
Citation: Kabir, K.L.; Ma, B.;

Nussinov, R.; Shehu, A. Fewer

Dimensions, More Structures for

Improved Discrete Models of

Dynamics of Free versus

Antigen-Bound Antibody.

Biomolecules 2022, 12, 1011.

https://doi.org/10.3390/

biom12071011

Academic Editors: Kamal Al Nasr

and Negin Forouzesh

Received: 31 May 2022

Accepted: 19 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Fewer Dimensions, More Structures for Improved Discrete
Models of Dynamics of Free versus Antigen-Bound Antibody
Kazi Lutful Kabir 1,* , Buyong Ma 2 , Ruth Nussinov 3 and Amarda Shehu 1

1 Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; amarda@gmu.edu
2 Engineering Research Center of Cell & Therapeutic Antibody School of Pharmacy, Shanghai Jiaotong

University, Shanghai 200240, China; mabuyong@sjtu.edu.cn
3 Computational Structural Biology Section, Cancer Innovation Laboratory, Frederick National Laboratory for

Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; nussinor@mail.nih.gov
* Correspondence: kkabir@gmu.edu; Tel.: +1-571-201-5070

Abstract: Over the past decade, Markov State Models (MSM) have emerged as powerful method-
ologies to build discrete models of dynamics over structures obtained from Molecular Dynamics
trajectories. The identification of macrostates for the MSM is a central decision that impacts the
quality of the MSM but depends on both the selected representation of a structure and the clustering
algorithm utilized over the featurized structures. Motivated by a large molecular system in its free
and bound state, this paper investigates two directions of research, further reducing the represen-
tation dimensionality in a non-parametric, data-driven manner and including more structures in
the computation. Rigorous evaluation of the quality of obtained MSMs via various statistical tests
in a comparative setting firmly shows that fewer dimensions and more structures result in a better
MSM. Many interesting findings emerge from the best MSM, advancing our understanding of the
relationship between antibody dynamics and antibody–antigen recognition.

Keywords: antibody; antigen binding; structure; molecular dynamics; Markov State Model

1. Introduction

With AlphaFold2 advancing protein structure determination to computational models
that now reach the accuracy of experimentally-resolved models [1,2], several next holy
grails of computational biology are ordering themselves [3]. Primary among them is
the much-needed generalization from the single- to the multi-structure view of protein
molecules; obtaining a detailed view of the structural dynamics of unbound and bounded
molecular systems remains a fundamental challenge [4].

Over the past decade, Markov State Models (MSM) have emerged as powerful method-
ologies to build discrete models of dynamics over trajectories obtained in silico via Molec-
ular Dynamics (MD) simulation [5,6]. Most applications of MSMs in molecular biology
literature have operated over the structure space probed via MD trajectories and have
ignored energy information [6–11], utilizing clusters over feature-based representations of
structures as macrostates.

Connections with the energy landscape that governs the structural dynamics of a
molecule have largely been ignored, even though the concept of a basin in the energy
landscape promises to connect more directly to that of a macrostate. The reasons vary and
include the long-standing lack of trust in the accuracy of energy functions and, perhaps,
more importantly, the open questions between connecting the definition of a basin to
practical implementations over a set of structure–energy samples.

Work in [12,13] leverages a nearest-neighbor graph [14] to organize structure–energy
samples into basins [15] and demonstrates for the first time their employment as macrostates
of an MSM of the MD-probed dynamics of a small peptide, Met-Enkephaline. Work in [16]
extends this treatment to elucidate changes in dynamics due to binding and understand the
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impact of antigen binding on the dynamics of Immunoglobulin G (IgG) but is challenged
by the large size of the molecular system under consideration, the free and the antigen-
bound antibody. The work considers several approaches to simplify the representation
of a free (tertiary) and complexated (quaternary) structure and ultimately shows that
a simple representation that skips every few consecutive central (alpha) carbon atoms
is more effective than representations obtained via dimensionality reduction methods
popular for MSM construction, such as Principal Component Analysis (PCA) or Time-
structure Independent Component Analysis (TICA). However, the dimensionality of the
representation affects both the quality of obtained structure clusters (where no energy is
considered) and obtained basins (when energy is considered) and ultimately results in
MSMs that, while informative of the free versus bound antibody dynamics, but do not
stand to the scrutiny of all statistical tests of model quality [16].

Motivated by this body of work and practical challenges, we posit here the following:
(a) further reducing the representation dimensionality in a non-parametric, data-driven
manner may improve the quality of an MSM by providing better state space discretization;
(b) including more structures in the computation is then possible and promises a higher
quality MSM even without the access to energetics.

This paper investigates these two research directions. It does so by bringing back a
shape-based representation of a molecular tertiary structure, the Ultrafast Shape Recog-
nition (USR) coordinates [17]. These coordinates were originally proposed for molecular
shape comparison and shown to permit fast screening of billions of small molecule com-
pounds without the need to align molecular structures before testing for similarity. USRs
were shown to be highly accurate at describing and comparing molecular shapes. Work
in [18] further showed that USR coordinates were highly useful for low-dimensional rep-
resentations of protein tertiary structures, and a body of work utilized them to build fast,
search space-aware algorithms for exploring and reconstructing the structure space of a pro-
tein molecule [19,20], as well as computing motion paths connecting two given structures
of a protein molecule [21].

The context that motivates the computational study in this paper is that of aiming
to understand the impact of antigen binding on the dynamics of Immunoglobulin G
(IgG), which binds to cognate antigens. Section 2 summarizes current literature and
understanding on IgGs and their binding of antigens. This section also summarizes MSM
methodologically for the interested reader. Methodological details are related in Section 3.
Section 4 relates the experimental evaluation. In essence, the evaluation compares the
quality of three MSMs, one that is presented in [16], and the two obtained by each of the
approaches outlined above. Rigorous statistical testing is conducted to evaluate the quality
of an MSM. Several interesting observations emerge. In particular, the evaluation firmly
shows the superiority of the models obtained when USR coordinates are used to represent
structures. In particular, the MSM obtained when more structures are included shows the
power of the data over energetics. It is worth noting that in each case two separate analyses
are carried out, one on the free antibody and the other on the antigen-bound antibody.
Comparison of these two systems reveals interesting insight on how the antigen binding
affects the antibody dynamics. The paper concludes with such observations in Section 5.

2. Background
2.1. Related Work on MSMs of Structural Dynamics

Since Zwanzig’s first report on short memory approximations in 1983 [22], MSMs
have evolved from art to science [23]. Their theoretical underpinnings, rigorous statistical
analysis, and availability as easy-to-use and modify packages are the primary reasons for
their increase in popularity. MSMBuilder [24] and EMMA [25,26] are two of the most popu-
lar ones. PyEMMA provides a Python implementation of EMMA. Both MSMBuilder and
EMMA are widely employed by researchers to compute the multi-state folding kinetics of
small proteins and peptides [11], the kinetics of protein-ligand binding for drug efficacy [9],
the kinetics of protein-protein associations [7,8], and more [6,10].
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As in our previous work [12,16], we make use of PyEMMA [26], as it is easy to use,
contains many analysis tools, and provides developers with control over various steps
of the MSM construction pipeline. In particular, PyEMMA allows us control the feature
representation of structures and the computation of macrostates. These are distinct stages
in the MSM construction pipeline.

The identification of macrostates for the MSM is a critical component. According
to theory, structures capable of rapid inter-conversion should be aggregated into the
same macrostate; structures with slow inter-conversion rate should be separated into
different macrostates [27]. In practice, MSM construction packages like PyEMMA cluster
conformations to group them into macrostates. They make use of the assumption that a
molecule converts/switches between geometrically-similar structures more rapidly than
between less similar ones.

Work in [12,16] operationalizes the realization that conformations proximal in structure
space can be separated by an energy barrier that slows the inter-conversion rate. Thus,
the concept of basin is employed instead for that of a macrostate, and the identification of
basins utilizes both structures and their energies.

2.2. Molecular System of Interest

The particular systems that motivate the work presented in this paper are the IgGs,
which are central in providing us with immunity to pathogens and tumors. As such,
they represent common template for antibody drugs [28]. We now understand that the
specificity and affinity of antibody–antigen recognition is primarily determined by the
complementarily-determining regions (CDRs), which are variable domains. The recognition
process relies on conformation transitions that are mediated by the antibody’s inherent
flexibility [29–33].

Several studies suggest that allosteric effects during antibody–antigen recognition [34]
with both the variable and constant domains play an important role [35–40]. In particular,
modifications of the Fc domain influence the Fv domain antigen recognition. Upon antigen
binding, the C domains may affect the V region paratope conformation, as indicated
by circular dichroism [41], X-ray crystallography [42], and NMR [43]. Modification of
the constant domain influences both the antibody–antigen binding affinity [44–46] and
specificity [47,48]. Work in [49] shows that IgA Fc mutations reduce Her2 binding, and work
in [32] shows that antigen binding allosterically promotes Fc receptor recognition.

2.2.1. Free Antibody and Antigen-Bound Antibody Structure Data

The MD simulations from which we extract structures for analysis in this paper are
reported in detail in [32]. Conclusions obtained in [32] on antibody structure distributions
were verified by independent experiments; as reported in [50], the MD simulation results
in [32] reproduce experimentally-observed antibody structure distributions.

MD Simulation Protocol: We briefly review the MD protocol in [32]. The structure of
the free antibody molecule, which can be downloaded from the Protein Data Bank (PDB)
from PDB entry 1IGT, contains 1322 amino acids for a total of 20,544 atoms. The antigen–
antibody complex contains 21,092 atoms (1356 amino acids). Work in [32] adjusts three
sets of torsion angles (231C-232N-232CA-232C, 232N-232CA-232C-233N, and 232CA-232C-
233N-233CA) with increments of 60◦ to obtain initial antibody random structures. The Fc
domain is kept fixed during this process, whereas the Fab domains are allowed to move
freely. A total of 216 structures are obtained in this manner. Removing those with a closed
Fab domain or with collisions in the Fc domain leaves us with 12 structures as starting
points for MD simulations.

Work in [32] carried out 12 independent MD simulations of the antibody with 12 dif-
ferent initial structures. Each MD trajectory is 40–160 ns long, with a time step of 2 ps
between two consecutive frames/structures.

The systems were solvated by TIP3P water molecules, and sodium and chlorides
were added to neutralize the system and to achieve a total concentration of 150 mM.
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The overall sizes of simulated systems contain around 567,640 atoms (including water
atoms as solvent). The systems were energy minimized for 5000 conjugate gradient steps,
where the protein was fixed and water molecules and counterions could move, followed
by additional 5000 conjugate gradient steps, where all atoms move. In the equilibrium
stage, each system was gradually relaxed by a series of dynamic cycles, in which the
harmonic restraints on proteins were gradually removed to optimize the protein–water
interactions. In the production stage, all simulations were performed using the NPT
ensemble at 310 K. All MD simulations were performed using the NAMD [51] software
with CHARMM36 [52] force field. MD trajectories were saved by every 2 ps for analysis.
The structures obtained from simulation reproduced experimentally-observed structure
distribution [50]. The potential energy of the system was calculated using the generalized
Born method with molecular volume (GBMV) after the steps of energy minimization to
relax the local geometries caused by the thermal fluctuations that occurred in the MD
simulations. In the GBMV calculation, the dielectric constant of water is set to 80, and no
distance cutoff is used. Further details regarding the process of structure generation can be
found in [32]. Internal energies were only recorded for 5000 structures (every 32nd frame).

Structures are extracted with the mdconvert command-line script from the MDTraj
Python library over a given MD trajectory file in the .dcd format. We extract frames every
4 ps, resulting in a total of 160,000 structures for the free antibody and the antibody–antigen
complex, respectively.

2.2.2. Prior MSM-Based Investigation

The large sizes of the free and bound antibody prompt work in [16] to consider several
representation reduction strategies and to focus on only the 5000 structure–energy samples
for each system (free and bound). Thorough analysis shows that simplifying a structure
to a high-dimensional point (CA1.x, CA1.y, CA1.z, CA5.x, CA5.y, CA5.z, CA10.x, CA10.y,
CA10.z, . . .) (effectively skipping every four consecutive CA atoms) yields the best MSM
model; however, all MSM models have various shortcomings in relation to diverse rigorous
statistical tests.

3. Methods

We first relate the USR-based representation that we propose as fast yet accurate in
this paper. We then place it in the context of the process that harnesses MD trajectories into
an MSM model of dynamics. Finally, we describe the various statistical tests that evaluate
the quality of an MSM model and set the stage for the evaluation related in Section 4.

3.1. Shape-Based Coordinates/Features

In MSM terminology, the coordinates employed to represent a tertiary or quaternary
structure are more generally referred to as features, and the process via which such features
are obtained is referred to as featurization. Whether in the free antibody or the antigen-
bound antibody setting, we represent a structure as a 12-dimensional point, utilizing the
following process to compute 12 coordinates from a given structure. First, given a structure
in three dimensions, four points of reference are identified over it:

1. The molecular centroid (ctd);
2. The closest atom to ctd (cst);
3. The furthest atom from ctd (fct);
4. The furthest atom to fct (ftf).

The Euclidean distances of all the atoms in a structure to each of the four reference
points yield four separate distance distributions. Each distribution is summarized with its
first three moments (mean, variance, and skewness), yielding over the four distributions
the 12 coordinates/features representing a structure and thereby capturing the geometry
and shape of the structure.

Note that this representation presents a significant reduction from several thousand
Cartesian coordinates to 12 (USR) coordinates. Given the known curse of dimensionality
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for clustering algorithms [53], such savings promise to translate to better-quality clusters
for large molecular systems.

3.2. Integrating MD Trajectories in an MSM

Figure 1 summarizes the process that integrates MD trajectories into an MSM transition
probability matrix where each entry contains the probability of transition between each
pair of the macrostates; the rows/columns are the identified macrostates.

Figure 1. The computational pipeline that “integrates” the information available in the MD trajectories
into an MSM of the system’s dynamics. The different color codes are representing the different macro-
states/groups; we also color-code the structures to illustrate their assignments to specific macro-states.

The first MSM-construction decision is how to featurize the structures, which is
addressed via the USR coordinates as described above. We recall that we compare here
to an alternative featurization (shown as most effective in [16] that records the Cartesian
coordinates of the CA atoms and skips every four consecutive CA atoms. From now on, let
us make the distinction of conformation versus structure, employing the term conformation
to a structure that has undergone the featurization process.

The second decision is how to group conformations into clusters/macrostates. In [16],
the conformations are organized in a nearest-neighbor to identify basins. Each vertex is a
conformation–energy pair. Vertices representing local (focal) minima are identified first: a
vertex u is a local minimum if ∀v ∈ N(u) and ∀v ∈ V, e(u) ≤ e(v), where e denotes energy,
and N(u) denotes the neighborhood of u. A basin is tied to a unique local minimum that
is its deepest point. Vertices “attracted” to the same local minimum are assigned to the
same basin represented by that local minimum. Each vertex u is associated with a negative
gradient estimated by selecting the edge (u, v) maximizing the ratio [e(u)− e(v)]/d(u, v)
(d is the distance between two vertices, measured in conformation space). Consider a vertex
u that is not a local minimum. From each such vertex, there are many edges to follow.
The one that maximizes the negative gradient calculated as shown above is selected to
arrive at a next vertex. This process is repeated until we arrive at a local minimum. Vertices
from which this process terminate at the same local minimum are then assigned to that
minimum and the basin associated with it. Further details can be found in [54]. We note
that basin finding over conformation-energy samples has been employed by several works
for molecular structure–function studies [12,55–57].

In this paper, we utilize this approach to identify basins over conformation–energy
samples obtained from the MD simulations. We recall that our conformations are 12-
dimensional points (of USR coordinates). Unlike work in [16], where the CA-based rep-
resentation necessitates the computationally-costly process of alignment and then rmsd-
computation; here, we utilize Euclidean distance to measure the distance between two
USR-based conformations. In this setting, where we consider energies, we utilize 5000 con-
formations for which energies are available, as in [16]. In another setting, where we



Biomolecules 2022, 12, 1011 6 of 19

investigate the benefit of including many more structures, we utilize all 160,000 structures
collected. Utilizing their 12-dimensional, USR-based representation, we then make use of
the popular k-medoid algorithm to identify clusters. Finding the knee in the squared error
profile over varying k allows us to identify an optimal number of clusters in this setting.

Once the basins or clusters are obtained to be employed as macrostates, the next
step is to utilize the temporal information in the MD trajectories to compute state-to-state
probabilities of transition. Briefly, let us assume that some conformation i has been assigned
to a macrostate Si, and some other conformation j has been assigned to a macrostate Sj. If j
follows i in some MD trajectory, the number of counts keeping track of transitions from
Si to Sj is incremented; note that Si and Sj can be the same macrostate. Once all counts
are computed, they are normalized to obtain transition probabilities. The eigenvalues and
corresponding eigenvectors of the transition matrix bear meaning; the eigenvector whose
corresponding eigenvalue has the maximum value of 1 gives the equilibrium/stationary
distribution. We note that, in this stationary distribution, a high population for a macrostate
indicates thermodynamic stability.

Statistical Tests of MSM Quality

As in other MSM-based studies of dynamics, we make use of two main tests, the Con-
vergence Analysis and the Chapman–Kolmogorov (CK) test, which evaluate whether
an MSM is memory-less. In a memory-less MSM, the conditional probability distribu-
tion of future macrostates should only depend on the current macrostate and not on the
prior macrostates.

Convergence Analysis

The convergence analysis tests whether the selected lag time guarantees that the
assignment of conformations in macrostates obeys the Markov property. This selection
is an important decision, as it may yield to a loss of temporal and spatial resolution and
in turn impact the quality of the constructed MSM. If the assignment of conformations
into mascrostates obeys the Markov property, this means that conformations within a
state inter-convert to other conformations in the same state on timescales faster than the
selected lag time but transition to conformations in other states on slower timescales. This
property is verified via visualization of the generated implied timescale plot of the model
relaxation timescale versus model lag time. One looks for an exponential decay to the
system equilibrium; the implied timescales plot needs to exhibit convergence within a few
steps [58].

CK Test

The Chapman–Kolmogorov (CK) test computes the probability of transition between
meta-stable states for increasing lag times. Given an MSM estimated at lag time τ, a quantity
of interest can then be predicted at lag time kτ, and the prediction can be compared to
an independently-estimated model at kτ. CK test plots need to show that the estimated
and the predicted model deviate negligibly from each-other. The CK test is important
because the estimated MSM dynamics can fluctuate in a deterministic manner from the
actual dynamics of a system of interest. Work in [59] shows that this deviation may
be present even when accounting for and removing statistical error by sampling more
structures [59]. Specifically, the propagation error on the discrete space over identified
macro-states is calculated by checking whether the approximation, [T̂(τ)]k ≈ T̂(kτ) holds
within statistical uncertainty. Note that T̂(τ) is the state-to-state transition matrix estimated
at the selected lag time τ; T̂(kτ) is the state-to-state transition matrix estimated at longer
lag times kτ. The Chapman–Kolmogorov (CK) test generalizes this check.
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4. Results
4.1. Evaluation Setup

We consider two separate systems: the free antibody and the antigen–antibody com-
plex. For each system, we construct three separate MSMs based on the combination of
featurization choice and clustering algorithm.

Setting-A: This setting utilizes the CA-based representation and basin finding over
5000 structure–energy samples; as reported in [32], energies are recorded only over 32nd
frame, resulting in a total of 5000 energy-evaluated structures. We employ this model
presented as best in [16] as a baseline model for each setting.

Setting-B: The second setting changes the CA-based representation to the USR-
based representation of 12 coordinates per structure to represent those 5000 structure–
energy samples.

Setting-C: The third model expands to 160,000 structures (for all but 5000 of which
there is no information on energies) and employs the k-medoidsalgorithm.

Each model (corresponding to each setting) is evaluated via the convergence anal-
ysis and CK tests. The best MSM in each setting is related in greater detail, providing
insights on the dynamics of the free and bound antibody and changes to dynamics upon
antigen binding.

4.2. Comparison of Models of Free Antibody Dynamics

We now evaluate each of the three MSMs obtained on the free antibody data via
the convergence analysis and CK tests to determine the best model capturing the free
antibody dynamics.

4.2.1. Free Antibody MSM Evaluation via the Convergence Analysis

Figure 2 shows the implied timescales plots computed for each of the three MSMS.
These plots show the model relaxation timescale versus the model lag time. The top panel
of Figure 2 does so for Setting-A, the middle panel for Setting-B, and the bottom panel for
Setting-C. In each panel, each drawn curve shows the relaxation timescale computed when
considering an MSM composed of s states, with s varying from 1 to the total number of
states identified.

Figure 2 clearly shows that Setting-C yields an MSM model that stands up best to
the convergence analysis test. The other two settings fail to attain convergence even after
1500 steps. Rough oscillations in the curves are observed. In contrast, when the MSM is
obtained when states identified via Setting-C, convergence is reached quite early. Figure 2
shows that the cutoff region above which any curve representing a good discretization of
the state space should be is in gray. It is clear that only in Setting-C are the majority of
the curves above this region. Taken altogether, this test clearly puts forth Setting-C as the
best one.

4.2.2. Free Antibody MSM Evaluation via the CK Test

Figure 3 relates the results obtained from conducting the CK test over the MSM models
obtained respectively from Settings A–C. Specifically, Figure 3 visualizes the outcome for
the five states identified in each setting that have the highest self-transition probabilities.
The plots show deviations between the estimated and the predicted model in Settings A–B
(top and middle panels). These are largest under Setting-A and gradually reduce over
Setting-B and Setting-C; the deviations are negligible for Setting-C. In good agreement
with the convergence analysis test related above, the CK test additionally confirms that
the MSM model obtained from Setting-C is the best, as it stands up best to both of these
statistical tests.
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Setting-A

Setting-B

Setting-C

Figure 2. The Convergence Analysis test is carried out on each of the free-antibody MSMs obtained
respectively from (top panel) Setting-A, (middle panel) Setting-B, and (bottom panel) Setting-C. Each
drawn curve shows the relaxation timescale of an MSM composed of s states, as s varies from 1 to
the total number of states identified. The cutoff region (above which any curve representing a good
discretization of the state space should be) is shown in gray.
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Setting-A

Setting-B

Setting-C

Figure 3. The CK test is carried out on each of the free antibody MSM models obtained, respectively,
from (top panel) Setting-A, (middle panel) Setting-B, and (bottom panel) Setting-C. Deviations
between the estimated and the predicted model are large in Setting-A, gradually reduce over Setting-
B, and become negligible in Setting C.
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4.3. Comparison of Models of Antigen-Bound Antibody Dynamics

We now evaluate each of the three MSMs obtained on the antigen-bound antibody
data via the convergence analysis and CK tests to determine the best model capturing the
free antibody dynamics.

4.3.1. Antigen-Bound Antibody MSM Evaluation via the Convergence Analysis

Figure 4 shows the implied timescales plots computed for each of the three MSMS
corresponding to Settings A–C. Figure 4 clearly shows that the models corresponding
to Setting-A and Setting-B fail to attain convergence even after 1500 steps. Additionally,
rough oscillations are observed in the curves. The majority of the curves are under the
cutoff region that separates good from poor state space discretization. In contrast, Setting-
C exhibits convergence early on. With very few exceptions, the curves have no rough
oscillations, and the majority of them are over the cutoff region. Taken altogether, this test
also puts forth Setting-C as the best one capturing the dynamics of the bound antibody.

Setting-A

Setting-B

Figure 4. Cont.
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Setting-C

Figure 4. The Convergence Analysis is carried out on each of the antigen-bound antibody MSM
models obtained, respectively, from (top panel) Setting-A, (middle panel) Setting-B, and (bottom
panel) Setting-C. Each drawn curve shows the relaxation timescale of an MSM composed of s states,
as s varies from 1 to the total number of states identified. The cutoff region (above which any curve
representing a good discretization of the state space should be) is shown in gray.

4.3.2. Antigen-Bound Antibody MSM Evaluation via the CK Test

Figure 5 relates the results obtained from conducting the CK test over the MSM
models obtained respectively from Settings A–C for the antigen-bound antibody. As for
the antigen-antibody complex, Figure 5 visualizes the outcome for the five states identified
in each setting that have the highest self-transition probabilities. The plots show deviations
between the estimated and the predicted model in Settings A–B (top and middle panels).
Figure 5 shows that these are largest under Setting-A and gradually reduce over Setting-B
and Setting-C. Again, the deviations are negligible for Setting-C, as for the free antibody.
In good agreement with the convergence analysis test related above, the CK test additionally
confirms that the MSM model obtained for the antigen-bound antibody from Setting-C
stands up best to both of these statistical tests.

4.3.3. Run-Time Comparison

We relate a run-time comparison in Table 1, which shows the time it takes to construct
an MSM under each setting (A–C) for each of the systems (free antibody versus antigen-
bound). It can be clearly observed that Setting-C yields the largest run-time savings.
Even though the number of structures processed goes from 5000 to 160,000 in Setting-C,
the USR-based coordinates greatly reduce the time it takes to cluster structures and identify
macrostates for the MSM.

Table 1. Run-time Comparison.

ID Setting-A Setting-B Setting-C

Free Antibody 1 h 41 m 1 h 17 m 26 m

Antigen-bound Antibody 2 h 5 m 1 h 44 m 29 m
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Setting-A

Setting-B

Figure 5. Cont.
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Setting-C

Figure 5. The CK test is carried out on each of the antigen-bound antibody MSM models obtained
respectively from (top panel) Setting-A, (middle panel) Setting-B, and (bottom panel) Setting-C.
Deviations between the estimated and the predicted model are large in Setting-A, gradually reduce
over Setting-B, and become negligible in Setting C.

4.4. Comparison of Free vs. Antigen-Bound Antibody Dynamics

According to the Convergence Analysis and CK tests, as well the run-time analysis,
the best MSM obtained for both the free and antigen-bound antibody is that obtained
from Setting-C. In the next set of analyses, we focus on the MSM model obtained from
this setting.

4.4.1. Macro-State Analysis: Comparison of Stationary State Distributions

First, we shed light on the state space discretization in a comparative setting. The pro-
cedure described in Section 3 identifies 14 clusters/states over the free-antibody data and
13 clusters/states over the antigen-bound antibody data. The top panel of Figure 6 relates
stationary distribution via a pie chart limited to the six most populous states (labeled as S1–
6 for states). In each pie chart, the population of the remaining macrostates is accumulated
and labeled as S*. The bottom panel shows the 2D embedding of the sampled structure
data (every 16th frame) in each case (for the free and antigen-bound antibody) on the top
two Principal Components (PCs) revealed by PCA (the top two PCs capture around 60% of
the variance—data not shown).

The juxtapositions in Figure 6 allow for drawing several observations. First, for the free
antibody, four states emerge with an adjusted population at equilibrium over 5%, and they
seem to correspond well to the four major clusters visible in the PC1-PC2 embedding
related in the bottom left panel of Figure 6. For the antigen-bound antibody, the number of
states with adjusted population at equilibrium above 5% is also 4, and this qualitatively
agrees with the four major clusters visible in the PC1-PC2 embedding related in the bottom
right panel of Figure 6. Overall, the number of states with high self-transition probabilities
is higher for the free antibody than the antigen-bound system. This suggests that the
binding of the antigen makes the states more dynamic.
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Figure 6. Top panel shows adjusted state populations for the (left) free-antibody and (right) antigen-
bound antibody via the stationary distribution for the six top-populated macro-states, with the other
states accumulated in S*. The bottom panel relates the embedding of the MD structures over the top
two PCs.

4.4.2. State-to-State Dynamics: Comparison of State Transitions

Figure 7 juxtaposes the state-to-state transition probabilities for the free versus the
antigen-bound antibody. In both cases, the self-transition probabilities are above 0.8 (ex-
cept for S5 of the antigen-bound antibody with 0.798). For the free antibody, while the
cumulative out-of-state transition probabilities for three states (S1, S2, S3) are below 0.09;
state S6 transitions to state S1 with a considerable probability of 0.12. For the bound an-
tibody, while the cumulative out-of-state transition probabilities for three states (S3, S4,
S6) are below 0.08, state S2 transitions to state S1 with a considerable probability of 0.115.
For the bound antibody, several of the self-transition probabilities are lower than for the
free antibody. Taken altogether, the comparison of adjusted state populations and transition
probabilities suggests that antigen binding makes the antigen–antibody complex more
dynamic by introducing more inter-state transitions among the various states.
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Free Antibody

1 2 3 4 5 6

1 0.916 0.0 0.0045 0.0 0.001 0.073

2 0.0 0.935 0.0 0.015 0.006 0.0

3 0.004 0.0 0.951 0.0 0.0 0.0

4 0.0036 0.0 0.0 0.823 0.04 0.025

5 0.0 0.025 0.022 0.014 0.828 0.005

6 0.12 0.024 0.0 0.002 0.012 0.837

Antigen-bound Antibody

1 2 3 4 5 6

1 0.869 0.053 0.0 0.012 0.0 0.0

2 0.115 0.823 0.0 0.0 0.034 0.003

3 0.0 0.0 0.926 0.0 0.001 0.07

4 0.011 0.004 0.0 0.923 0.005 0.0

5 0.01 0.0 0.039 0.079 0.798 0.0

6 0.005 0.032 0.0 0.004 0.0 0.959

Figure 7. In each case, macro-states are drawn as disks, with radii proportional to size (number
of conformations). Transitions between them are drawn as arrows, and transition probabilities are
shown. The visual summary is restricted to the six top-populated states. Trailing arrows indicate
transitions to other states. Transition probabilities for the six top-populated states (Values at or above
0.1 are highlighted in bold indicating considerable transitions).
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5. Conclusions

While the application setting that motivates the computational study in this paper is
elucidating the impact of antigen binding on the dynamics of Immunoglobulin G (IgG),
our study focuses on practical design choices that hamper the quality of MSMs integrating
MD trajectories. Whether focusing on a free antigen or an antigen-bound one, the number
of atoms in a molecular system can approach several hundred thousand. Even reducing to
the central carbon atoms does not significantly reduce the number of atoms or dimensions.
For the particular systems in this study, this number exceeds 20,000 atoms (for free antibody)
and 21,000 atoms (for the antigen-bound antibody), respectively.

Such a high dimensionality of the structure space poses real challenges for the clus-
tering algorithms on which MSM construction packages rely for state space discretization.
In turn, the quality of MSMs suffers, as diagnosed by various statistical tests. Even em-
ploying dimensionality reduction techniques, such as PCA and TICA, does not promise
a remedy [16]. In this paper, we show that reducing the representation dimensionality in
a non-parametric, data-driven manner improves MSM quality. In particular, employing
shape-based coordinates to featurize three-dimensional structures allows for including
more structures in the computation, yielding a higher-quality MSM even in the absence
of energetics. Furthermore, the Supplementary Figures S1–S12 demonstrate how diverse
the structures are with respect to the initial/starting structures.

The related MSM models stand up to various statistical tests, and the state-to-state
dynamics they reveal for the free and antigen-bound antibody allow for drawing interesting
insights. The MSMs show that, with antigen binding, there are considerable state-to-state
transitions. These suggest that the antigen-bounded form may provide many dynamic
processes to further enhance co-factor binding of the antibody in the next step. We also ob-
serve that the antigen binding reduces the number of macro-states. Actually, these insights
suggest that the directions we investigated in this paper advance our understanding of the
relationship between antibody dynamics and antibody–antigen recognition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom12071011/s1, Figures S1–S12 demonstrate the deviation in terms of backbone RMSD of
the entire set of structures (160,000 structures) with respect to each of the 12 starting/seed structures.
Figures S13–S15 relate the results obtained from conducting the CK test over the MSM models
obtained, respectively, from Settings A–C for free antibody. Figures S16–S18 relate the results
obtained from conducting the CK test over the MSM models obtained respectively from Settings A–C
for the antigen-bound antibody.
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