Mutect2
-

Annotation Annovar, SnpEff -
Quantification of expression levels - StringTie, HTSeq
Differential expression - DESeq2, ballgown

with minimal programming expertise. iCOMIC provides a
versatile, fully automated pipeline for the analysis of ge-
nomic data, with a user-defined combination of tools and
a set of easily tunable parameters. In addition, iCOMIC
grants users the privilege to customize pipelines in less than
five simple steps, integrating a wide range of bioinformatics
tools.

MATERIALS AND METHODS

The first step towards developing iCOMIC was to com-
pile a set of tools following best practices for DNA-Seq
and RNA-Seq analysis. We identified the most widely used
tools for alignment of reads, variant calling, variant annota-
tion, expression modeling and differential expression analy-
sis (Figure 1, Table 1) (17). Two of the most cited and widely
used tools, FastQC (https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/) and Cutadapt (18), were chosen for
quality control.

Aligner tools incorporated in iCOMIC for DNA-Seq
data include BWA-MEM (19), GEM-Mapper v3 (20) and
Bowtie 2 (21). Apart from the three major steps involved
in analyzing whole-genome sequence data, several pre-
processing steps are carried out intermediately following
the GATK framework. This included sorting and index-
ing alignment files generated by the aligner, marking du-
plicates using Picard markduplicates (https://github.com/
broadinstitute/picard), and base quality score recalibra-
tion followed by filtration of the variants called. Variant
callers include GATK Mutect2 (22), samtools mpileup (23),
FreeBayes (24) and GATK Haplotype-Caller (25). Mutect2
identifies variants in normal-tumor pairs while the rest of
the tools perform variant calling in a given sample analo-
gous to the reference genome. SnpEff (26) and ANNOVAR

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/broadinstitute/picard
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Figure 2. Schematic diagram of DNA-Seq pipeline. The input, followed by the application of various quality control techniques, alignment to the reference
genome, variant calling, filtering and annotation are indicated in this figure.

(27) were the tools selected for variant annotation. The tool
MultiQC (28) was used to aggregate the results obtained
from the numerous tools in the workflow. In the case of
whole genome/exome data, the MultiQC report was gen-
erated based on the results from tools such as FastQC and
SnpEff. Two cancer-related data analysis tools, NBDriver
(29), which uses a machine learning approach to identify
the context of mutations, and cTaG (30), a tool to pre-
dict whether a given gene is a tumor suppressor (TSG)
or an oncogene (OG), were also incorporated in the final
pipeline (Figure 2).

For RNA-seq data, HISAT2 (31) and STAR (32) were
selected to perform alignment following quality control.
Expression modellers such as StringTie (33) and HTSeq
(34) were included to count the number of reads aligned to
the genome. For differential expression analysis, ballgown
(35) and DESeq2 (36) were incorporated. The MultiQC re-
port for RNA-Seq data includes results from tools such as
FastQC, Cutadapt and STAR. Normalization is inherently
carried out by the tool used for differential expression (Fig-
ure 3).

iCOMIC is embedded in the popular workflow manage-
ment system, Snakemake (37). The analysis workflow has

‘rules’ as the building blocks, which describe the connec-
tion between the input and output (38) (Figure 4). It en-
ables easy connectivity between the different tools/software
within the workflow. The ‘rules’ specify input files, output
files, log files and wrapper/shell commands. The Snake-
make wrapper scripts together with the conda environment
manage the automated installation of software and their
dependencies. Tools without a wrapper script are config-
ured separately, and shell commands are used for its exe-
cution. Parallelization of workflows is managed by Snake-
make. iCOMIC users have the privilege to choose the num-
ber of cores they need to run iCOMIC with, thereby al-
lowing multiple jobs to be executed together (this option
is given in the input tab). The number of cores provided by
the user is passed as an input to each tool. The list of depen-
dencies and the versions can be exported from the conda
environment file (https://github.com/RamanLab/iCOMIC/
blob/main/icomic env.yml).

The details of individual tools incorporated in iCOMIC
are available here (https://icomic-doc.readthedocs.io/en/
latest/walkthrough.html).

According to the user’s selection, appropriate rules are
combined in a ‘Snakefile’ to generate the target output. The

https://github.com/RamanLab/iCOMIC/blob/main/icomic_env.yml
https://icomic-doc.readthedocs.io/en/latest/walkthrough.html
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Figure 3. Schematic diagram of RNA-Seq pipeline. The input, followed by the application of various quality control techniques, alignment to the reference
genome, counting the mapped reads, normalization, and differential expression analysis, ultimately generating the TXT/PDF output is detailed in this
figure.

input file paths and parameters set by the user are automat-
ically fed into a configuration file, referred to as the ‘config
file.’ Multiple config files and Snakefiles are auto-generated
for the quality check of the input data, generating genome
index, and executing the main workflow.

We implemented the iCOMIC pipeline in the form of a
Graphical User Interface (GUI). The GUI has been devel-
oped using PyQt5, a Python binding of the cross-platform
GUI toolkit Qt. The GUI retrieves the user input files
and the parameters and communicates with the Snakemake
rules to set up the analysis. A Python wrapper binds to-
gether the PyQt5 GUI and the Snakemake workflow of
iCOMIC. After completing the initial requirements and
creating the conda environment, the iCOMIC GUI can
be accessed using a single command, ‘icomic’. Addition-
ally, running iCOMIC in Linux platform is supporte by
docker.

RESULTS AND DISCUSSION

Major features of the pipeline

NGS data has become an indispensable tool for biologi-
cal research, although the data analysis can be daunting
for non-bioinformaticians. iCOMIC has been introduced
to overcome this concern to a certain extent. It serves as
a stand-alone end-to-end analysis toolkit for DNA-Seq and
RNA-Seq data. The DNA-Seq component of iCOMIC sup-
ports both germline and somatic variant calling. In conven-
tional analysis pipelines like Galaxy, workflows need to be
built, whereas iCOMIC has various inbuilt pipelines that
automatically transfer output from one tool to the next.
iCOMIC provides an interactive and user-friendly GUI,
specifically created to accommodate users with minimal
programming expertise. On another note, iCOMIC allows
expert bioinformaticians to perform analysis incorporat-
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Figure 4. Snakemake workflow management system. All the input and output files in blue colour are those corresponding to DNA-Seq analysis and those
in green correspond to RNA-seq analysis. The common files for DNA and RNA-Seq analysis are represented in red. ‘Rule’ files specifying the input, output
and the shell/wrapper script form the basic units of Snakemake. Each rule corresponds to individual tools. The additional parameters for the tools are
indicated in the ‘config’ file. According to the choice of tools made by the user, rules are integrated into the Snakefile and the workflow is executed.

ing additional tools and advanced parameters, saving time
building the pipeline. The steps to be followed for writing
new rules for integrating additional tools are detailed in
the documentation at https://icomic-doc.readthedocs.io/en/
latest/. The GUI is embedded in a Python wrapper script
that connects the Snakemake workflows. Users can select
an array of tools from the predesigned combinations best
suited for their requirements. The best connectivity between
the tools has been taken into account to design these indi-
vidual workflows. iCOMIC provides the user with the nec-
essary means to replace modules or alter the pipeline. Fur-
thermore, the conda environment ensures easy installation
of tools and dependencies. A detailed description of the
structure of GUI together with step-by-step screenshots of
analyzing an example pipeline is provided in the Supple-
mentary Methods [Sections 1–3].

Prediction of tumour suppressor genes and oncogenes using
the cTaG algorithm

The cTaG (classify TSG and OG) model identifies driver
genes by classifying them as tumor suppressor genes (TSGs)
and oncogenes (OGs). Given a cohort of samples, the
pan-cancer model calculates ratio-metric features from so-
matic mutation data, capturing mutations’ functional im-
pact. Unlike other computational methods that use back-
ground mutation rate (BMR) to identify genes with a higher
mutation rate as driver genes, cTaG captures the effect of a
mutation on the gene’s functionality. Methods using BMR
are biased towards genes with high mutation rates (39), and
we know that while few driver genes have a high mutation
rate, most do not. The mutations in TSG and OG differ; we
found nonsense mutations more commonly found in TSGs
than OGs. The cTaG method contains binary classifiers that
classify genes as TSG or OG. The genes are labeled as TSGs
or OGs based on consensus across various models.

To build a pan-cancer model, the model was trained on
somatic mutation data from COSMIC (v79) (40) from dif-

ferent cancer types. We used ratio-metric and entropy fea-
tures to classify genes as TSG or OG. The cTaG model
uses the random forest classification algorithm to gener-
ate the pan-cancer model. A filtered list of genes from the
Cancer Gene Census (CGC) (41) is used to label genes as
TSG or OG, used to train the pan-cancer model. The pan-
cancer model successfully identified tissue-specific driver
genes when employed on a cohort from single tissue of ori-
gin. The method takes a single maf file with annotated mu-
tations for the cohort of samples as input and generates each
gene’s ratio-metric and entropy features. Additional argu-
ments such as the percentile and threshold to define highly-
mutated samples can be specified. The percentile argument
defines the top percentile genes to be considered from pre-
dictions made by each model for the final consensus. The
default value is 5. Highly mutated samples are skipped from
the analysis. By default, samples with >2000 mutations are
omitted during analysis. The cTaG model labels these genes
as TSG and OG based on the consensus across the random
forest models. The model returns the list of all genes and
their labels predicted by each model, along with its pres-
ence in the top percentile. Our method identifies genes with
high as well as low mutation rates. The pan-cancer model
also predicts tissue-specific driver genes.

Prediction of driver and passenger mutations using NBDriver

Differentiating between driver and passenger mutations
from sequenced cancer genomes is essential to targeted ther-
apy and precision medicine. Despite the dramatic advances
in developing predictive algorithms to differentiate between
driver and passenger mutations, very few have concentrated
on utilizing the local sequence context as potential fea-
tures for further analysis. To capture this information, we
built a robust machine learning model called NBDriver,
which uses raw nucleotide sequences surrounding cancer-
causing mutations as features to build machine learning
models.

https://icomic-doc.readthedocs.io/en/latest/
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Table 2. Summary of germline variant benchmarking with NA12878/HG001 dataset

Workflow Type Recall Precision F1 score

BWA MEM-GATK HC-SnpEff INDEL 0.967 0.976 0.971
SNP 0.978 0.998 0.988

BWA MEM-freebayes-SnpEff INDEL 0.931 0.917 0.924
SNP 0.979 0.997 0.988

BWA MEM-GATK HC-Annovar INDEL 0.967 0.976 0.971
SNP 0.978 0.998 0.988

BWA MEM-Bcftools-Annovar INDEL 0.741 0.838 0.789
SNP 0.976 0.996 0.986

Gem3-GATK HC-SnpEff INDEL 0.964 0.978 0.971
SNP 0.977 0.999 0.988

Gem3-Freebayes-SnpEff INDEL 0.934 0.92 0.927
SNP 0.978 0.998 0.988

BWA MEM-GATK HC-Annovar INDEL 0.967 0.976 0.971
SNP 0.978 0.998 0.988

BWA MEM-Freebayes-Annovar INDEL 0.931 0.917 0.924
SNP 0.979 0.997 0.988

Gem3-GATK HC-Annovar INDEL 0.964 0.978 0.971
SNP 0.977 0.999 0.988

Gem3-Freebayes-Annovar INDEL 0.934 0.92 0.927
SNP 0.978 0.998 0.988

BWA MEM-Bcftools-SnpEff INDEL 0.741 0.838 0.789
SNP 0.976 0.996 0.986

Gem3-Bcftools-SnpEff INDEL 0.781 0.353 0.486
SNP 0.975 0.997 0.986

Bowtie2-GATK HC-SnpEff INDEL 0.847 0.978 0.908
SNP 0.953 0.998 0.975

Bowtie2-GATK HC-Annovar INDEL 0.847 0.978 0.908
SNP 0.953 0.998 0.975

Bowtie2-Freebayes-SnpEff INDEL 0.717 0.909 0.802
SNP 0.945 0.996 0.97

Bowtie2-Freebayes-Annovar INDEL 0.717 0.908 0.802
SNP 0.945 0.996 0.97

Bowtie2-Bcftools-SnpEff INDEL 0.648 0.891 0.75
SNP 0.944 0.985 0.964

Bowtie2-Bcftools-Annovar INDEL 0.648 0.891 0.75
SNP 0.944 0.985 0.964

Our training data consisted of missense mutations from
58 genes containing experimentally validated functional im-
pacts from several studies. To obtain a numerical repre-
sentation of the sequence features surrounding the muta-
tions, we used commonly used natural language process-
ing tools such as the TF-IDF Vectorizer, the Count Vec-
torizer and the One-Hot Encoder. Using kernel density es-
timation techniques, we showed that the underlying dis-
tributions of the neighbourhood sequences surrounding
driver and passenger mutations are significantly different
from one another. We utilized this information to build
robust machine learning models using a repeated cross-
validation strategy and report the median values of the
performance metrics for each feature-classifier pair. To in-
crease the prediction performance, we integrated sequence
features derived from raw nucleotide sequences with other
genomic, structural, and evolutionary features, resulting in
the development of a pan-cancer mutation effect predic-
tion tool, NBDriver, which was highly efficient in iden-
tifying pathogenic variants from five independent valida-
tion datasets. An ensemble predictor containing NBDriver,
CONDEL (42) and MutationTaster (43) outperformed ex-
isting pan-cancer models in prioritizing a literature-curated
list of driver and passenger mutations. Considering only
the true positive mutation predictions from NBDriver, we
identified a list of 138 driver genes with known func-

tional evidence from multiple sources. Overall, our study
underpinned the efficacy of utilizing raw nucleotide se-
quences as features for building robust machine learn-
ing models to distinguish between driver and passenger
mutations.

Benchmarking of tools

Evaluating the performance of germline variant calling
pipelines. Performance validation of the germline variant
calling workflows available with iCOMIC was done using
Genome In A Bottle (GIAB) benchmark sets, based on
Zook et al. (44). To this end, we ran 18 different combina-
tions of aligners, germline variant callers, and annotators
integrated with iCOMIC on the widely used benchmark
dataset NA12878/HG001 to obtain separate vcfs (Table
2). Generated vcfs were then compared with GIAB/NIST
HG001 v2.19 truth data, restricting the comparison to the
GIAB v2.19 BED file coordinates. We adopted the bench-
mark framework developed by the Global Alliance for Ge-
nomics and Health (GA4GH) benchmarking team (45) for
vcf comparison. The method involved the generation of an
intermediate vcf with a standardized variant representation
using Vcfeval by Real-Time Genomics (RTG) tools (46)
followed by quantification of performance metrics using
qfy.py, which is a part of hap.py benchmarking toolkit. The
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Figure 5. Fold change correlation between iCOMIC and reference dataset for the four workflows. The Pearson correlation coefficient was used to calculate
fold changes.

summary of accuracy measures is highlighted in Table 2.
The analysis was performed, specifying ten threads for run-
ning each tool for all the workflow combinations. iCOMIC
provided the highest F1 score of 0.971 and 0.988 for indels
and SNPs, respectively, for the BWA MEM - GATK HC
pipeline among all the combinations (Table 2). Time con-
sumed for analyzing the GIAB benchmark set for BWA
MEM––GATK HC––SnpEff pipeline is provided in Sec-
tion 4a of the Supplementary Methods.

Evaluating the performance of RNA-Seq pipelines. The
validation of the performance of RNA-Seq workflows avail-
able with iCOMIC was done using the Human mono-
cyte RNA-Seq dataset from NCBI-SRA (SRP082682). We
ran four different combinations of aligners, expression
modellers and differential expression tools integrated with

iCOMIC on the RNA-Seq benchmark dataset to obtain
differentially expressed genes between classical and non-
classical monocytes. Comparison of differentially expressed
genes between the genes identified and the non-classical and
classical monocytes from the reference microarray dataset
(GSE34515) obtained from the NCBI GEO database was
performed. The fold change correlation (47) was calculated
between reference microarray and RNA-Seq data. Based on
the fold change correlation computed for the four different
pipelines, it is evident that HISAT2-StringTie-ballgown and
STAR-StringTie-ballgown pipelines performed the best
with a correlation coefficient of r = 0.85, higher than the
values obtained for HISAT2-HTSeq-DESeq2 and STAR-
HTSeq-DESeq2 pipelines (Figure 5). Time consumed for
analyzing the benchmark dataset using STAR-HTSeq-
DESeq2 is available in Section 4b of the Supplementary
Methods.
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Feature comparison between iCOMIC and other bioinfor-
matics pipelines

There exist many pipelines that integrate different bioin-
formatics tools for genomic data analysis. A comprehen-
sive feature comparison with previously developed work-
flows (snakePipes, Sequanix, Omics Pipe, Galaxy (48), Gen-
Pipes (49), CANEapp, ARMOR (50), Galaxy, VIPER (51),
systemPipeR (52), CLC Genomics Workbench and nf-
core (53)) was performed to highlight the significance of
iCOMIC (Table 4). The accessibility of the pipeline through
GUI, availability to the public, cloud support, the abil-
ity of automated execution of an entire pipeline, user free-
dom to choose tools of interest, and programming skills re-
quired for the analysis include some of the features used
for comparison. Only those tools that share common fea-
tures with iCOMIC were considered for comparison. In ad-
dition, a comparison with the most popular bioinformat-
ics tools like Galaxy and CLC genomics workbench was
performed. Galaxy, one of the customary scientific plat-
forms for bioinformatics data analysis, does not afford in-
built pipelines, whereas CLC genomics workbench is not
open source. The comparative analysis highlights the open-
source GUI with end-to-end automated analysis integrating
a plethora of tools as the strongest aspects of iCOMIC.

Performance comparisons between iCOMIC and GALAXY.
Galaxy is a popular publicly available web-based interface
consisting of many tool combinations and workflows to
perform various studies. It offers ease of access to com-
plex computational analyses to users with minimal pro-
gramming expertise and the functionality to examine large
datasets in a multi-step process. Considering the similarities
in features between iCOMIC and Galaxy, pipeline valida-
tion was conducted using the same methods to establish a
comparison scale for performance.

Pipelines are fully automated in iCOMIC and the most
predominantly used workflows are pre-built. While work-
flows need to be specified in Galaxy in order to automate,
iCOMIC comes with a set of preinstalled pipelines for both
DNA and RNA-Seq analysis. In iCOMIC, the user has the
option to specify a large number of files in the form of a
table, while no such provision is available on Galaxy. Al-
though extensive resources and tutorials are provided for
the use of Galaxy, we believe it has a steeper learning curve
than iCOMIC, which is mostly a point-and-click type appli-
cation. Certain tools are unavailable on the Galaxy server
and need to be installed from the tool shed, while iCOMIC
installations are readily done via the conda environment,
with minimal user input/interference.

While analysing multiple samples on a workflow in
Galaxy, it is required to rename the files prior to passing
it as input to the next tool in the pipeline which can be te-
dious when there is a large number of samples. On the other
hand with iCOMIC, the entire process is automated. Un-
doubtedly, Galaxy has its advantages, and is a very popular
pipeline for genomic data analysis. Yet, iCOMIC excels in
its simplicity, and we believe it will be more inviting for biol-
ogists and clinical researchers to quickly analyse their data.

Comparison in terms of germline variant calling. DNA-Seq
analysis was performed using BWA-MEM, Freebayes, and

Table 3. Summary of germline variant benchmarking with
NA12878/HG001 dataset using Galaxy

Workflow Type Recall Precision F1 score

BWA MEM-freebayes-SnpEff INDEL 0.887 0.948 0.917
SNP 0.976 0.984 0.980

SnpEff for each step in the analysis workflow using GIAB
dataset. Performance validation for the same was done us-
ing a process similar to that of iCOMIC. The variant files
obtained as output from this pipeline were compared with
GIAB/NIST HG001 v2.19 truth data restricting the com-
parison to the GIAB v2.19 BED file coordinates. Vcfeval
method was used for vcf comparison, and the quantifica-
tion of performance metrics was computed using the hap.py
algorithm. Comparison of the performance metrics such as
F1 and precision scores between iCOMIC and Galaxy indi-
cates that the values are pretty similar. Considering the SNP
F1 score, iCOMIC has 0.988 and Galaxy has 0.980, prov-
ing that the performance of iCOMIC is on par with that of
Galaxy (Table 3).

Comparison in terms of differential expression analysis.
RNA-Seq analysis was performed using the tools STAR,
HTSeq, and DESeq2 for each step in the analysis workflow
using the Human monocyte RNA-Seq dataset from NCBI-
SRA (SRP082682). The fold change correlation was calcu-
lated between the reference microarray dataset (GSE34515)
obtained from the NCBI GEO database and RNA-Seq data
for iCOMIC and Galaxy. The values were found to be 0.8
and 0.66, respectively. Comparison of the fold change corre-
lation between iCOMIC and Galaxy indicates that the value
of iCOMIC is higher than that of GALAXY in the partic-
ular pipeline (Figure 6).

CONCLUSION

Here, we present iCOMIC to analyze genomic data quickly.
Analyzing the large amount of data generated by Next Gen-
eration Sequencing techniques can be tricky for a non-
programmer as it requires computational skills. iCOMIC
serves as a robust platform for users with minimal pro-
gramming skills. iCOMIC enables the user to choose
from several pre-configured workflows for analyzing Whole
Genome/Exome Sequencing and RNA-Seq data. Notably,
iCOMIC also integrates novel algorithms developed in-
house to predict cancer driver and passenger mutations,
as well as tumor suppressor genes and oncogenes. The
iCOMIC toolkit can be downloaded as a package and run
on Linux, Windows, or Mac operating systems. iCOMIC
enables easy analysis through an interactive GUI and
hassle-free installation of software. The features listed above
make iCOMIC an easily accessible, open-source pipeline
for large genomic datasets. DNA-Seq benchmarking study
performed in iCOMIC with GIAB dataset resulted in an
F1 score of 0.971 and 0.988 for indels and SNPs, respec-
tively. Similarly, for RNA Seq, comparison with a microar-
ray dataset produced a fold change correlation coefficient
of 0.85.
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Figure 6. Fold change correlation between Galaxy and reference dataset
for STAR-HTSeq-DESeq2 workflow. The Pearson correlation coefficient
was used to calculate fold changes.
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37. Köster,J. and Rahmann,S. (2012) Snakemake–a scalable
bioinformatics workflow engine. Bioinforma. Oxf. Engl., 28,
2520–2522.

38. Desvillechabrol,D., Legendre,R., Rioualen,C., Bouchier,C., van
Helden,J., Kennedy,S. and Cokelaer,T. (2018) Sequanix: a dynamic
graphical interface for snakemake workflows. Bioinforma. Oxf. Engl.,
34, 1934–1936.

39. Lawrence,M.S., Stojanov,P., Polak,P., Kryukov,G.V., Cibulskis,K.,
Sivachenko,A., Carter,S.L., Stewart,C., Mermel,C.H., Roberts,S.A.
et al. (2013) Mutational heterogeneity in cancer and the search for
new cancer-associated genes. Nature, 499, 214–218.

40. Forbes,S.A., Beare,D., Gunasekaran,P., Leung,K., Bindal,N.,
Boutselakis,H., Ding,M., Bamford,S., Cole,C., Ward,S. et al. (2015)
COSMIC: exploring the world’s knowledge of somatic mutations in
human cancer. Nucleic Acids Res., 43, D805–D811.

41. Futreal,P.A., Coin,L., Marshall,M., Down,T., Hubbard,T.,
Wooster,R., Rahman,N. and Stratton,M.R. (2004) A census of
human cancer genes. Nat. Rev. Cancer, 4, 177–183.

42. Gonzalez-Perez,A., Deu-Pons,J. and Lopez-Bigas,N. (2012)
Improving the prediction of the functional impact of cancer
mutations by baseline tolerance transformation. Genome Med., 4, 89.

43. Schwarz,J.M., Rödelsperger,C., Schuelke,M. and Seelow,D. (2010)
MutationTaster evaluates disease-causing potential of sequence
alterations. Nat. Methods, 7, 575–576.

44. Zook,J.M., McDaniel,J., Olson,N.D., Wagner,J., Parikh,H.,
Heaton,H., Irvine,S.A., Trigg,L., Truty,R., McLean,C.Y. et al. (2019)

https://doi.org/10.1101/861054
https://doi.org/10.1101/201178
https://arxiv.org/abs/1207.3907


NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 3 11

An open resource for accurately benchmarking small variant and
reference calls. Nat. Biotechnol., 37, 561–566.

45. Krusche,P., Trigg,L., Boutros,P.C., Mason,C.E., De La Vega,F.M.,
Moore,B.L., Gonzalez-Porta,M., Eberle,M.A., Tezak,Z., Lababidi,S.
et al. (2019) Best practices for benchmarking germline small-variant
calls in human genomes. Nat. Biotechnol., 37, 555–560.

46. Trigg,L., Cleary,J., Braithwaite,R., Gaastra,K., Hilbush,B., Inglis,S.,
Irvine,S., Jackson,A., Littin,R., Mehul,R. et al. (2015) Comparing
variant call files for performance benchmarking of next-generation
sequencing variant calling pipelines. bioRxiv doi:
https://doi.org/10.1101/023754, 02 August 2015, preprint: not peer
reviewed.

47. Everaert,C., Luypaert,M., Maag,J.L.V., Cheng,Q.X., Dinger,M.E.,
Hellemans,J. and Mestdagh,P. (2017) Benchmarking of
RNA-sequencing analysis workflows using whole-transcriptome
RT-qPCR expression data. Sci. Rep., 7, 1559.

48. Afgan,E., Baker,D., Batut,B., van den Beek,M., Bouvier,D.,
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