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Experimental studies have shown that the reactions to external stimuli may appear only
few hundreds of milliseconds after the physical interaction of the stimulus with the proper
receptor.This behavior suggests that neurons transmit the largest meaningful part of their
signal in the first spikes, and than that the spike latency is a good descriptor of the informa-
tion content in biological neural networks. In this paper this property has been investigated
in an artificial sensorial system where a single layer of spiking neurons is trained with
the data generated by an artificial olfactory platform based on a large array of chemical
sensors. The capability to discriminate between distinct chemicals and mixtures of them
was studied with spiking neural networks endowed with and without lateral inhibitions
and considering as output feature of the network both the spikes latency and the average
firing rate. Results show that the average firing rate of the output spikes sequences shows
the best separation among the experienced vapors, however the latency code is able in
a shorter time to correctly discriminate all the tested volatile compounds. This behavior is
qualitatively similar to those recently found in natural olfaction, and noteworthy it provides
practical suggestions to tail the measurement conditions of artificial olfactory systems
defining for each specific case a proper measurement time.
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INTRODUCTION
The processing of signals from sensorial inputs is an important
function in all living beings. In most multicellular animals this
process is carried out by the nervous system that is formed by
a dense network of specialized cells called neurons. Experimen-
tally gained evidences about the functionalities of the nervous
system led to the design of mathematical models with the twofold
purpose to elucidate the physiological processes and also to arti-
ficially reproduce the natural functions. During the years, these
models, broadly called artificial neural networks, have progres-
sively extended the similarity with Nature including functions
and structures as those became known by physiological investi-
gations. To this regard, neural networks involving spiking neu-
ron units raise the level of biological similarity (Maass, 1997,
1999), incorporating the spatio-temporal computation (Ferster
and Spruston, 1995). Although the behavior of individual neu-
rons is well characterized by phenomenological models (Gerstner
and Kistler, 2002), it is not yet completely clear how the informa-
tion is distributed in the spike patterns and which code neurons
use to transmit this information. To this end, behavioral stud-
ies show that the reaction times of several animals to external
stimuli can be surprisingly short (Rieke et al., 1996). Moreover,
recent findings evidences that neurons in the cortex can per-
form very fast analog computations. For example, humans can
analyze and identify visual inputs in less than 100 ms. Then, con-
sidering that this process involves at least 10–15 synaptic steps

from the retina to the temporal hemisphere, less than 10 ms is the
remaining time for the neuron processing (Thorpe et al., 1996).
These evidences are not compatible with the analysis performed
with standard descriptors like firing rate (Michael and Johnson,
2003) but they are compatible with alternative descriptors, such
as spike latencies. This does not mean that the rate coding is not
used, instead that when fast processing is needed, latency coding
schemes are preferred (Maass, 1999). Spike latency is defined as
the time interval between the application of the stimulus and the
first spike.

The importance of the processing of this feature is found in
more brains zones like the visual or auditory area (Heil, 2004;
Gollisch and Meister, 2008). The very fast discrimination and
recognition of odors shown by several animals to particular stimuli
suggests that this feature can play a significant role also in olfaction
(Galizia and Menzel, 2000; Uchida and Mainen, 2003). This con-
jecture is supported by the recent observation that raise the level of
biological similarity latency patterns of olfactory glomeruli con-
tain a quantity of information that is sufficient for higher brain
centers to identify odors and their concentrations (Junek et al.,
2010).

The features of spike encoding attracts also researchers inves-
tigating artificial senses as a step toward the implementation of
biological computational paradigms.

The studies on artificial senses are rather advanced for “physi-
cal” senses such as sight and hearing, while the artificial analog of
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those senses involving chemistry, such as olfaction and taste, are
still rather primitive.

Artificial olfaction stemmed at the end of the eighties from
the observation that solid-state gas sensors and olfactory recep-
tors (in amphibians, insects, and mammals) are characterized by
a wide receptive field (Sicard and Holley, 1984; Malnic et al., 1999;
Hallem et al., 2004). This conjecture evolved in the electronic nose
concept that is defined as an ensemble of partially specific chemi-
cal sensors complemented by some pattern recognition algorithm
(Persaud and Dodds, 1982; Gardner and Bartlett, 1994).

Besides the combinatorial sensitivity of receptors olfaction
reveals a complex structure that is supposed to play a relevant
part in odor recognition (Firestein, 2001). Olfaction is based on
few hundreds of different receptor classes expressed by millions
of olfactory neurons organized in the olfactory epithelium at the
interface with the external environment. The large redundancy of
the epithelium, namely many olfactory neurons carrying the same
receptors, is used by the convergence of olfactory neurons signals
into structures called glomeruli that are organized in the olfactory
bulb. Many experimental evidences support the common opin-
ion that each olfactory neuron expresses only one type of receptor
and that each glomerulus receives signals from olfactory neurons
carrying the same type of receptor (Imai et al., 2006).

The features of spike encoding attracts also researchers investi-
gating artificial olfaction as a step toward the implementation of
biological computational paradigms (Martinelli et al., 2006; Chen
et al., 2011). In these works integrate and fire models were opti-
mized with the purpose of increasing odor recognition. A more
complex approach was made by Koickal et al. (2007) who imple-
mented in a chip a bio-inspired signal processing of the sensor
signals and indicated with simulated data the potential impact of
spike latency in odor identification. Noteworthy, all these stud-
ies were concerned with arrays of few sensor units (where each
sensor actually plays the role of an artificial glomerulus). The dis-
crimination content of the latency coding in natural olfaction is
then a very interesting aspect that could also produce remark-
able advantages in artificial olfaction. Eventually, the application
of this concept could indeed allow reducing the measurement time
with a consequent minor exposure of the sensors to the samples
and probably a reduced rate of poisoning of the sensor surface.
On the other hand, the exploitation of latency requires the use
of a sensor system incorporating the main features of the natural
olfaction. These are the very large number of individual sensors,
the glomeruli layer and the spike encoding and processing of the
sensor signals. The difficulties to design and assemble large sensor
arrays are brilliantly solved by optical sensors. Several years ago it
was demonstrated that an image sensor (such as a CCD camera)
could conveniently measure, at once, the optical changes occur-
ring in a large number of fluorescent indicators deposited on the
tips in a bundle of optical fibers (Dickinson et al., 1999).

The basic property of an image sensor is the segmentation of a
whole scene into a number of elementary units, called pixels. Each
pixel corresponds to one photo detector measuring the light inten-
sity shining from a section of the whole scene. Eventually, when an
image sensor captures a sensitive surface coated by a continuous
layer of chemical indicators, the sensing layer is segmented into
a number of elementary units corresponding to the pixels of the

image. Then, since it is possible to evaluate the optical properties
of single pixels, each pixel of the image may correspond to an
individual sensor. To this end, even low-resolution images may
result in thousands of independent sensing units, then under the
hypotheses that different types of indicators are optically different
(this trivially means that each indicator has a different color) it is
possible to cluster the camera evaluation of the color of individual
pixels in abstract classes each containing pixels carrying the same
chemical indicator (Di Natale et al., 2008).

In this paper, a spiking neural network, mimicking the first
signal elaboration of the glomerular layer spikes sequences, has
been studied with data generated by an artificial olfactory platform
based on the principle described above.

The platform is formed by an artificial epithelium composed
of a layer of chemical indicators. The concept is illustrated in
Figures 1 and 2. The sensing layer is illuminated by a program-
mable computer screen and imaged by a digital camera (Filippini
et al., 2006). Each single pixel composing the image is then consid-
ered as an independent sensor characterized by a proper optical set
of features given by the chemical reporters spotted on its area (Di
Natale et al., 2008). Then, by exploiting their optical signature, the
pixels can be unsupervisedly grouped in classes giving rise to an
analog of the Olfactory Receptors Neurons–Glomerulus relation-
ship (Korsching, 2002). This platform can then efficiently mimic
the dynamics between signals of single receptors and how these
are transformed by the convergence into the glomeruli. Hardware
development is limited to the receptor units (the color indicators)
while glomeruli are a software implementation. Post-glomeruli
processing can be easily accomplished via software and results can
be strongly connected to the physical and chemical properties of
the interaction of volatile compounds with the receptor layer.

In this way, it is possible to define a processing architecture that
describes the pixels as artificial olfactory receptor neurons and the
convergence classes as a unit, where the mean signals of the afferent
artificial olfactory receptor neurons are the output signals of artifi-
cial glomeruli. This architecture that preserves many features of its
biological counterpart offers also interesting practical advantages
such as the largest signal to noise ratio of glomeruli with respect
to the signals of individual sensors and a very large tolerance to
single sensors fault events.

Glomeruli output signals are encoded into spike sequences and
then utilized as input to a spiking neural network. The latency of
the first two spikes of the neurons of the spiking neural network has
been considered as the network output, and the application of the
principal component analysis (PCA) to these quantities revealed
the capability of latencies to discriminate between different volatile
compounds.

MATERIALS AND METHODS
A spiking neural network has been applied to process the data
produced by the artificial olfactory platform described above. The
scheme of the whole system is shown in Figure 3. In order to
feed the spiking neural network in a way similar to natural sys-
tems, the glomerular units besides to average all the signals from
their afferent artificial olfactory neurons (corresponding to the
individual pixels of the image sensor) have to encode the ana-
log signals into spikes. The spiking network is formed by a single
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FIGURE 1 | Schematics of the architecture of the Artificial olfactory

system. The pixels defining the indicator spots, forming the artificial
epithelium, converge, according to their optical signatures to the units of a
convergence layer mimicking the role of the olfactory bulb. According to this

analogy the units in this layer can be considered as artificial glomeruli. In this
layer the average of the signals of the afferent pixels is calculated and then
encoded as a spike sequence that is utilized as the input to the processing
spiking neural network.

FIGURE 2 | Picture of the artificial epithelium, differently colored spots

are the indicators characterized by different hues. The colorless
background is coated by the supporting polymer.

layer. Each neuron of the network receives the excitatory inputs
from the glomeruli and it is contemporaneously inhibited by the
two adjacent neurons.

ARTIFICIAL EPITHELIUM
The sensing layer was formed by eight molecular indica-
tors. Six of them were metal complexes of the (5,10,15,20-
tetraphenylporphyrin),namely (5,10,15,20-tetraphenylporphyrin)
palladium [PdTPP], (5,10,15,20-tetraphenylporphyrin)rhodium
[RhTPP], (5,10,15,20-tetraphenylporphyrin)zinc [ZnTPP], (5,10,
15,20-tetraphenylporphyrin)molybdenum [MoTPP], (5,10,15,20-

tetraphenylporphyrin)iron [FeTPP], (5,10,15,20-tetraphenylporp
hyrin)manganese [MnTPP], a Silicon (phthalocyanine) [SiPC],
and finally a pH indicator known as Nile Blue (NB). The sens-
ing molecules were dispersed in a membrane based on plasticized
poly(vinyl chloride) (PVC; membrane composition in weight:
33% PVC, 66% bisethylhexyl sebacate and 1% indicator). The
sensing layer was prepared onto a 25-mm diameter transparent
substrate, a Thermanox plastic coverslip provided by Nunc. The
polymer membrane was at first casted onto the coverslip to fully
coat the surface. Then each indicator-polymer membrane was
randomly spotted in several replicas, in a number variable from
6 to 11, above the polymeric coating, to obtain the appearance
shown in Figure 2. The polymer layer has the main function to
support the sensing molecules avoiding the formation of indi-
cator aggregations, maintaining the molecules in a semi-solvent
condition.

MEASUREMENT SETUP
Absorbance properties of the sensing spots were measured accord-
ing to the computer screen photo-assisted technique (CSPT) where
a computer screen is used as light source and a digital camera
is used as a detector (Filippini et al., 2003). It was shown that
such an arrangement, even if based on low-cost components, has
enough sensitivity to capture the changes of the optical prop-
erties occurring in layers of metalloporphyrins when these are
exposed to volatile compounds (Filippini et al., 2006) with a sen-
sitivity comparable with that exhibited by solid-state sensors such
as quartz microbalances (Di Natale et al., 2010). Experiments were
carried out with a computer screen (Philips 170S4) and a webcam
(Philips SPC650NC/97). The camera was operated at a resolution
of 160 × 120 pixels, the signal intensities were given in camera
units according to the 8-bit analog to digital conversion of the
light intensity embedded in the camera driver. The arrangement

Frontiers in Neuroengineering www.frontiersin.org December 2011 | Volume 4 | Article 16 | 3

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Martinelli et al. Latency in artificial olfaction

FIGURE 3 | Conceptual scheme of the CSPT setup. (A) Both the screen and the camera are connected to the same computer where all the measurements
are controlled and data are recorded. (B) The sensing layer is enclosed in a gas-tight and transparent cell where vapors can be passed. The cell is leaned over
the surface of a LCD screen.

of the experimental setup is shown in Figure 3. The plastic sub-
strate was placed in a sealed cell with transparent windows in
order to be probed by light. Organic vapors diluted in a nitrogen
flow were passed through the cell. The tested volatile organic com-
pounds (VOCs) were two alcohols (ethanol and butanol) and three
amines (trimethylamine, triethylamine, and butylamine). Mix-
tures of ethanol and butanol, trimethylamine and triethylamine,
and trimethylamine and ethanol have also been tested. Besides
trimethylamine, all compounds are liquid at standard pressure
and temperature, then the gas samples were obtained diluting
the saturated pressure at room temperature in a pure nitrogen
gas flow. Mass flow controllers regulated the dilution factor and
the total flow during the measurements. The same dilution factor
(5%) was applied for all the compounds, due to the different phase
change parameters, the concentration of the different compounds
covered an interval from 1100 ppm for butylamine to 9000 ppm
for ethanol. Trimethylamine was measured from a certified bottle
where it was diluted in pure nitrogen gas at the concentration of
500 ppm. Each vapor was measured in triplicate. For each vapor
the sensing layer was exposed for 400 s and then kept 1100 s under
pure nitrogen gas flow to purge the indicators and to restore the
initial conditions.

These compounds are moderate Lewis acids and bases that are
known to elicit color change in porphyrins and acid-base indi-
cators. The opposite behavior of amines and alcohols provides a
significant test where the straightforward discrimination of amines
from alcohols is complemented by the recognition of the subtle dif-
ferences between compounds inside each family. Binary mixtures
were also tested to study the interference of compounds belonging
to the same family or to different families. In order to evaluate also
the reproducibility of the sensor system each vapor and mixture
was measured in triplicate.

The reaction to gas was probed with a pure green light illumi-
nation. As known from previous investigations, the wavelengths
contained in this color are suitable to appreciate the spectral
changes occurring in all the indicators. Hence the sensing layer
was illuminated with a pure green light, obtained with the RGB
code: [0 255 0]. As a consequence, the intensity of the camera

green channel of each pixel was the sensors output signal. During
the exposure to gas, the camera took a still image each 5 s.

GLOMERULI LAYER DEFINITION AND ANALOG-TO-SPIKING
CONVERSION
As previously mentioned, CSPT gives the opportunity to introduce
an elegant and simple methodology to reproduce the connec-
tion between the olfactory receptors and the glomeruli. Under
the hypothesis that the indicators are characterized by different
colors, it is possible comparing the color measured in each pixel to
assign pixels to classes whose elements are pixels carrying similar
indicators. In this way, the physical pixels are the artificial olfactory
neurons and the abstract classes are the olfactory glomeruli. CSPT
offers a powerful method for color measuring, it is based on the
formation of a fingerprint obtained exposing the sample to a set
of colors achieved blending the RGB values regulating the LCD
screen color, and measuring the resulting appearance of the sample
in the three channels (red, green, and blue) of the digital cam-
era. This method was demonstrated to be able to discriminate
between subtle color changes in colorimetric tests (Filippini and
Lundström, 2006). For the scope of glomeruli definition the sens-
ing layer was illuminated by the computer screen programmed to
display a rainbow of 50 colors from purple to red. The layer was
imaged by the webcam encoding the color in an 8-bit scale sepa-
rated in the red, green, and blue channels. The signals from the red,
green, and blue channels were concatenated, in this order, to form
a fingerprint vector. As a result, the color of pixels was encoded
in a fingerprint vector composed by 50 illumination colors × 3
camera color channels. Figure 4 shows the collected fingerprints.
In the ideal case of a perfectly homogeneous distribution of the
indicators and a uniform screen illumination, only nine differ-
ent fingerprints (corresponding to the eight indicators and the
polymer substrate) should be visible in Figure 4. Actually, the fin-
gerprints are almost continuously distributed evidencing a high
level of non-homogeneity in sensing spot formation. The cluster-
ing of the fingerprints of Figure 4 is in principle a straightforward
supervised operation. Indeed, the position of each spot is known
and indicators can be easily identified by their color. However,
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FIGURE 4 | Computer screen photo-assisted technique fingerprints

of all the pixels imaged in Figure 2. The fingerprints are formed
concatenating the red, green, and blue channels levels read by the
camera under the exposure to a rainbow of 50 colors from purple to

pure red. The fingerprints are differently colored according to the
indicator imaged in the corresponding pixel. Straightforwardly, the
largest signals are obtained for the pixels were the pure supporting
polymer is imaged.

it is interesting to incorporate in the artificial platform architec-
ture an automatic procedure clustering together pixels imaging
the same kind of indicators. This gives rise to an elegant mimic
of natural olfactory neurons where pixels are the olfactory neu-
rons, and the indicators are the olfactory receptor. The receptor
itself provides both the chemical sensitivity and the criteria to
the convergence to the relevant glomeruli. The efficiency of CSPT
to capture colors allows using automatic clustering with a negli-
gible amount of misclassifications. From a biomimetic point of
view, clustering of similar pixels provides the same class member-
ship disregarding the arrangement of spots, i.e., the distribution
of a given type of olfactory receptor neurons in the epithelium.
From a practical point of view this allows for instance a prompt
replacement of the artificial epithelium and even a simple commu-
nication of signals between different sensing units (Polese et al.,
2011).

The fingerprints of Figure 4 can be conveniently clustered into
an arbitrary number of classes by means of any unsupervised clas-
sification algorithm. Here a simple K-nearest neighbor (KNN)
algorithm has been chosen (Duda et al., 2000). According to the
practical implementation of the artificial epithelium, shown in
Figure 2, the indicators cover only a portion of the sensing layer.
The rest of the area is coated with the supporting polymer and
its color is clearly different from the color of the indicators, this
is quite visible in Figure 2 where the polymer-coated pixels are
clearly separated from the dyed pixels. In order to limit the analy-
sis to the pixels carrying information about the indicators, the
polymer-coated pixels were segregated applying a two classes KNN
classifier. Here the obvious choice of two classes was made possi-
ble by the straightforward difference between the fingerprints of
dyed and non-dyed pixels. However, the number of classes is a free

parameter of unsupervised classifiers, and the number of classes
has to be chosen according to the specific conditions of each appli-
cation. In this case, the number of classes can be chosen in order
to abide the biological paradigm according to which in a single
glomerulus only olfactory neurons expressing the same recep-
tor converge. This means that in the artificial system the classes
defined by KNN have to contain only pixels carrying the same
(or very similar) indicators. In order to fulfill this requirement,
a number of classes greater than the actual number of indicators
is necessary and here, 13 classes have been considered. This num-
ber, empirically chosen, is large enough to avoid misclassifications,
and at the same time, it is sufficiently small to guarantee that each
class collects a sufficient number of artificial olfactory neurons
adequate to provide, through the signal averaging, a significant
increase of the signal to noise ratio. Besides averaging the incom-
ing pixel signals, glomeruli are requested to encode the signal into
spikes in order to be processed by the spiking neural network.
Here, an “integrate and fire” (I/F) algorithm was used (Gerstner
and Kistler, 2002). The algorithm is conveniently described by the
equivalent electronic circuit shown in Figure 5. The inter-spike
time is determined by the magnitude of the analog input signal
and the circuit time constant, that is given by the product of the
two algorithm parameters: R and C, according to the following
equation:

u (t ) = R · I (t ) − C · R · du (t )

dt
(1)

I (t ) is the input signal and u(t ), the voltage across the capac-
itance. The circuit generates a spike anytime the voltage u(t )
reaches the threshold value (Vthreshold in Figure 5). The critical
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FIGURE 5 |The I/F algorithm implemented in the glomeruli units is

represented through its electronic equivalent circuit. The average signal
of the pixels pertaining to the glomerulus is represented by the input
current i (t ) and the output voltage is the encoded spiking sequence. Circuit
elements, including the operational amplifier, are ideal and their values are
internal parameters of the algorithm.

parameter of the algorithm is the time constant that is defined
as the product of R and C in the analog equivalent circuit. This
value has been empirically fixed to 21.3 s to obtain a sufficiently
large number of spikes from the glomeruli signals. The same
parameters were applied for all the glomeruli. Figure 6 shows
a typical analog glomeruli signal emerging as a consequence of
the exposure of the artificial epithelium to a vapor. To obtain
only to the contribution of the effect of the gas, the glomeruli
signals value recorded immediately before the exposure to gas
was subtracted from the recorded signal. The difference signals
were then converted into spike sequences and processed by the
spiking neural network, according to the procedure outlined in
Figure 1.

It is important to note that the signals can be either posi-
tive or negative indicating that the interaction of the indicator
with the volatile compound elicits different changes in the opti-
cal spectrum of the indicator including a change of magnitude
and a shift of the optical features. A combination of these changes
with the spectral response of the camera green channel and the
green light spectra of the LCD screen may then result in pos-
itive or negative changes of the camera signal. In a few cases
a negative change of the intensities in the green camera chan-
nel was observed and only for one of the glomeruli. According
to Eq. 1, a negative analog signal does not cause a spike train.
The glomerulus exhibiting negative signals was therefore not a
part of the further processing in the spiking network. Actually
also other sensors can present signals that can be either posi-
tive or negative, this is the case, for instance, of the metal-oxide
semiconductor gas sensors used in a previous study (Chen et al.,
2011).

THE SPIKING NEURAL NETWORK
The spiking neural network used to process the artificial olfac-
tion data was composed by neurons arranged in a single layer
as shown in Figure 1. The neurons were defined according to

FIGURE 6 | Example of analog glomeruli signals. These signals were
caused by the exposure to trimethylamine vapors (about 500 ppm in
nitrogen).

a phenomenological neuron model (Gerstner and Kistler, 2002)
and they were endowed of both excitatory (from the glomeruli)
and inhibitory (from the other network neurons) inputs. As a
consequence the relative position of the neurons in the network
architecture and the inputs distribution into the various neuron
units are important. Since, the glomeruli have been defined above
as structure-less abstract entities it is necessary to introduce an
ordering criteria. As illustrated in Section “Glomeruli layer defini-
tion and analog-to-spiking conversion” the color of the indicators
is an optimal quantity to identify the indicators in the array,
and the glomeruli have been simply defined applying the KNN
algorithm to the CSPT fingerprints. Here, the same quantity is
further used to define the interface between the glomeruli units
and the spiking neural network. Each glomerulus is defined by
its KNN centroid vector, roughly corresponding to the average
of the CSPT fingerprints. The connection between glomeruli and
neural network neurons has been based on a hierarchical clus-
tering of the centroid fingerprint vectors. The outcome of the
process is illustrated in Figure 7A where the 13 centroid finger-
prints are shown in the plane of the first two principal components
of the PCA calculated on the centroid fingerprints matrix. In
figure the mapping between the glomeruli and the neural net-
work neurons is also visible. All the glomeruli signals contribute
to their relevant neuron with an excitatory input. The number of
network neurons has been fixed to 12. With this number of neu-
rons the excitatory inputs are between 2 and 4 for each neuron.
In Figure 7B the relationship between the chemical indicators,
the glomeruli, and the neural network neurons is shown. In this
figure the neurons are ordered according to a hierarchical cluster-
ing criteria visible in Figure 7A. This order is important because
each neuron receives inhibitory inputs from the first neighbors in
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the list shown in Figure 7B. Finally it is worth the remark that
since the chemical sensitivity of the indicator and its color are
not correlated, no chemotopic feature is expected to be found in
the neural network structure. According to the phenomenolog-
ical neuron model, the neuron state is controlled by the action
potential (AP):

APj (t ) =
∑

i∈input

wij · kernel (t − tn) · H (t − tn)

+
∑
tm

Refractory (t − tn) · H (t − tn) (2)

FIGURE 7 | (A) Scores plot of the first two principal components of the
PCA of the matrix of the centroid fingerprints as defined by the application
of the KNN to the fingerprints matrix. Closed regions show the
membership of glomeruli to the network neurons. (B) Relationship
between chemical indicators, glomeruli, and neural network neurons
excitatory inputs. Glomeruli signals contribute as excitatory inputs to the
spiking neural network neurons. The arrows between the network neurons
indicate the inhibitory signals.

where H (t–t m) is the Heaviside function. When a pre-synaptic
spike occurs at the time t = t n, it produces an AP variation pro-
portional to the kernel function through the pre-synaptic weight
(w ij). Once the AP reaches the threshold (θ) at the time t = t m

the neuron fires and the AP is reset to zero by the refrac-
tory function. The expression of the learning, the kernel and
the refractory functions are shown in Table 1. The excitatory
weights are trained with a Hebbian learning rule where the
change, δw in the upgrade coefficient, w, observes the following
equation:

δw = η ·
[∑

ti

win +
∑

t0

wout +
∑
ti ,t0

w (t0 − ti)

]
(3)

where w in is the discrete increment of the input weight corre-
sponding to one input spike, wout is the discrete decrement of the
input weight corresponding to one output spike, and w(t 0–ti) is
the learning function, t i and t 0 are the input and output firing
time and η is the learning rate.

The initial values of the synaptic weights of the excitatory
input are randomly generated in the range (0, 1) and the APs
were initially set to zero. For the inhibitory connections, two
configurations of synaptic coefficients have been considered in
the analysis. In the first configuration, the coefficients have been
randomly generated in the range (−3, −0.5) and in the second
case the contribution of the inhibition has been removed setting
all the inhibitory synaptic weights to zero. In both cases these
coefficients have been maintained constant during the following
network training. The neural network was unsupervisedly trained
presenting 100 times, in a randomized order, the spiking sequences
encoding the artificial glomerular responses to the tested vapors.
In order to evaluate the performance of the complete artificial
olfactory system (composed by the physical layer of receptors,
the abstract glomeruli layer, and the spiking neural network) to
discriminate the tested volatile compounds, the output of the net-
work have been described by two features describing the short
time response and the long time response of to the applied stim-
ulus, respectively. The short time response is considered by the
latencies of the first two spikes of each neuron, while the long
time response is explained by the neurons firing rate averaged in
the time window corresponding to the application of the stim-
ulus. To study the contribution of the spiking neural network

Table 1 | List of the functions describing the phenomenological

neuron model used in the spiking neural network.

Learning function if Δt ≤ 0 W(Δt) = η · exp(Δt/tsyn)

×[A+(1 − Δt/τ̃+)

+A− · (1 − Δt/τ̃−)]
f Δt > 0 W(Δt) = η · [−A+ · Δt/τ̃+ − A− · Δt/τ̃−

]
Kernel function 1

1− τm
τs

· [exp(−ti/τs) − exp(−ti/τm)]
Refractory

function

−ϑ exp(−t r/τ)

The different τ’s appearing in the definitions are time constants, A± are constant

parameters and θ is the neuron threshold.
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to the overall discrimination capabilities of the whole olfactory
system, two additional features describing the glomeruli signals
have also been considered. Also in this case a short time and a
long time response have been examined. The first feature was
calculated as the analog glomeruli signals at the time when the
slowest neuron of the spiking network fires its second spike, while
the long time response is simply the maximum signal showed by
glomeruli during the stimuli application. Figure 8 illustrates the
definition of these features. In correspondence to the exposure
to each volatile compound and for each feature, a vector com-
posed by the ordered sequence of features was arranged. The whole
set of experiment resulted then in matrices whose elements were
the above illustrated features. The matrices were then analyzed
with (PCA; Joliiffee, 2002). The main advantage of PCA, in this
case, is the possibility to plot in the principal components plane
the multidimensional datasets, in this way a simple and effec-
tive evaluation of the discrimination capability of each feature
can immediately be obtained by a simple visual inspection of the
plots.

RESULTS AND DISCUSSION
It is important to remark that this paper does not intend to provide
a faithful replica of the olfactory circuits but rather it is centered
on the study of the information content of the spiking sequence
and in particular of the spikes latency coding. Then the com-
plexity of the network was kept as low as possible adopting an
architecture with a single layer of spiking neurons. Two different
topologies characterized by the presence and the absence of lateral
inhibitions were taken into consideration. The object of the paper

FIGURE 8 | Illustration of the features used to describe both the

spiking neural network and the glomeruli layer response to vapors. The
time at which DR is calculated corresponds to the time when the slowest
neuron fires its second spike. The average firing rate is calculated in the
time interval T*.

was the investigation of the vapor recognition properties of the
spike latency. The latency time of the first spike indicated a limited
gas discrimination while a significant improvement was obtained
considering as the measurement descriptor the latency times of the
first two spikes fired by each neuron of the network (i.e., T1 and
T2 in Figure 8). All glomeruli generates their first two spikes in less
than 120 s providing about 65% of reduction of measuring time
with respect to the standard measurement protocol where the end
of measure occurs when the analog signals reach their steady-state
values.

The ensemble of the latency times were joined to form a vec-
tor and the matrix collecting the whole experiment was processed
by PCA.

Figure 9 shows the plot of the first two principal compo-
nents of the latency feature of the spiking neural network trained
with the lateral inhibition. All the VOCs are discriminated and
only a little overlap between Triethylamine and Triethylamine–
Trimethylamine mixture is present. This is expected because of
the chemical similarity between these compounds. The presence
of the lateral inhibition increasing the differences among the neu-
rons distributes the information carried by the glomeruli into
the network neurons. As a partial proof, it was observed that
without inhibition (Figure 10) the discrimination performance

FIGURE 9 | Scores plot of the first two principal components of the

PCA of the matrix of latencies of the first two spikes of each neuron of

the network trained with the lateral inhibition. Labels indicate the
measured vapors.
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FIGURE 10 | Scores plot of the first two principal components of the

PCA of the matrix of latencies of the first two spikes of the neurons of

the network trained without the lateral inhibition. Labels indicate the
measured vapors.

was reduced to the basic, and somewhat chemically straightfor-
ward, separation between alcohols and amines. Furthermore, if
a certain separation among alcohols can actually be observed
the amines are completely overlapped in Figure 10. This result
is somewhat unexpected because the response of the individ-
ual receptors to amines is much larger with than to alcohols.
This suggests that the absence of inhibition makes the network
unable to capture the differences among different gases when
a large response is obtained for the chemical indicators. It is
interesting to note that a larger analog signal corresponds to an
increase of the spike rate from the convergence layer. The satu-
ration effect could only be related to the frequency response of
the network and the I/F algorithm. It could probably be avoided
by a careful choice of the parameters. Nonetheless it is interesting
to observe that inhibition prevents the occurrence of the satura-
tion effects maintaining unaltered the olfactory system properties
in the whole range of signals even for a non-optimized choice of
parameters.

To point out the contribution of the spiking neural network,
the classification properties of the analog glomeruli signals was
considered. In Figure 11 the plot of the first two principal com-
ponents of the PCA of the matrix of the glomeruli analog signals
is shown. To consider the short time response, the glomeruli sig-
nal was considered at the time when the slowest neuron of the
spiking neural network, trained with lateral inhibition, fires its sec-
ond spike. According to Figure 11 the discrimination of volatile

FIGURE 11 | Scores plot of the first two principal components of the

PCA of the matrix of the analog signals of the glomeruli evaluated at

the time when the slowest neuron fires the second spike. The network
was trained with the lateral inhibition and for each measure presentation,
the coefficient updating procedure was stopped when the slowest neuron
fires the second spike. Labels indicate the measured vapors.

compounds appears worse with respect to that obtained with the
spike latencies of the network with inhibition. Another interesting
detail to note is that the explained variance of the first two prin-
cipal components of the PCA of the latencies matrices (Figures 9
and 10) are significantly less with respect to the first two prin-
cipal components of the PCA of the matrix collecting the analog
glomeruli signals (Figure 11). This result indicates that the spiking
network performs a faster separation of the different sources of
information; furthermore, in presence of lateral inhibition the
differences among neurons responses are more prominent and
then the signal decorrelation becomes more evident. However,
in the experiment described here the contribution to the classi-
fication of the principal components of order higher than two is
negligible. It is also important to note that for the network with
inhibition, the odor recognition property does not change signif-
icantly considering further latencies related to spikes beyond the
second spike (data not shown). The classification improves but
not dramatically when the average firing rate is considered (see
Figure 12). These results are qualitatively similar to that obtained
using the maximum glomerular signal (see Figure 13) suggesting
that when the sensors reach the dynamic equilibrium with the
gas, the classification is completely explained in the input data
and the contribution of the network processing becomes negli-
gible. It is interesting to note that for the average firing rate the
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FIGURE 12 | Scores plot of the first two principal components of the

PCA of the matrix of the average firing rate of the neurons of the

network trained with the lateral inhibition. Labels indicate the measured
vapors.

variance explained by the first two principal components is more
than 95% confirming the large correlation of the neurons firing
rates. This result also suggests that the lateral inhibition mainly
influences the distribution of the information content carried by
the neuron in the initial part of the signal while in the last part its
contribution is related to a sort of a scale factor of the glomeruli
signals. As further confirmation of this hypothesis, no decrease of
performance is observed removing the inhibition using the firing
rate as the input (data not shown). This result leads to believe
that the lateral inhibition, in this network structure, affects sig-
nificantly only the information contained in the initial part of the
spike sequences. In order to show the importance of the initial part
of the response, the network was also trained stopping the learn-
ing procedure immediately after the second spike of the slowest
neuron is fired. Surprisingly, the results of the PCA calculated with
the latencies of the first two spikes and the firing rate are qualita-
tively similar. This result indicates that the very initial part of the
response is of outmost importance and then only this portion of
the response could be used in reducing dramatically the compu-
tational and the experimental time. Noteworthy, the length of the
initial part is dynamically determined by the network as the time
necessary to get two spikes from all the neurons and then this time
can be variable according to the magnitude and the dynamics of
the receptor responses. Ultimately, for a given set of receptors this
time depends on the kind of vapor. The reduction of measurement
time using only the first portion of sensor response was attempted

FIGURE 13 | Scores plot of the first two principal components of the

PCA calculated on the matrix of the maximum analog signals of the

glomeruli. Labels indicate the measured vapors.

in the past as by using the dynamic properties of sensors (Davide
et al., 1995; Di Natale et al., 1995; Eklöv et al., 1997; Nakamoto
et al., 1997; Gutierrez-Osuna et al., 1999; Muezzinoglu et al., 2009).
In these studies the measurement time was generally determined
according to a previous knowledge about the dynamics of the
sensors. In the present case the duration of the measurement is
determined by the network processing the global set of receptors
hierarchically arranged in glomeruli-like structures and the length
of time necessary for a single measurement is variable for each
sample but always less than 35% of the time necessary for the ana-
log signal to reach the steady-state. It is important to remark that
the dynamic responses of the chemical reporters in the sensing
layer are also affected by their spatial arrangement with respect to
the inlet and the outlet of the cell where the sensor layer is accom-
modated. As a consequence, also the latency pattern of the network
is dependent by the position of the chemical indicators giving a
further degree of freedom for the system design and optimization.
Furthermore, considering that the indicators are immersed in a
supporting polymer layer, the latency pattern depends also on the
diffusion of volatile compounds through the polymer. This feature
was demonstrated to lead to a sort of artificial olfactory mucosa
(Dini et al., 2009) mimicking the separation of volatile compounds
characterized by different alkyl chain lengths and steric effects
(Kent et al., 1996). The possibility to use the latency as features for
discrimination tasks can open a different approach to chemical
sensing. Actually exploiting these descriptors it would be possible
to define the gas exposure as the time necessary to obtain the
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occurrence of the first spikes at the network output. This strat-
egy would offer some interesting aspects. The first is related
to the measurement time that it should be not fixed but it
should adapt itself on the gas under measure. Moreover this
approach should guarantee a short measurement time with
respect to the standard protocol counteracting the aging and
poisoning of the devices that is probably the main cause of
the chemical sensor drift (Martinelli et al., 2011). It is impor-
tant to remark, that these results have been derived from an
experiment aimed at measuring a limited set of volatile com-
pounds. However, since the test compounds (amines and alco-
hols) are good representative of donor and acceptor molecules,
they elicit a sufficiently range of responses. The findings here
outlined may substantially be corroborated by more extensive
measurements with a larger number of repetitions to study
the relationship between the network property and the sensors
reproducibility.

CONCLUSION
An artificial olfactory system based on a large array of opto-
chemical sensors coupled with a bio-inspired signal processing
architecture is shown. The processing strategy took into consid-
eration a convergence layer that mimics the role of glomeruli and
encodes the signals of the sensors into sequences of spikes to be
processed by a spiking neural network. The aim of this work was
to investigate the possibility to use the spike latency of the net-
work outputs as a useful descriptor for the odor recognition. The
results show that the first two spikes of neural network neurons
contain enough information to discriminate the different vapors
confirming the experimental evidences obtained on animals. It
has also been put in evidence the fundamental role of the lateral
inhibition in the information processing of the very initial part
of sensor signals and how it is possible to exploit the character-
istics of the latency coding to define an adaptive gas exposure
strategy.
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