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Abstract

Background:Tobacco smoking has been reported to causeDNA fragmentation andhas

been suggested to cause mutations in spermatozoa. These effects have been ascribed

to the action of polycyclic aromatic hydrocarbons (PAH) present in the smoke. Simulta-

neously, DNA fragmentation has been associated withmutagenesis.

Objective: The aim of this study was to investigate whether levels of urinary biomark-

ers of PAH and nicotine exposure were associated with spermDNA fragmentation.

Methods: In the urine of 381 men recruited from two cohorts of young men (17–21

years old) from the general Swedish population, thePAHmetabolites 1-hydroxypyrene

and 2-hydroxyphenanthrene, as well as the nicotine metabolite cotinine, were mea-

sured. The sperm DNA fragmentation index (DFI) was analysed using the sperm chro-

matin structure assay. Associations between the DFI, and PAH metabolite levels as

continuous variables as well as in quartiles, were studied by general linear models

adjusted for abstinence time. A similar analysis was carried out for cotinine levels,

according to which the men were categorised as “non-smoking” (n = 216) and “smok-

ing” (n= 165).

Results: No association was found between levels of any of the three biomarkers and

DFI, either as a continuous variable (p=0.87–0.99), orwhen comparing the lowest and

the highest quartiles (p = 0.11–0.61). The same was true for comparison of men cate-

gorised as non-smoking or smoking (DFI 11.1% vs. 11.8%, p= 0.31).

Discussion:We found no evidence of PAH or nicotine exposure to be associated with

DFI, which does not exclude that these exposures may have other effects on sperm

DNA.

Conclusion: In these young men, levels of biomarkers of nicotine and PAH exposure

were not associated with DFI.
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1 INTRODUCTION

A common exposure in humans – smoking – is associated with reduc-

tions in several parameters of semen quality,1 but has also been

suggested to cause cancer and malformations in children2,3 due to

mutations in paternal germ cells exerted by mutagens in tobacco

smoke. Those mutagens include certain polycyclic aromatic hydrocar-

bons (PAH)4 that can bind to the DNA and thus cause DNA adducts,

which in turn can lead to mutations in the DNA sequence.5 Another

type of DNA damage that can be caused by compounds in both

tobacco smoke and air pollution is DNA strand breakage.6 This kind

of breakage seems to have a potential to lead to mutations7 due to

errors occurring during the DNA repair.8,9 Thus, one could expect that

a positive association between exposure to PAH or smoking and sperm

DNA fragmentation would point to chemicals in cigarette smoke as

possible causes of mutations in the spermatozoa2 and potentially also

in the offspring.10 Although active smoking is a major source of PAH,

exposure to PAH may also originate from exposure to environmental

tobacco smoke,11 diet and air pollution,12 albeit seemingly at lower

levels. So, to fully capture the total PAH exposure, levels of biomarkers

in humanswere suggested to represent amore appropriate estimate of

the total exposure to PAH,13 than information on smoking habits only.

Previously, some studies reported that levels of PAH metabolites

were associated with sperm DNA fragmentation14–17 but other stud-

ies did not find an association.18,19 Furthermore, the results appear to

be incongruent regarding the type of PAH metabolite for which such

an association was found.

Nonetheless, the pyrene metabolite 1-hydroxypyrene (1-OHP)

measured in urine has been reported to be associated with smok-

ing in a dose-related manner,20,21 and has also been reported as a

useful biomarker for PAH exposure from other sources22 at least

in non-smokers.23 Similarly, as for 1-OHP, 2-hydroxyphenanthrene

(2-OHPH), which is a metabolite of phenanthrene, has been reported

to be associated with smoking11,21 and has also, when measured in

pregnant women, been associated with a shorter telomere length in

children as amarker of DNA damage.24

Despite seemingly good evidence that smoking do induces strand

breaks in sperm,2 we were previously unable to find an associa-

tion between self-reported smoking and sperm DNA fragmentation

assessed by the sperm chromatin structure assay (SCSA).25 Still, self-

reported data on smoking seem to underestimate the true smoking,

whereas measuring the nicotine metabolite cotinine in biological flu-

ids has been suggested as the most appropriate indicator of tobacco

smoke exposure.26 Thus, cotinine levels quantify the body’s internal

dose of nicotine27 and have been reported to be more strongly asso-

ciated with health outcomes as compared to the reported number of

cigarettes smoked per day.28 In addition, an association between levels

of cotinine and spermDNA fragmentation has been reported.29

For the assessment of sperm DNA fragmentation, SCSA is one of

the most commonly used tests30,31 and seems to have good precision

and repeatability.32 DFI as determined by SCSA is associated with

the risk of infertility,33 independent of other parameters of semen

quality.34 Furthermore, SCSA has been suggested to be a suitable

method to study DNA fragmentation due to chemical exposure35

that is mutagenic to male germ cells.36 This suggestion is supported

by studies reporting that mutagenic exposure increases sperm DNA

fragmentation according to both SCSA and the TUNEL assay,37 similar

to the increase seen by SCSA after tobacco smoke exposure,38 which

as mentioned has also been suggested to bemutagenic to human germ

cells,39–41 and reported to give rise to mutations in both sperm42

and spermatogonial stem cells43 of mice. Accordingly, the aim of this

study was to investigate whether urinary levels of 1-OHP, 2-OHPH

and cotinine, as biomarkers of exposure to PAH and nicotine, were

associated with sperm DNA fragmentation in Swedish men from the

general population.

2 METHODS

2.1 Participants

In 2000–2001, 305 men between the ages 18 and 21 years and from

the general population were recruited to the Reproductive Medicine

Centre in Malmö, Sweden, through the medical health examination at

theNational Service Administration in Sweden (NSAS) prior tomilitary

service, like described by Richthoff et al.44

Similarly, in 2008–2010,we recruited 314menbetween the ages 17

and 20 years and also from the general population living within 60 km

from the city of Malmö. The latter group of men was recruited both

through themedical health examination atNSASprior to apossiblemil-

itary service (N=241) and throughannouncements at schools (N=73),

like described by Axelsson et al.45 All of the men, 619 in total, signed

an informed consent, answered questionnaires regarding their use of

tobacco, delivered samples of urine and semen on the same day and

were paid about 50 euros for their participation. The data collection

and study of associations between exposure and reproductive function

was approved by the local ethical review board at Lund University, and

was in linewith theDeclaration ofHelsinki. Regarding ethnicity, 73%of

the men recruited during 2000–2001 were born and raised in Sweden

and had mothers born and raised in Sweden, whereas only men fulfill-

ing these two criteria were asked to participate in the recruitment that

took place during 2008–2010.45

Out of the 619men, we had information available about (1) the time

of abstinence from ejaculation before the delivery of the semen sam-

ple in 601 men; (2) levels of the sperm DNA fragmentation index (DFI)

in 573 men and (3) levels of 1-OHP, 2-OHP and cotinine in the urine

of 400 men (which was the number of men from whom urinary sam-

ples were available after other analyses had been performed46). For

381 men, data on both abstinence time, levels of DFI and of the expo-

sure markers were available. Among the 573 men with available val-

ues of DFI, the DFI values were statistically significantly lower in the

381 men for whom we had data on abstinence time and levels of 1-

OHP, 2-OHPH and cotinine, as compared to those 192 for whom these

data were missing (DFI 14% vs. 16%, p= 0.04). Among the 381men on
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TABLE 1 Background characteristics on tobacco use and disease
among the 381 includedmen

Yes No Missing

N % N % N %

Self-reported smokinga 89 23% 288 76% 4 1%

Use of “snus”b 66 17% 279 73% 36 9.4%

Long-term/chronic disease 18 4.7% 359 94% 4 1.0%

aMissing values due to smoking other than cigarettes.
bOral tobacco used under the upper lip.

whom we had all of the above data, data on self-reported tobacco use

and long-term/chronic diseases (themost commonofwhichwasallergy

or asthma [seven men]) are shown in Table 1. Fifty-seven men smoked

1–9 cigarettes per day, and 32 men smoked 10 cigarettes or more per

day. Thehighest amount of cigarettes smokedper daywas20 (reported

by one participant). The self-reported data on tobacco use included the

use of “snus” (sometimes referred to as [moist oral] snuff47), an oral

tobacco used under the upper lip.48 The mean age of the men was 18

years (standard deviation [SD] 0.4 years) and the median age was 18

years as well, ranging from 17 to 21 years.

2.2 Determination of sperm DNA fragmentation

All the 381 men delivered samples of semen which were analysed by

SCSA. This assay indicates the proportion of spermatozoa with breaks

in the DNA,49 as previously described for the two cohorts.25,50 In

brief, adding of acridine orange to the samples, which gives a red flu-

orescence when interacting specifically with single-strandedDNA51 in

sperm cells with a supposed DNA fragmentation, enables the propor-

tionof spermatozoawitha redemission (spermatozoawith spermDNA

damage/strand breaks) to be measured by use of flow cytometry of

5000–10,000 sperm cells, as described in detail by Bungumet al.52 The

SCSAwasperformed in the sameway,without changes inmethodology

in 2000–2001 and 2008–2010.

2.3 Analyses of the biomarkers

In the urine of the included men, levels of 1-OHP and 2-OHPH were

analysed by liquid chromatography coupled to tandem mass spec-

trometry (LC-MS/MS). Details of the method have been described by

Alhamdow et al.53 The limit of detection of these two compounds was

50 pg/ml, whereas the coefficients of variation in duplicate urinary

samples were 14% for 1-OHP at 0.5 ng/ml, and 9% for 2-OHPH at

0.8 ng/ml. Urinary cotinine was analysed using a modified method for

serum54,55 in which the limit of detection was 0.4 ng/ml and the coef-

ficient of variation 2% at 48 ng/ml. In brief, for the three compounds,

urine samples were hydrolysed using β-glucuronidase (Escherichia

coli) and incubated for 30min at 37◦C. Deuterium-labelled internal

standards were used in the analysis. The samples were analysed using

a QTRAP5500 (AB Sciex, Framingham, MA, USA). All analyses were

performed at the Department of Occupational and Environmental

Medicine at Lund University. The methods used for analyses of 1-OHP

and cotinine are part of a quality control programme between analyti-

cal laboratories coordinated by theUniversity of Erlangen-Nuremberg,

Germany. The laboratory also participates in the ICI/EQUAS exer-

cises for the analysis of 1-OHP and 2-OHPH and is approved by the

HBM4EU project, (https://www.hbm4eu.eu/).

The mean value of urinary cotinine in the 288 self-reported non-

smokerswas690ng/ml or 370μg/g creatinine, and the geometricmean

was 13 ng/ml or 7.7 μg/g creatinine. The corresponding mean values in

the smokerswere 2300ng/ml or 1400μg/g creatinine, and the geomet-

ric meanwas 40 ng/ml or 890 μg/g creatinine.

2.4 Statistical analyses

Due to a skewed distribution of values, DFI was transformed by the

natural logarithm. We considered p < 0.05 as statistically significant,

and studied associations betweenDFI and the levels of cotinine as well

as the two PAH metabolites as continuous variables, by using univari-

ate general linear models in SPSS and having both abstinence time and

one metabolite at a time as covariates in the model. For the analy-

sis that included cotinine, we also separately adjusted for the use of

snus (yes/no). Thereafter, we studied main effects using type II sum of

squares, as we did not expect abstinence time to interact with PAH

metabolite levels regarding associations with DFI.56 For the levels of

cotinine, we also calculated the Pearson product-moment correlation

coefficient with the levels of DFI.

Further, we additionally divided metabolite levels in quartiles and

studied whether the men in the highest quartile had a higher DFI than

themen in the lowest quartile; again adjusting for abstinence timewith

an additional separate analysis for cotinine by adjusting also for the use

of snus. Also for the analysis of categorised exposure levels, we applied

linear regressionmodels (general linear models).

Subsequently, for all three metabolites, the above-mentioned anal-

yses were repeated by adjusting for the urinary concentration of cre-

atinine (mmol/L). Based on urinary cotinine levels, the participants

were categorised into smokers andnon-smokerswith the former group

defined as those with values above 100 μg/g creatinine.57 Using this

cut-off, 165menwere categorised as smokers and216as non-smokers.

Subsequently, we studied the difference in DFI between the men

categorised as smokers and non-smokers adjusting for abstinence

time, and subsequently even after adjusting for the use of snus

(yes/no). The group ofmen categorised as smokers (based on the levels

of cotinine) also included those who used snuff but not cigarettes, and

despite adjusting for the use of snuff, we also compared self-reported

smokers with self-reported non-smokers regarding DFI in this larger

group of men than in our previous study,25 again by adjusting for

abstinence time. In addition to this, we separately used the number of

cigarettes smoked per day, adjusted for abstinence time, and studied

the association with DFI. We also separately studied whether a differ-

ence could be found between men who reported that they smoked 10

cigarettes per day ormore (n= 32) and those who smoked less than 10

https://www.hbm4eu.eu/
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TABLE 2 Levels of exposure, DNA fragmentation index (DFI) and abstinence time of the 381 includedmen

Variable Unit Mean± standard deviation Median (range)

1-OHP ng/ml urine 0.17± 0.29 0.11 (<LOD–4.5)

ng/mmol creatinine 11± 16 7.0 (0.16–240)

2-OHPH ng/ml urine 0.35± 0.44 0.23 (0.053—5.9)

ng/mmol creatinine 25± 43 15 (3.0-580)

Cotinine ng/ml urine 1100± 1700 36 (<LOD–9600)

ng/mmol creatinine 6900± 120,000 2600 (<LOD–860,000)

DFI % 14± 11 11 (2.9–87)

Abstinence time Hours 69± 47 60 (8–500)

Abbreviations: 1-OHP, 1-hydroxypyrene; 2-OHPH, 2-hydroxyphenanthrene; DFI, DNA fragmentation index.

TABLE 3 Mean levels of the different compounds in the highest and lowest quartile

Biomarker Unit

Lowest

quartile N

Highest

quartile N

1-OHP ng/ml urine <LOD 97 0.40 95

μg/g creatinine <LOD 95 0.20 95

2-OHPH ng/ml urine 0.11 94 0.78 97

μg/g creatinine 0.099 95 0.49 95

Cotinine ng/ml urine 0.59 95 3600 95

μg/g creatinine 0.41 95 1900 95

Abbreviations: 1-OHP, 1-hydroxypyrene; 2-OHPH, 2-hydroxyphenanthrene.

cigarettes per day (n = 349), with same adjustment. A similar compar-

ison was made between men smoking 10 cigarettes per day or more

(n= 32) andmenwho reported that they did not smoke at all (n= 292).

In a post-hoc power analysis (powerandsamplesize.com), if we

calculated with a power (1 – β) of 0.80, a type I error rate (α) of 5%,
as well as with a DFI of 10.7% in the lowest quartile and a standard

deviation in DFI of 11%, then for comparing 96 men in the highest

quartile of exposure to 1-OHP with 96 men in the lowest quartile of

exposure, we would need a 37% higher DFI (a DFI of 14.7%, which is

still a clinically normal value52) in the highest quartile of exposure to

find a statistically significant difference.

3 RESULTS

Background characteristics on exposure levels, DFI and abstinence

time are shown in Table 2, and mean levels of exposure markers in

the lowest and highest quartiles of the different exposure markers are

shown in Table 3.

3.1 Exposures as continuous variables and DFI

None of the associations between the two urinary exposure markers

for PAH (1-OHP [shown in Figure 1] and 2-OHPH) or the urinary

biomarker for nicotine exposure, cotinine (all expressed per millilitre

urine), and DFI was statistically significant (p = 0.87–0.99, Table 4).

F IGURE 1 Scatter/dot graph showing howDNA fragmentation
index (DFI) related to the urinary levels of 1-OHP in the 381men

The same was true for the associations after adjusting the analysis

regarding cotinine for the use of snus (p= 0.94), and the urinary levels

of the compounds for the concentration of creatinine in the urine

(p = 0.62–0.94, Table 4). No statistically significant correlation was

found between the levels of cotinine and DFI (Pearson correlation

–0.065, p= 0.20).
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TABLE 4 Regression coefficients for the different biomarkers of exposure from general linear models, with DNA fragmentation index (DFI) (%)
transformed by the natural logarithm as a dependent variable, adjusted for abstinence time

Regression coefficient, β (95% confidence interval) pValue

1-OHP –0.017 (–0.23 to 0.20) 0.87

1-OHPa 0.99 (–2.9 to 4.9) 0.62

2-OHPH 0.01 (–0.14 to 0.14) 0.99

2-OHPHb 0.070 (–1.4 to 1.5) 0.92

Cotinine –0.000017 (–0.000053 to 0.000019 0.35

Cotininea –0.000017 (–0.000045 to 0.000042) 0.94

Cotinineb –0.000002 (–0.000045 to 0.000042 0.94

Cotininea,b –0.000019 (–0.00063 to 0.00059) 0.95

aLevels adjusted also for the urinary concentration of creatinine.
bAdjusted also for the use of oral tobacco snus (yes/no), n= 345.

TABLE 5 Levels of DFI (back-transformed) according to the
quartile of exposure, adjusted for abstinence time

DFI

Lowest

quartile

(%)

Highest

quartile

(%)

Ratio between

the lowest and

highest

quartile

p-value for

difference

1-OHP 10.7 11.2 0.96 0.61

1-OHPa 11.4 11.5 0.99 0.84

2-OHPH 10.7 12.3 0.87 0.11

2-OHPHa 10.3 11.9 0.87 0.11

Cotinine 10.9 11.4 0.96 0.64

Cotininea 11.3 11.3 1.00 0.98

Cotinineb 10.4 11.0 0.95 0.57

Cotininea,b 10.8 11.1 0.97 0.76

aLevels adjusted also for the urinary concentration of creatinine.
bAdjusted also for the use of the oral tobacco called “snus” (yes/no), n=345.

3.2 Exposures as categorised variables and DFI

When comparing the highest and lowest exposure quartiles of the

three different exposure markers in relation to the levels of DFI, no

statistically significant difference in DFI was seen for 1-OHP, 2-OHPH

or cotinine (p= 0.11–0.64, Table 5). These results remained not statis-

tically significant also after adjusting the urinary levels of these com-

pounds for the urinary concentration of creatinine (p=0.11–0.98), and

regarding cotinine for the additional adjustment for the use of snus

(Table 5).

3.3 Smokers versus non-smokers and DFI

No statistically significant difference was found in DFI between men

who, based on their urinary concentration of the nicotine metabolite

cotinine, were categorised as non-smokers and those who were cate-

gorised as smokers (11.1% vs. 11.8%, p = 0.31). After adjusting for the

use of the oral tobacco “snus”, again no statistically significant differ-

ence was found between the non-smokers and the smokers (10.2% vs.

11.1%, p= 0.26).

When comparing self-reported smokers with self-reported non-

smokers,we foundno statistically significant difference inDFIbetween

the smokers and the non-smokers (11.1% vs. 11.2%, p = 0.84). In addi-

tion, no statistically significant association was found between the

numberof cigarettes smokedperday (as a continuous variable) andDFI

(p=0.28), nor betweenmen smoking 10ormore cigarettes per day and

men smoking less (12.6% vs. 11.3%, p = 0.34) or not at all (12.6% vs.

11.2%, p= 0.32).

4 DISCUSSION

In this study of young Swedish smoking and non-smoking men from

the general population, we did not find that levels of the urinary

biomarkers for PAH exposure, 1-OHP and 2-OHPH, or for nicotine

were associated with DFI according to the SCSA. Thus, in our cohort

exposures to pyrene, phenanthrene and nicotine seemed not to be

main contributors to fragmentation of sperm DNA as assessed by

SCSA. We also found no difference in DFI between self-reported

smokers and non-smokers, nor between those smoking more than 10

cigarettes per day and those smoking less, or not at all.

Our results are in line with our previous study, which was based

on one of the two cohorts included here, in which we did not find an

association between self-reported smoking and DFI.25 Moreover, our

results seem to agree with a lack of an association in a majority (seven)

of studies using SCSA, included in a review article2 that covered stud-

ies on exposure to tobacco smoke and sperm DNA damage, as well as

with someadditional studies.58,59 Our results are also in linewith those

of another study in which no association was found between 1-OHP

and sperm DNA fragmentation by use of the Comet assay,16 although

the authors found associations for a metabolite of another PAH,

fluorene.
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Nevertheless, our results differ with those of several other studies

that have reported associations between smoking60–62 or tobacco

use63,64 and an increased SCSA-determinedDFI. Reasons towhy these

studies found associations unlike those in our study may be factors

such as a high power through having many included men62 or a high

intensity of smoking – since a higher DFI was reported specifically

for heavy-smoking men.60 An additional possible explanation could

be investigation of specifically infertile men,60–62 who may be more

sensitive to tobacco smoke-induced sperm DNA fragmentation, for

example due to a potentially less condensed DNA which seems to

be more common in infertile men.65,66 A less condensed DNA could

increase the risk of sperm DNA damage67 due to agents present

in tobacco smoke.68 Furthermore, regarding the lack of an associ-

ation between levels of biomarkers for PAH exposure and DFI in

our study, our results seem to differ to the only previous study that

addressed these associations in men who, like in our study, were not

exposed to high levels of PAH through occupational exposure.17 Those

authors reported an association between 1-OHP and DFI (although

the information on the level of statistical significance was not pre-

sented, and no association was found between smoking and DFI). A

possible reason for the fact that an association was found between

1-OHP and DFI in that study17 but not in ours may be because

their study was about double the size of ours. Potentially, ethnic or

dietary differences between China and Sweden could also explain the

difference.

Although it may be difficult to compare PAH exposure in our study

with PAH exposure in studies of occupationally exposed men, the

lack of an association between levels of PAH biomarkers in our study

stands in contrast to an association reported between levels of 1-OHP

and DFI in coke-oven workers,15 although another study on exposed

workers did not find a statistically significantly higher DFI in workers

with higher 1-OHP exposure than in controls.19 An explanation for

why we did not find an association between urinary levels of 1-OHP

andDFI,whereas such an associationwas found in one15 of the studies,

could be that the 1-OHP levels in the men in our study were several

orders of magnitude lower.

Regarding studies that used other methods to assess sperm DNA

fragmentation, our results seem to differ from the majority of stud-

ies regarding smoking, which reported associations with sperm DNA

fragmentation.2 Our results also differ from an association reported

between cotinine and spermDNA fragmentation in one study.29 More-

over, our results also seem to differ with those of a study from a pol-

luted area in China in which an association between levels of 1-OHP,

adjusted for smoking, was associated with indications of sperm DNA

damage according to the percentage of tail DNA in spermatozoa found

by the Comet assay,14 although no association was found between

1-OHP and two other parameters of sperm DNA fragmentation: tail

length and tail distributedmoment. A potential explanation for the dif-

ference in the results in our study and these studies could be that, some

methods, for unknown reasons, can more easily identify DNA damage

caused specifically by smoking or PAH exposure as compared to SCSA.

A strength of our study is the use of cotinine in addition to self-

reported smoking as a marker for tobacco smoke exposure, given the

stronger association with health outcomes reported for cotinine as

compared to self-reported data.28 Similarly, monitoring of PAH expo-

sure through biomarkers in body fluids has been suggested as the best

way to assess the exposure that is taken up by the human body.69 Our

study had the power to find a DFI level about 37% higher in men in

the highest exposure quartile versus men in the lowest quartile of any

of the three metabolites. This may be compared with a reported 80%

higher DFI level in smoking workers that were highly exposed to 1-

OHP than in smoking workers who were less exposed to 1-OHP.15 We

have applied SCSA for measurement of DFI as this method has proved

valuable in clinical assessment of males from infertile couples,33 but as

mentioned, othermethods to assess spermDNA integritymaybe supe-

rior to SCSA in detecting PAH or tobacco smoke-related alterations in

sperm DNA. The men included in this study were all younger than 22

years, whichmight be a limitation of the study in view of the higher DFI

levels in older individuals,70 who cannot be excluded to be more sus-

ceptible to spermDNA fragmentation due to chemical exposures.

Overall, we were not able to find associations between either self-

reported smoking or the levels of biomarkers of exposure to two PAHs

or nicotine (both of which are related to smoking and potential medi-

ators of effects), and sperm DNA fragmentation by use of the SCSA in

young Swedishmen from the general population. This does not exclude

thepossibility that tobacco smokingorPAHexposure inmenmaycause

diseases in their children through other mechanisms than sperm DNA

fragmentation as assessed by the SCSA.
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