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Background: Oxidative stress has been implicated in various diseases including atherosclerosis; the most
common pathologic process underlying acute myocardial infarction (AMI). The manganese superoxide
dismutase (MnSOD) antioxidant enzyme affords the major defense against reactive oxygen species
(ROS) within the mitochondria. MnSOD Alanine16Valine (A16V) single nucleotide polymorphism (SNP)
has been shown to decrease MnSOD detoxification activity. Aim: A case-control study was conducted
to investigate the association between MnSOD A16V polymorphism and the incidence of AMI in the
Egyptians, investigate the contribution of oxidative stress represented by hexanoyl lysine adduct
(HEL), an oxidative stress biomarker, in the pathogenesis of AMI and finally correlate the MnSOD geno-
types with HEL serum levels. Methods: A total of 200 Egyptian subjects were recruited for the study; 100
AMI patients and 100 control subjects. Genotypes of the MnSOD A16V polymorphism were determined
using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Serum HEL
was measured by ELISA. Results: A significant difference in the distribution of the MnSOD A16V geno-
types was observed; VV genotype was significantly higher in AMI than controls (p � 0.0001). Also, study-
ing the allele frequencies revealed that Val allele was significantly higher in AMI than controls
(p � 0.0001). Serum analysis showed higher levels of HEL in AMI patients (p = 0.0142). Furthermore,
HEL levels were found to be significantly higher in VV genotype in AMI (p = 0.0273). Conclusions: Our
study suggests that MnSOD A16V polymorphism is associated with increased risk of developing AMI
in the Egyptians. Moreover, the VV genotype is associated with higher HEL levels.
� 2017 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction

Oxidative stress is linked to atherosclerosis. Reactive oxygen
species (ROS) disturb the function of vascular wall cells. ROS also
stimulate lipid peroxidation. In addition, oxidized low-density
lipoprotein (oxLDL) promotes atherogenesis and destabilizes pla-
que via several pathways. ROS are involved in inflammatory cell
recruitment as well [1,2].
MnSOD is an endogenous antioxidant enzyme synthesized in
the cytosol and is post-transcriptionally transported into mito-
chondria, which protects cells from oxidative damage by catalyzing
dismutation of superoxide radicals, producing hydrogen peroxide
and molecular oxygen [3].

Several SNPs in sod2 gene, MnSOD encoding gene, have been
described. Ala16Val SNP has been demonstrated to have a func-
tional significance which arises from the substitution of cytosine
(C) by thymine (T) resulting in the substitution of an alanine

(GCT) for a valine (GTT) at the 16th residue of the signal peptide
in the mitochondrial-targeting sequence [4].

This substitution is thought to alter the conformational struc-
ture of the mitochondrial targeting sequence of MnSOD affecting
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its mitochondrial import and thus its efficacy in fighting oxidative
damage [5].

Hexanoyl lysine adduct (HEL) is a lipid hydroperoxide-protein
adduct, which is formed upon the oxidative modification of
omega-6 (x-6) fatty acids such as linoleic acid and arachidonic acid
and their interaction with lysine residue in proteins. HEL moiety
has been reported to exist in oxLDL and human atherosclerotic
lesions. HEL is considered a novel lipid peroxidation biomarker
[6,7].

Several studies tried to link between MnSOD polymorphism
and oxidative stress-related disorders including atherosclerosis.
However, results were somehow controversial. The aim of the cur-
rent study was to investigate MnSOD Ala16Val polymorphism and
its association with the incidence of AMI in the Egyptian popula-
tion and to correlate between genotypes and the serum levels of
HEL.
Fig. 1. Representative 4% agarose gel electrophoresis of Bsaw I restriction digestion
of MnSOD A16V SNP in AMI subjects. Lane 1 is an example of CT genotype, lane 2 is
CC and lane 3 is TT.

Table 1
General characteristics of participants.

AMI Control

Number (M/F) 100 (55/45) 100 (60/40)
Age range Males: 44–60 Males: 42–58

Females: 45–60 Females: 41–56
TC 217.7 ± 8.28* 184.4 ± 4.22
TG 152.5 ± 7.82*** 120.3 ± 6.37

Values are expressed as mean±SEM, TC; Total cholesterol, TG; Triglycerides.
* Significant difference at p = 0.0205.

*** Highly significant difference at p = 0.0006.
2. Subjects and Methods

2.1. Subjects

200 subjects were involved in this study. They were 100 AMI
patients (55 males with age range 44–60 years and 45 females
with age range 45–60 years) recruited from the intensive care unit
of three different hospitals; the National Heart Institute, Imbaba,
Giza, El Demerdash Hospital, Ain Shams, Cairo and Egypt Air Hospi-
tal, Almazah, Cairo, Egypt. Patients were included in the study if
they were diagnosed with AMI by clinical presentation, ECG
changes and/or elevated biochemical markers. Exclusion criteria
for AMI patients included age above 60 years, any concomitant
acute or chronic severe diseases such as diabetes, renal failure,
hepatic insufficiency, cardiovascular disease other than MI and
smoking.

Control group consisted of 100 healthy unrelated subjects
recruited for the study from volunteers attending the blood bank
at Children Cancer Hospital (57357), Cairo, Egypt. They comprised
of 60 males (age range 42–58 years) and 40 females (age range 41–
56 years). Exclusion criteria for control subjects included age above
60 years, chronic diseases (diabetes, hypertension, renal failure,
hepatic insufficiency or cardiovascular diseases) and smoking.
The study was conducted after taking the approval of the ethical
committees of the German University in Cairo and the three partic-
ipating hospitals. In addition, an informed written consent was
obtained from all participating subjects.

The sample size of the study was calculated for a matched case
control study with a power of 80%, ratio of cases to controls 1:1;
exposure in controls 50%; expected odds ratio of 2.7 and alpha
error of 5%.

2.2. Methods

2.2.1. Blood sampling and DNA purification
Five mls of blood were drawn from each participant and divided

on two different vacutainers; one containing EDTA K3 and a second
plain vacutainer for whole blood and serum collection, respec-
tively. DNA was extracted and purified from blood leukocytes
using Thermo Scientific DNA extraction kit (Lithuania, EU). Serum
was separated and kept stored at �80 �C till analysis.

2.2.2. Polymerase chain reaction restriction fragment length
polymorphism (PCR-RFLP) assay

Primers suitable for amplification of the gene region containing
A16V polymorphism were used; forward primer (50

GCTGTGCTTTCTCGTCTTCAG 30) and reverse primer (50

TGGTACTTCTCCTCGGTGACG 30). The substitution of A with V at
16th amino acid genetic code creates a recognition site for the
restriction enzyme. PCR was performed to amplify the gene region
containing the target SNP, using 2 mL of each primer (supplied by
Invitrogen, Thermo Fisher Scientific, Inc.), 1 mL DMSO, 12 mL of
the purified DNA (50 ng), 8 mL nuclease free water and 25 mL mas-
ter mix (Thermo Scientific, Lithuania, EU) to have a final reaction
volume of 50 mL. The prepared PCR mixture was placed in thermo-
cycler (Biometra T) were the following program was run: pre-
denaturation step 1 for 5 min at 94 �C. Then three steps repeated
for 38 cycles; denaturation for 30 s at 94 �C, annealing for 30 s at
60 �C and extension for 30 s at 72 �C. This was followed by a final
extension step for 10 min at 72 �C. The produced PCR product
was 207 bp. Restriction enzyme Bsaw I (New England biolabs,
5000 units/ml) was used to digest the PCR product to determine
the genotype. 1 mL of Bsaw I was added to 4 mL buffer and 15 mL
PCR product. The final volume was adjusted to 30 mL using 10 mL
nuclease free water. The restriction product was incubated for
1 h at 37 �C. The product was loaded to a 4% agarose gel for analy-
sis. BsawI restriction enzyme digested the PCR product into two
fragments 167 bp and 40 bp if T allele is present. While in case of
C allele DNA was kept undigested as shown in Fig. 1.

2.2.3. Lipid profile for participating subjects
Serum was used to measure triglycerides (TG) and total choles-

terol (TC) by an enzymatic colorimetric method using kits provided
by Diamond diagnostics, Egypt.

2.2.4. Measurement of serum HEL levels
Serum levels of HEL were measured using a commercially avail-

able ELISA kit provided by JaICA, Japan.

3. Statistical analysis

Statistical analysis was performed using the statistical program
GraphPad prism. Data are represented as mean ± SEM. To compare
differences between groups, odds ratio, nonparametric student
t-test (Mann-Whitney) and nonparametric one-way ANOVA



Table 2
Genotype distribution of MnSOD A16V in AMI patients and controls.

Genotypes Distribution (%) AMI Control

� AA genotype 20% 37%
� AV genotype 31% 42%
� VV genotype 49% 21%
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(Kruskal-Wallis) were used. In all statistical tests two-tailed p
value �0.05 was considered statistically significant. Data were also
tested for fitting in Hardy-Weinberg equilibrium (HWE), p value
higher than 0.05 was counted as a compatible result.
Fig. 2. Serum levels of HEL in AMI and controls. Results are expressed as
mean ± SEM. *Significant difference at p = 0.0142. Serum levels of HEL were
significantly higher in AMI than control (p = 0.0142).

Fig. 3. Correlation between HEL serum levels and MnSOD genotypes in study
groups. In AMI patients, HEL concentration is highest in VV genotype compared to
other genotypes (p = 0.0273). For the control group, there was no significant
difference in HEL serum levels among the different MnSOD genotypes. While in AMI
patients, HEL serum levels were significantly higher in VV genotype compared to AA
and AV genotypes (p = 0.0273).
4. Results

4.1. General characteristics of patients and controls

General characteristics of patients and controls are displayed in
Table 1.

4.2. Association between MnSOD A16V polymorphism and AMI in
Egyptians

Genotypes of controls were not deviated from Hardy-Weinberg
equilibrium (p = 0.168). The genotype distribution pattern was sig-
nificantly different between study groups (Table 2). It is noticed
that the VV genotype was significantly higher in AMI than controls
(p � 0.0001).

Furthermore, studying the odds ratio (OR) between AMI and
control subjects showed 2.5 folds higher risk for individuals carry-
ing Val allele compared to those carrying the Ala allele. The dom-
inant model of genotypes showed 2.3 folds higher risk among AV
+VV genotypes compared to AA genotype while the recessive
model showed that homozygous VV individuals are at 3.6 folds
higher risk than individuals having other genotypes (AA+AV)
(Table 3).

4.3. HEL levels in AMI and controls

AMI group showed a significant increase in serum HEL levels
when compared to control (p = 0.0142) (Fig. 2).

4.4. Correlation between MnSOD A16V polymorphisms and HEL serum
levels

Association of MnSOD genotypes with HEL levels was illus-
trated in Fig. 3. For the control group, there was no significant dif-
ference in serum HEL serum levels among the different MnSOD
genotypes. While Serum HEL concentrations are significantly dif-
ferent among the various MnSOD genotypes in AMI patients;
where HEL concentration is highest in VV genotype compared with
AV and AA genotypes (p = 0.0273).
Table 3
Odds ratio (OR) and 95% confidence intervals (CI) for MnSOD genotype distribution and a

A16V AMI patients (n = 100) C

Genotypes
Dominant Model AV+VV 80 6

AA 20 3
Recessive Model VV 49 2

AV+AA 51 7
Alleles
Val allele 129 8
Ala allele 71 1
5. Discussion

Several studies had discussed the association of MnSOD A16V
polymorphism with CAD in different populations; however, results
were not consistent.

Our current study results showed that the Val allele and the VV
genotype are associated with the incidence of AMI in Egyptians.
These results are consistent with a study conducted on Japanese
and linked Val allele to the incidence of AMI [8]. Same results were
obtained from studies on Italian, Chinese, Caucasian and Danish
populations [9–12].

In contrast to all the above studies, studies on Slovene showed
no correlation between the A16V polymorphism of MnSOD gene
and the risk of MI [13].
llele frequencies in study groups.

ontrol subjects (n = 100) OR (95% CI) p-value

3 2.349 (1.243–4.440) p = 0.0077
7
1 3.614 (1.943–6.725) p < 0.0001
9

4 2.509 (1.676–3.756) p < 0.0001
16
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Several studies have suggested that the MnSOD A16V polymor-
phism is associated with various oxidative stress-dependent
pathologies. Disease risk is linked to the Val allele or VV genotype
in diabetes microvascular complications, obesity, hypercholes-
terolemia and metastatic potential of breast cancer [14–17]. Inter-
estingly, in few studies, the disease risk was associated with the
Ala allele or AA genotype for example, in prostate cancer, breast
cancer and other cancers [18,19].

This finding was explained by the disruption of the protein by
the change of alanine to valine. This a-helix structure is important
for the translocation of the enzyme to the mitochondrial matrix
where it exerts its function. Disruption by valine causes the protein
to be retained at the level of the mitochondrial inner membrane
and has been associated with increased susceptibility to oxidative
stress. Therefore, Val allele was thought to be a risk factor for
atherosclerosis [9,20].

Regarding HEL, the current study showed a significantly higher
serum levels in AMI patients compared to controls (p = 0.00142).
Several studies showed similar results suggesting that HEL serum
levels increase in various oxidative stress dependent pathologies
[7,21–23].

It is proposed that oxidized lipid components of oxLDLmay play
a key role in the atherogenic process by inducing the transcription
of inflammatory genes in vascular smooth muscle cells and aug-
menting the recruitment as well as the retention of monocytes in
the subendothelial space [24].

Studying the association of HEL levels with genotype distribu-
tion of MnSOD A16V SNP showed a significant increase in the
serum levels of HEL in the VV genotype when compared to the
AV and AA genotypes in the AMI patients (p = 0.0273). This con-
firms the findings that suggest that the Val allele results in
decreased formation of active MnSOD within the mitochondrial
matrix, leaving mitochondria inadequately protected against
superoxide radicals thus increasing the risk of AMI [25].

Hence, we conclude that A16V polymorphism is associated with
increased risk of developing AMI in Egyptians. The study also
showed that the VV genotype of AMI patients was accompanied
with higher HEL levels.
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