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Rapid and effective hemostasis is of great importance to improve the quality of treatment
and save lives in emergency, surgical practice, civilian, and military settings. Traditional
hemostatic materials such as tourniquets, gauze, bandages, and sponges have shown
limited efficacy in the management of uncontrollable bleeding, resulting in widespread
interest in the development of novel hemostatic materials and techniques. Benefiting from
biocompatibility, degradability, injectability, tunable mechanical properties, and potential
abilities to promote coagulation, wound healing, and anti-infection, hydrogel-based
biomaterials, especially those on the basis of natural polysaccharides and proteins,
have been increasingly explored in preclinical studies over the past few years. Despite
the exciting research progress and initial commercial development of several hemostatic
hydrogels, there is still a significant distance from the desired hemostatic effect applicable
to clinical treatment. In this review, after elucidating the process of biological hemostasis,
the latest progress of hydrogel biomaterials engineered from natural polysaccharides and
proteins for hemostasis is discussed on the basis of comprehensive literature review. We
have focused on the preparation strategies, physicochemical properties, hemostatic and
wound-healing abilities of these novel biomaterials, and highlighted the challenges that
needed to be addressed to achieve the transformation of laboratory research into clinical
practice, and finally presented future research directions in this area.
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INTRODUCTION

Traumatic, surgical, disease-related, or drug-induced bleeding can lead to serious clinical outcomes or even
death (Wang et al., 2019a). Traumatic blood loss caused by various sudden accidents (e. g. traffic accidents,
natural disasters and violent attacks) is closely related to pre-hospital death. It is statistically estimated that
about one-third of emergency deaths originate from acute blood loss and its secondary injuries (Kragh
et al., 2012; Behrens et al., 2014), and more than half of the battlefield deaths are ascribed to massive blood
loss (Hemostatic wound dressing, 2013). On the other hand, interventional diagnostic and surgical
treatments during medical procedures are prone to hemorrhage or intracavitary bleeding, especially in
areas adjacent to the heart, parenchymal organs, vital vessels, etc. Statistically, severe intraoperative blood
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loss directly contributes to increased mortality (Marietta et al., 2006).
In addition, hematologic disorders or anticoagulant drugs are known
to be responsible for abnormal coagulation, which likewise exposes
many patients to high bleeding risks (Blajchman, 2003). Therefore,
the exploration of rapid and effective methods for bleeding control in
different situations has always been an important topic of
multidisciplinary research.

Hemostatic techniques and materials with excellent properties
are essential for saving lives and reducing adverse side effects.
Traditional hemostatic materials (e. g. tourniquets, hemostatic
gauze, bandages, and etc.) have been widely used for rapid
hemostasis of superficial wounds (Leonard et al., 2016;
Montaser et al., 2020; Farahani and Shafiee, 2021). However,
as to injuries with intracavitary hemorrhage or involving non-
compressive vital tissues/organs (e. g. brain tissue, spinal cord,
fragile organs, and etc.), traditional techniques are difficult to
meet the demand for rapid and effective hemostasis (Jones et al.,
2018; Montaser et al., 2020). Moreover, gauze or bandages need to
be completely removed after hemostasis because of their non-
degradability, whichmay cause secondary injury, delayed healing,
and additional pain (Hoekstra et al., 2002). The exploration of
advanced hemostatic materials including biodegradable gauze,
sponges, powders, sprays, and hydrogels have been ongoing. In
recent years, the rapid development of hydrogel-based
biomaterials for hemostatic and wound healing have led to the
emergence of solutions to clinical hemostatic challenges.

Hydrogel-based biomaterials have shown many advantages
compared with traditional hemostatic methods. Based on their
injectability and flowability, hydrogels can be applied to a variety
of irregular wounds and intracavity injuries, which is meaningful for
rapid and effective hemostasis. Furthermore, the excellent
biocompatibility and biodegradability ensure the safety of
hydrogel-based biomaterials for in vivo applications and enhance
their ability to promote wound healing. Other properties such as
drug delivery, self-healing, self-growth, and stimulation response can
be tailored as needed, thus endowing the materials with additional
therapeutic functions (Khunmanee et al., 2017; Vakalopoulos et al.,
2017; Wang et al., 2019b; Hashemnejad and Kundu, 2019; Matsuda
et al., 2019; Xue et al., 2019). Nevertheless, further clinical application
of hydrogel-based biomaterials is constrained by certain
shortcomings, including weak wet surface adhesion, poor
mechanical properties, delayed in situ gel formation, and
uncontrollable degradation (Bu et al., 2017; Li et al., 2017; Zhu
et al., 2018a; Rao et al., 2018).

This review demonstrates a brief introduction of the
physiological mechanisms of hemostasis, and focuses on the
natural-derived polysaccharide- and protein-based hemostatic
hydrogels in terms of preparation strategies, physicochemical
properties, hemostatic and wound-healing abilities, as well as
recent advances for clinical applications.

BIOLOGICAL MECHANISMS OF
HEMOSTASIS

The physiological mechanism of hemostasis in the human
body is a complex and dynamic process consisting of a

series of spatiotemporal reactions. In healthy conditions,
vascular endothelial cells secrete a series of anticoagulant
factors (heparin-like molecules, thrombomodulators, nitric
oxide and prostacyclin) to avoid blood clotting (Hickman
et al., 2018). When tissue injury leads to vascular rupture
and bleeding, the body will respond rapidly by promoting
reactive local vasoconstriction to reduce blood loss, while at
the same time promoting the secretion of clotting factors and
related proteins and mobilizing the action of platelets (Ruggeri
and Mendolicchio, 2007). The damage to vascular
endothelium exposes the subendothelial collagen, which
attracts platelets for adhesion, and the formation of platelet
thrombi is initiated (Versteeg et al., 2013). Normally, platelets
adhere to collagen with integrin α2β1 and glycoprotein (GP)
VI as the two main receptors, while adhesion under high-shear
conditions is enhanced with the help of GPIb-V-IX receptor
complexes and von Willebrand factor (vWF) (Wang et al.,
2018). The adhesion process promotes platelet activation and
aggregation at the bleeding site, enabling rapid platelet
thrombus formation, which is known as “primary
hemostasis” (Boulton, 2006; Varga-Szabo et al., 2008;
Makris et al., 2011). In tandem, the coagulation cascade,
known as “secondary hemostasis”, is initiated by both
endogenous and exogenous pathways (Roberts et al., 2006).
The exogenous pathway is activated by the exposure of tissue
factor in the blood, while the endogenous pathway is triggered
by the exposure of factor XII to foreign substances with
negative charges on the surface, both of which ultimately
lead to the activation of coagulation factor X (Hoffman,
2003). Activated factor X converts prothrombinogen into
thrombin, which in turn rapidly converts fibrinogen into
fibrin monomers, and the monomers could aggregate to
form a fibrin network structure (Gale, 2011). Finally,
activated factor XIII immobilizes platelet thrombi and other
blood components at the bleeding site and forms the final clot
by inducing intrafibrillar cross-linking (Morrissey, 2012; Chan
et al., 2015). Therefore, hemostatic biomaterials should focus
on mimicking and exploiting the complex coagulation
mechanisms described above in order to achieve more rapid
and effective hemostatic efficacy.

POLYSACCHARIDE-BASED HEMOSTATIC
HYDROGELS

Polysaccharides are widely present in the natural world as
reproducible substances. They have excellent biocompatibility
and biodegradability, and in some cases exhibit the ability to
promote hemostasis, accelerate wound healing, and antibacterial
properties (Yang et al., 2017; Khan and Mujahid, 2019; Chen
et al., 2020). However, the deficiency of adhesion strength and
mechanical properties constrains the application of
polysaccharides being used for the preparation of hydrogel
adhesives (Zhong et al., 2021). Therefore, chemical
modification and cross-linking with various of performance-
enhanced materials has become widely accepted programs
(Zhang et al., 2021).
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Chitosan
The excellent biocompatibility and degradability, as well as the
hemostatic and antibacterial properties reported in previous
studies, make chitosan an ideal candidate for hemostatic
biomaterials (Jayakumar et al., 2011; Malette et al., 1983; Chou
et al., 2003; Cheung et al., 2015). Wang et al. prepared a novel
photo-crosslinked chitosan hemostatic hydrogel by introducing
two crosslinking mechanisms (photo-induced carbon-carbon
double bond crosslinking; catechol-Fe3+ chelation), and two
chitosan polymer networks (catechol-modified methacryloyl
chitosan; methacryloyl chitosan) (Wang et al., 2020a). The
hydrogel not only showed hemostatic properties in a mice
liver hemorrhage model, but also exhibited excellent
antimicrobial and healing-promoting abilities through
Staphylococcus aureus-infected full-thickness skin wound

model. Zhao et al. prepared an injectable multifunctional
nanocomposite cryogel for hemostasis and healing of
incompressible wounds. The cryogel based on carbon
nanotubes (CNT) and glycidyl methacrylate functionalized
quaternized chitosan (QCSG) showed better coagulation
ability, higher blood cell and platelet adhesion and activation
than gelatin sponge and gauze, and excellent hemostatic
performance in a rabbit liver defect lethal incompressible
hemorrhage model. It even showed better hemostasis than
Combat Gauze in a standardized round liver hemorrhage
model (Zhao et al., 2018) (Figure 1). In another study by
Zhao et al., an antimicrobial electroactive injectable hydrogel
dressing was discussed. Hydrogels with the main components of
quaternized chitosan-g-polyaniline and benzaldehyde group
functionalized polyethylene glycol (PEG)-co-poly (glycerol

FIGURE 1 | Shape memory properties of the cryogels. (A–C) Fast resilience and macroscopical shape memory property of the cryogels. Scale bar: 1 cm. (D)
Schematic representation of the shape memory mechanism of the cryogel. (E)Microtopography of the cryogels in original state, shape-fixed state and shape recovery
state after fixing. Scale bar: 400 μm. Reproduced from (Zhao et al., 2018) with permission from Copyright 2018 Springer.
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sebacate) was able to promote wound healing, increase
granulation tissue thickness and collagen deposition in a full-
thickness skin defect model. In addition, the hydrogel dressing
could rely on its self-healing ability to extend its service life, which
may provide significant convenience for potential clinical
applications (Zhao et al., 2017).

Qu et al. prepared a self-healing injectable wound dressing
with quaternized chitosan (QCS)-based hydrogel (Qu et al.,
2018). The dressing showed tensile and compressive properties
comparable to those of human skin and could be used for joint
skin injuries. Curcumin loading enabled the dressing to
demonstrate favorable antioxidant capacity and pH-responsive
release profile, which significantly accelerated wound healing and
upregulated vascular endothelial growth factor (VEGF) in a full-
thickness skin wound model. To manage bone bleeding and bone
defects derived from trauma or bone tumor resection, Huang
et al. introduced a multifunctional hydrogel fabricated with
catechol-conjugated chitosan (CHI-C) and dialdehyde cellulose
nanocrystal (DACNC) (Huang et al., 2021a). After injection into
the bone defect area, the hydrogel could be coagulated in situ

within 2 min. The ability of this hydrogel to stop bleeding and
promote bone regeneration was demonstrated in a rabbit iliac
bone defect model (Figure 2). In addition, Eugene et al. prepared
a kind of chitosan-PEG-tyramine hydrogel and explored its
performance as effective tissue adhesive. Using sutures, fibrin
glue and cyanoacrylate as controls, the hydrogels showed rapid
glue-forming ability within 5 s and better wound healing in a rat
skin incision model (Lih et al., 2012).

Hyaluronic Acid
In response to the weak adhesion of existing hemostatic agents to
moist and mobile tissues, an impressive study on hydrogel
adhesives was conducted by Hong et al. (2019) The design of
this hydrogel system with gelatin and hyaluronic acid (HA) as the
main components was inspired by the extracellular matrix. To
verify the powerful hemostatic properties of the hydrogel, the
authors selected porcine carotid artery and heart hemorrhage
models, which placed high demands on the wet surface adhesive
ability, mechanical properties, and rapid gelling and fixation
ability of the hemostatic material. Encouragingly, the hydrogel

FIGURE 2 | Representative gross photograph (A1–A4), radiophograph (B1–B4), and micro-CT scan images (C1–C4) of the ilium bone defects of New Zealand
rabbits receiving no treatment (III) or treated with bone wax (I), CHI-C solution (II), or CHI-C/DACNC hydrogel (IV) after 4 and 8 weeks of surgery. The CHI-C/DACNC
group shows more abundant bone formation than other groups. Reproduced from (Huang et al., 2021a) with permission from Copyright 2021 Wiley.
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successfully sealed the high-pressure hemorrhage from a 4- to 5-
mm carotid artery incision and a 6-mm diameter cardiac
perforation (Figure 3). Zhu et al. designed a hemostatic and
anti-infective hydrogel with sustained drug release capability
(Zhu et al., 2018b). The composite material was consisted of
aminoethyl methacrylate HA (HA-AEMA), methacrylated
methoxy PEG (mPEG-MA) hybrid hydrogels and
chlorhexidine diacetate (CHX)-loaded nanogels. In vivo
hemostasis and wound healing were evaluated using mice liver
hemorrhage and full-thickness skin wound models. The results
confirmed the ability of the composite hydrogel to rapidly stop
bleeding, accelerate wound healing, and prevent infection.

Luo et al. introduced a HA/collagen hemostatic hydrogel that
was prepared in situ on the tissue surface. In vitro experiments
revealed that the hydrogel was stronger than fibrin glue in terms
of rupture strength, and a rat liver hemorrhage model showed its
hemostatic ability comparable to that of fibrin glue (Luo et al.,
2019). As a novel procoagulant, inorganic polyphosphate (PolyP)
stored in platelet-dense granules is receiving increasing attention
(Ruiz et al., 2004). PolyP has been reported to promote
coagulation through four pathways: 1) initiation of the
coagulation cascade reaction; 2) activation of coagulation
factor V; 3) stabilization of fibrin clots; and 4) facilitation of

factor XI feedback activation by thrombin (Müller et al., 2009;
Mutch et al., 2010; Choi et al., 2011). Sacoda et al. prepared a
hemostatic hydrogel with HA and PolyP. Biocompatibility of the
composite hydrogel in vitro and in vivo was demonstrated by
viability assays of three cell lines (macrophages, fibroblasts and
mesothelial cells) and by intraperitoneal and subcutaneous
injections. In addition, the hydrogels showed similar
hemostatic effects compared to fibrin glue in a mise liver
hemorrhage model (Sakoda et al., 2018).

Alginate
Alginate is an anionic polysaccharide with a strong water absorption
capacity (Aderibigbe and Buyana, 2018). It also can activate the
coagulation cascade reaction and accelerate platelet aggregation after
cross-linking with Ca2+, thus accelerating hemostasis (Lee and
Mooney, 2012). Namitha et al. constructed a supramolecular
hydrogel scaffold with alginate/poly (N-vinyl caprolactam),
followed by ionic cross-linking with Ca2+ and tannic acid (TA)
to prepare a pH and temperature dual responsive supramolecular
hydrogel (Preman et al., 2020). Hydrogels showed good mechanical
properties, and their pore size could be regulated by changing the
ratio of polymers. The proper porosity promoted the migration of
fibroblasts, the exchange of nutrients and the absorption of exudate.

FIGURE 3 | Hemostatic properties of the matrix gel in a pig cardiac puncture injury model. (A) Schematic diagram of the surgical procedure. (B) Gross view of the
rapid hemostasis and sealing following cardiac puncture injury. (C) Scanning electron micrographs of the interface between the pig heart puncture wound and the
hydrogel. Scale bar: 50 μm (left plates); 10 μm (right plates, enlarged). (D) Images of a heart autopsy following killing after two 2 weeks of postoperative recovery, the
hydrogel still adhering to the wound. (E) Tissue staining images of the interface between pig heart cardiac tissue and the matrix gel, after 2 weeks of postoperative
recovery. Scale bar: 200 μm (n � 4). Reproduced from (Hong et al., 2019) with permission from Copyright 2019 Springer.
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By coating syringe needles with hemostatic hydrogels, Ren et al.
prepared a kind of hemostatic needles. The Alginate-based hydrogel
(Alg-Ca) would detach from the surface of the needle and stay at the
puncture site, preventing further bleeding (Ren et al., 2020). The
hemostatic capability of the hydrogel-coated needles in the blood
vessel puncture was tested by models of rat external jugular vein and
rabbit ear vein, and in viscera puncture was tested by rat kidney and
liver. In addition, the hemostatic effect was also investigated in the
external jugular vein of hemophilic mice (Figure 4).

Oxidized alginate (OA), a dialdehyde derivative of alginate, with a
large number of aldehyde groups on its surface which can form
Schiff base bonds with the amine groups of histones, thus greatly
enhancing the adhesion properties(Reakasame and Boccaccini,
2018). Song et al. prepared dopamine-alginate oxide hydrogels
(Dopa-OA) by introducing dopamine into the OA molecular
chain in order to further enhance the adhesion properties of OA
hydrogels. Meanwhile, polyallylamine (PAA) was selected as the
internal structural polymer to improve the mechanical properties
(Song et al., 2019). The composite hydrogel could be rapidly gelled in
5–10 s and showed good hemostatic properties in a mice liver
hemorrhage model. In the study by Kong et al., a series of
hydrogel dressings based on N-carboxyethyl chitosan (CEC) and
OA were developed for wound healing (Kong et al., 2021). In a mice
full-thickness skin wound model, these hydrogels could significantly
promote the healing of infected wounds. Liu et al. developed
composite hydrogels with tissue factor-integrated liposomes

combined with alginate. Fluorescence measurements showed that
the proteoliposomes were uniformly distributed in the alginate
matrix and remained intact even after release into simulated
body fluids, which exhibited excellent hemostatic properties (Liu
et al., 2020).

Cellulose
Cellulose is a major component of plant cell walls and can also be
produced by certain microorganisms (Mano et al., 2007). Due to the
cost-effective production and the excellent mechanical properties,
cellulose has been widely researched in biomedical area (Xiao et al.,
2019; Alven and Aderibigbe, 2020). In the study by Huang et al., a
hydrogel (CMC/PEG-BA) based on carboxymethyl cellulose (CMC)
and a four-armed PEG capped with benzaldehyde (PEG-BA) was
developed (Huang et al., 2016). At the same crosslink density, the
four-armed PEG network of CMC/PEG-BA was more resistant to
fracture than the normal two-armed PEG. After application to rabbit
liver incisions, CMC/PEG-BA hydrogel showed good hemostatic
ability compared to sterile gauze. Histological evaluation revealed
that sterile gauze resulted in a large gap between the wound
interfaces, while CMC/PEG-BA was able to trap red blood cells
and fill the injury space. Deng et al. made a composite hydrogel by
combining fenugreek gumwith cellulose through hydrogen bonding
in order to impart better mechanical properties to the hemostatic
hydrogel (Deng et al., 2020). Based on a porous fiber network
structure, the hydrogel can rapidly absorb wound exudate and

FIGURE 4 | Preparation of the hemostatic needles with the Alg-Ca coatings. (A) Schematic illustration of the preparation of hemostatic hydrogel coatings on
syringe needles. (B) Rheological analysis of Alg-5% Ca, Alg-10% Ca, and Alg-15% Ca hydrogel films after exposure to serum. (C) The viscosity of alginate, Alg-5% Ca,
Alg-10% Ca, and Alg-15% Ca precursor solutions. Reproduced from (Ren et al., 2020) with permission from Copyright 2020 Elsevier.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org November 2021 | Volume 9 | Article 7801876

Cheng et al. Adhesive Hydrogels for Hemostatic Applications

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


demonstrated the ability to stop bleeding and promote wound
healing through mice liver hemorrhage and skin defect models.

The study by Wang et al. demonstrated a CO2-mediated
chemical cross-linking strategy that avoids the use of toxic cross-
linking agents to make biocompatible, mechanically strong double-
network cellulose/silk fibroin hydrogels (CSH). Through a rat full-
thickness skin injury model and a rabbit liver hemorrhage model,
the authors verified the hemostatic and wound healing potential of
this dual-network hydrogel (Figure 5) (Wang et al., 2020b).
Tavakoli et al. developed a novel Kappa carrageenan (κCA)-
coated cellulose nanofiber (CNF)/starch nanocomposite hydrogel
for hemostasis. The κCA coating imparted higher mechanical
strength and lower swelling and degradation rates to the
hydrogel, while maintaining the good biocompatibility and
hemostatic ability of the starch and cellulose matrices, making
κCA-coated starch/CNF hydrogel an ideal candidate for

hemostatic applications (Tavakoli et al., 2021). Mendes et al.
proposed a porous network hemostatic cryogel based on platelet
lysate (PL) and aldehyde-functionalized cellulose nanocrystals
(a-CNC) covalently cross-linked. Upon immersion into blood,
PL-CNC cryogels showed more powerful absorption capacity
compared to commercial hemostatic gelatin sponges.
Impressively, the cryogel can release biomolecules to increase
stem cell proliferation and migration and down-regulate the
expression of fibrinolytic process markers (Mendes et al., 2020).

PROTEIN-BASED HEMOSTATIC
HYDROGELS

Protein-based biomaterials are of wide interest in the biomedical
field due to their high mechanical strength, biocompatibility,

FIGURE 5 | Hemostatic evaluation of cellulose/SF hydrogels (CSHs). (A) Surgery scheme, showing that the hemostatic assay was performed with rabbit liver
(rabbit experimental number � 4). (B) Hemostatic time from the assay. (C) Blood loss assay. (D) HE staining of the incisions (the scale bar was 100 μm), showing the
CSH-1 activated hemocytes’ aggregation in the wounded sites in comparison with the untreated, gauze samples, and Col-products. For hemostatic time and blood loss
test, the results were calculated as mean ± SD, n � 4. Reproduced from (Wang et al., 2020b) with permission from Copyright 2020 American Chemical Society.
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biodegradability, and flexibility in structure-directed mechanics
(Löwik et al., 2010; Woolfson and Mahmoud, 2010; Silva et al.,
2014; Nguyen et al., 2018; Zhou et al., 2018). To date, protein-
based hydrogels have been extensively developed and are
considered as one of the ideal candidates for hemostasis and
promotion of tissue healing therapy (Maham et al., 2009; Huang
et al., 2018). Collagen, silk, and elastin are common structural
proteins for the preparation of protein-based hemostatic
biomaterials (Altman et al., 2003; Almine et al., 2010;
Chattopadhyay and Raines, 2014).

Gelatin
Gelatin, derived from partial hydrolysis of collagen, has been well
reported as a highly promising candidate for biomaterials.
However, its further applications are facing some challenges,
including low shape stability, rapid degradation profile, and
poor mechanical properties (Wang et al., 2014; Sun et al.,
2020). Xuan et al. designed a flexible antimicrobial hemostatic

dressing with two layers of dopamine/antimicrobial peptide
modified gelatin (GDP) and Ca2+ ions (GDP@Ca2+) to
provide antimicrobial and hemostatic properties, and another
was composed of polycaprolactone (PCL) to provide mechanical
strength (Xuan et al., 2020). In vivo evaluation of the bilayer
dressing with mice dorsal skin and liver models further
demonstrated that the dressing successfully adhered to the
tissue surface in a wet bleeding environment, promoting
healing while maintaining antimicrobial action for up to
2 weeks (Figure 6).

Tang et al. constructed a three-dimensional network hydrogel,
consisting of methacrylated hyaluronan-polyacrylamide, silver
nanoparticles and gelatin (Tang et al., 2020). The adhesive was
capable of sustained release of silver ions and thus possessed
broad-spectrum antimicrobial activity. In a rat wound infection
model, the adhesive showed superior ability to promote wound
healing. Yuk et al. reported a dry double-sided tape (DST) for
tissue adhesion in wet environment. The tape had a thin hydrogel

FIGURE 6 | The hemostatic and sealing performances of nanosheets on the dorsal skin of a nude mice model. (A) Schematic of using a nanosheet to heal skin
wounds with bleeding and infection. (B) The operation process of a GDP@Ca2+/PCL nanosheet on a wound. (C) Images of wound healing after treatment with gauze,
PCL and the GDP@Ca2+/PCL nanosheets, with an untreated wound serving as the control group. (D,E) The blood loss (D) and clotting time (E) evaluations of the
samples. Reproduced from (Xuan et al., 2020) with permission from Copyright 2020 Elsevier.
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surface made from a combination of gelatin/chitosan and
crosslinked poly (acrylic acid) grafted with
N-hydrosuccinimide ester (Yuk et al., 2019). The adhesive
mechanism relied on the ability to remove interfacial fluids
from tissue surface, thus allowing rapid temporary cross-
linking of the material to the tissue surface. The subsequent
interfacial covalent cross-linking further improved the adhesion
strength and stability. The authors showed through a series of ex
vivo organ rupture models (lung, stomach, heart and intestine)
that DST could achieve strong adhesion to a variety of wet
dynamic tissue surfaces within seconds (Figure 7).

Gaharwar et al. reported a nanocomposite hemostatic
hydrogel consisting of gelatin and synthetic silicate
nanoplates (Ak et al., 2014). The nanocomposite reduced
blood clotting time by 77% and formed stable clot-gel
systems in vitro, and in vivo testing demonstrated its ability
to promote hemostasis in fatal liver lacerations. In a study by
Liu et al., double network hydrogels were prepared using TA
and gelatin methacrylate (GelMA), and the changes in
morphology and mechanical properties of hydrogels were
explored at different TA concentrations and treatment
times (Liu et al., 2018). The results showed that the
mechanical properties and adhesion capacity of GelMA-TA
hydrogels were significantly improved.

Silk
Silk is a common natural fibrous protein, usually produced by
arthropods (e.g., silkworms, bees, spiders, etc.), with unique
physicochemical properties (Ma et al., 2018; Tomeh et al.,
2019). Low molecular weight Silk fibroin (SF) has been shown
to have a definite hemostatic ability (Lei et al., 2016). Huang et al.
prepared hemostatic microspheres with different degrees of
surface roughness by cross-linking sodium alginate and SF in
order to accelerate the blood coagulation. The results showed that
when the volume ratio of SA to SF was adjusted to 2:1 (SF/SA2),
the surface of the microspheres was the roughest, and thus more
red blood cells could be aggregated and the coagulation speed of
the hemostatic agent was apparently accelerated (Huang et al.,
2021b). Shefa et al. constructed a hydrogel scaffold using oxidized
cellulose nanofibers and SF, and explored the effect of thrombin
loading on the hemostatic properties of this scaffold. Ultimately,
the thrombin-loaded hydrogel scaffold was shown to have good
hemostatic ability through the rabbit ear artery as well as the rat
severed tail and liver hemorrhage models (Shefa et al., 2019). In
the study by Serban et al. SF and PEG were used in the research of
hemostatic adhesives. The composite hydrogel can be rapidly
formed within seconds by chemical cross-linking and exhibits
lower swelling rates and longer degradation times (Serban et al.,
2011).

FIGURE 7 | Potential applications of the DST. (A) Sealing of an air-leaking lacerated ex vivo porcine lung lobe by a hydrogel patch adhered with the DST. (B) Sealing
of a fluid-leaking ex vivo porcine stomach by a hydrogel patch adhered with the DST. (C) DST-mediated adhesion of a drug-loaded patch on a beating ex vivo porcine
heart with a cut. (D) Diffusion of a mock drug (fluorescein) from a DST-adhered drug patch into the ex vivo porcine heart tissue over time. Reproduced from (Yuk et al.,
2019) with permission from Copyright 2019 Springer.
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Referring to the chemical composition and hierarchical
nanostructure of mussel foot proteins, Bai et al. introduced
TA into SF and developed a hemostatic hydrogel sealant with
excellent wet adhesion properties (Bai et al., 2019). When being
used to seal ruptured bleeding tissue in vivo, the composite
hydrogel demonstrated rapid and effective hemostasis, while
maintaining good biocompatibility and biodegradability, as
well as outstanding antimicrobial activity. The hydrogel was
able to adhere firmly to the tissue surface even in a wet
dynamic environment, which undoubtedly increased the
reliability of its hemostatic effect. Likewise inspired by mussel
adhesion proteins, Burke et al. designed a mechanically enhanced
catechol-functionalized filamentous protein hydrogel (Burke
et al., 2016). The potential advantage of catechol-SF over the
available water-soluble catechol adducts based primarily on the
PEG was that the catechol-SF were water processable and its
hydrophobicity resulted in lower swelling in vivo than that of
catechol-PEG. Sen et al. explored the role of hydrogel scaffolds
synthesized from SF and polyurethane in diabetic wound healing
(Sen et al., 2020). As a wound dressing, the composite material
with excellent exudate absorption and broad-spectrum
antibacterial ability could significantly promote the healing of
chronic hyperglycemic wounds.

Elastin
Elastin is an important protein component of the extracellular
matrix (ECM) in tissues such as the vascular system, skin, and
lung (Vindin et al., 2019). It is once regarded as an expected
source of biomaterials. However, the insolubility and structural
stability of elastin hamper its mass production and further
research (Kielty et al., 2002). Accordingly, soluble tropoelastin
(precise replicas of the natural elastin precursor) as well as elastin-
like polypeptides (ELP) have emerged as candidates for elastin
(Wise and Weiss, 2009; Kozel and Mecham, 2019; Reichheld
et al., 2019). Annabi et al. designed a highly elastic hydrogel
sealant with tunable adhesion properties for surgical applications.
The methacrylate-substituted tropoelastin (MeTro) hydrogel was
obtained by photo-crosslinking the recombinant human protein
tropoelastin (Annabi et al., 2017a). After MeTro hydrogel was
used to seal a series of in vivo incision models (rat arteries, lungs,
and porcine lungs), all animals were able to survive without
functional abnormalities during the observation period. Based on
the above work, Annabi et al. reported a sprayable, elastic
composite hydrogel composed of two ECM-derived
biopolymers (GelMA and MeTro) for the treatment of chronic
wounds (Annabi et al., 2017b). Interestingly, the physical
properties of hydrogel can be fine-tuned by varying the
MeTro/GelMA ratio and the final polymer concentration.
Moreover, loading of antimicrobial peptides conferred broad-
spectrum antimicrobial ability to the composite hydrogel.

Brennan et al. prepared an adhesive with underwater adhesion
and “smart” environmental response behavior. The adhesive is
constructed with an ELP from Escherichia coli and modified with
3,4-dihydroxyphenylalanine (DOPA), which can coacervate in
response to environmental factors such as temperature, pH and
salinity (Brennan et al., 2017). Compared to commercially
available fibrin glues, this adhesive exhibits significantly higher

adhesion strength in dry, wet and even submerged environments.
In the study by Desai et al. flexible hydrogel adhesive was
prepared, similarly based on the chemical modification of ELP
by dopamine (Desai et al., 2020). The hydrogel exhibited a stable
swelling rate at 37°C under aqueous conditions. In addition, the
adhesive strength of the flexible adhesive was revealed through
tensile pull-off and lap-shear testing on porcine skin. In another
attempt to overcome adhesion challenges in the underwater
environment, Narayanan prepared a kind of tropoelastin-like
self-coacervating polyesters that could mimic the self-
coacervation and environmental stability of a mussel adhesive
protein (Narayanan et al., 2020). This smart material
demonstrates the potential for rapid underwater adhesion
applications.

CONCLUSION AND OUTLOOK

When facing a hemorrhagic injury, the body’s inherent
hemostatic mechanisms become insufficient to rapidly stop
blood loss, and certain materials and techniques are often
needed to achieve rapid hemostasis (Neubauer and Zieger,
2021). Traditional hemostatic methods (tourniquets, gauze,
bandages, etc.) are mainly relied on the physical blockage and
limited activation of the coagulation system, which can hardly
achieve effective hemostasis and may instead face additional
problems such as secondary injury, immune rejection and
infectious risk (Hagemann et al., 2013; Hickman et al., 2018).
Commercially available hemostatic materials such as porcine-
derived fibrin sealant and gelatin matrix have been approved for
clinical application, but adhesion and mechanical deficiencies
combined with high cost and risk of disease transmission greatly
limit their clinical efficacy, especially in acute or severe bleeding
situations. Therefore, modern medicine needs a revolution in
hemostatic techniques urgently to address the numerous medical
risks associated with excessive blood loss. Hydrogels derived from
polysaccharides and proteins are biocompatible, biodegradable,
non-immunogenic, and can provide powerful hemostatic ability
by promoting, enhancing, compensating, or mimicking the
natural mechanisms of hemostasis (Ryu et al., 2015; Zhang
et al., 2015; Hu et al., 2019; Rizzo and Kehr, 2021). Although
research on polysaccharide- and protein-based hydrogels for
hemostasis continues to gain momentum, there are still critical
issues to overcome before they can be translated for clinical
applications. The challenge lies mainly in the difficulty of
achieving the harmonization between biosafety, hemostatic
effectiveness, and practical feasibility.

It is of great significance to define the key properties that an
ideal hemostatic hydrogel-based biomaterial should have and
thus guide the future research. When being applied to the human
body, hydrogel-based materials must primarily ensure biosafety.
In this regard, biocompatibility, biodegradability, non-toxicity,
and non-immunogenicity should be the prerequisites for the
application of ideal hemostatic hydrogels. On the other hand,
the effectiveness of hemostasis needs to be considered, which
requires biomaterials to possess not only superior hemostatic
ability, but also outstanding physical and chemical properties to
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meet the needs of specific conditions, for example, a wet, dynamic,
irregular wound. Therefore, reliable biocompatibility,
biodegradability, mechanical strength, wet surface adhesion,
viscoelasticity, and fatigue resistance are necessary for becoming
ideal hemostatic hydrogel-based biomaterials. In addition to
biosafety and hemostatic effectiveness, practical feasibility is
equally significant and easily ignored. Reduced production costs,
simplified preparation processes, ease of handling, and convenient
preservation are important prerequisites for clinical applications. In
addition, hemostatic hydrogels need to be individually designed to
meet the requirement of complicated clinical situations. For example,
stronger wet surface adhesion is required in the face of abnormal
coagulation due to chronic disease. Hemostasis around nerve tissue
imposes stringent requirements on the control of swelling rates.
hemostasis of internal organs requires hydrogels that can resist
specific enzyme without enzymatic breakdown before complete
hemostasis is achieved. Other properties such as wound healing
promotion, anti-inflammatory and antimicrobial capabilities are also
part of the hemostasis requirements in certain circumstances and
need to be addressed on a situation-specific basis. There are no
uniform standards for the adhesion and mechanical strength of ideal
hemostatic materials, which may be due to differences in application
requirements (skin, organ, arterial or cardiac surface hemostasis) and
hemostatic mechanisms (physical sealing, coagulation mechanisms).
In general, the ideal hemostatic hydrogel should have an adhesion
strength of at least tens to hundreds KPa.

Natural-derived polysaccharide- and protein-based hydrogels
have the advantages of excellent biosafety, however, their
hemostatic effectiveness are often compromised by insufficient
mechanical and adhesion strength (Zia et al., 2015; Alven and
Aderibigbe, 2020; Graça et al., 2020; Zhang et al., 2020). Further
research is expected to improve wet surface adhesion, pressure-
resistant intensity and rapid gelation ability through multiple
methods, including chemical modifications, cross-linking with
functionalized components, advanced preparation techniques, and
thus facilitating the transformation of hemostatic biomaterials from
laboratory research to clinical applications. Further research should
be devoted to enhancing hemostatic efficacy through a variety of
methods. However, in order to enhance the mechanical properties,
many of the current hemostatic hydrogels are prepared by complex
synthetic routes and often with the help of non-biocompatible
synthetic polymers, a process that is highly susceptible to reduced
biosafety. Therefore, to ensure biosafety, the reaction steps should be
simplified as much as possible, while avoiding the addition of
components with poor biocompatibility. The prepared materials

should undergo comprehensive safety verification, including the
metabolic pathways of degradation products as well as a toxicological
testing. Simplified chemistry reactions also facilitate control
production costs, and materials consisting of simple ingredients
approved by regulatory agencies are more likely to enter clinical
trials. Future research on the enhancement of hemostatic ability can
be achieved either by increasing the adhesion and mechanical
properties of hydrogels or by enhancing the physiological
coagulation process. If the rapid formation of blood clots can be
promoted to reinforce the hemorrhage seal, the requirements for the
adhesive andmechanical properties of the hydrogels can be relatively
reduced. This process can be achieved with the loading of key
coagulation factors or proteins.

In conclusion, by summarizing previous preclinical studies, we
discussed the natural-derived polysaccharide-based (chitosan,
HA, alginate, cellulose) and protein-based (gelatin, silk,
elastin) hemostatic hydrogels in terms of preparation
strategies, physicochemical properties, hemostatic and wound-
healing abilities. These life-saving materials are expected to
revolutionize civilian or military bleeding control options,
improve the quality of treatment, and ultimately lead to a
radical change in hemostasis technology.
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