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Simple Summary: The tumour microenvironment contains a unique population of cells, of complex
origin and diverse functionality, known as Cancer associated fibroblasts (CAFs). In recent years
there has been a growing interest in targeting CAFs to aid cancer diagnosis and therapy. Amongst
the approaches utilized so far, targeting Fibroblast activation protein (FAP) has shown a lot of
promise. In this review, we will focus on our current knowledge of the biology of CAFs as well as
theranostic applications that will enhance cancer diagnosis and therapy in cancers carrying a distinct
CAF signature.

Abstract: Cancer Associated Fibroblasts (CAFs) form a major component of the tumour microen-
vironment, they have a complex origin and execute diverse functions in tumour development and
progression. As such, CAFs constitute an attractive target for novel therapeutic interventions that will
aid both diagnosis and treatment of various cancers. There are, however, a few limitations in reaching
successful translation of CAF targeted interventions from bench to bedside. Several approaches
targeting CAFs have been investigated so far and a few CAF-targeting tracers have successfully
been developed and applied. This includes tracers targeting Fibroblast Activation Protein (FAP) on
CAFs. A number of FAP-targeting tracers have shown great promise in the clinic. In this review, we
summarize our current knowledge of the functional heterogeneity and biology of CAFs in cancer.
Moreover, we highlight the latest developments towards theranostic applications that will help
tumour characterization, radioligand therapy and staging in cancers with a distinct CAF population.
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1. Introduction

Cancer remains the second leading cause of death in the world [1], despite major
improvements in diagnosis and therapy. This is partly because most of the developed
therapeutics are targeting tumour cells ignoring however the surrounding tumour microen-
vironment (TME) [2]. The role of TME in cancer development has only gained attention in
the recent years, driving research towards a new cancer treatment paradigm: the TME.

The TME may consist of more than 50% of the tumour mass and together with tumour
cells it coordinates rapid proliferation, local invasion and eventually metastasis to the sur-
rounding tissues [3]. In addition to cancer cells, the TME comprises immune cells, tumour
vasculature, fibroblasts, extracellular matrix (ECM), myofibroblasts, neuroendocrine cells
and adipose cells [4]. Intracellular communication is directed by a very complex network of
cytokines, chemokines, inflammatory and matrix remodelling enzymes; the TME presents
in fact similarities to the processes described in wound healing and inflammation.
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TME-specific markers, found during tumour development, can be useful not only to
understand the composition of TME, but also to aid diagnosis and therapy strategies [5].
It has been shown that spatial distribution of immune cells is positively correlated to patient
survival in multiple tumour types (e.g., breast cancer and colorectal cancer) [6]. There are
however, additional cell types within the TME that can regulate and affect oncogenesis.
In particular, a subpopulation of fibroblasts called cancer associated fibroblasts (CAFs).
These cells often constitute a major component in the TME, creating the “ground” in which
the tumour cells can grow [7].

Growing evidence proves that CAFs can stimulate a malignant tumour phenotype due
to their heterogeneous nature and functional diversity. Others suggest that a distinct CAF
subpopulation, known as myofibroblasts (myCAFs), can have a more tumour-restraining
role [8]. It is therefore, necessary to evaluate the importance of CAF biology and its various
functions in cancer to identify specific subsets of the CAF populations that could constitute
a springboard for more precise treatments. In this review, we aim to summarize the current
understanding of the origin, and functional heterogeneity of CAFs in tumour development
and progression. In addition, we outline potential strategies that target CAFs for their use
in radionuclide imaging and therapy.

2. Cancer Associated Fibroblasts (CAFs)

Under normal conditions, fibroblasts are quiescent spindle shaped cells located in
the connective tissue of most organs. They regulate the polarity and function of normal
epithelium by generating the basement membrane. During tissue fibrosis and wound
healing, these same fibroblasts are transformed into smooth muscle reactive fibroblasts
and contribute to tissue repair [9]. The assumption that a tumour is a ‘wound that does not
heal’ [10], has led to great interest in CAFs and their potential use in cancer therapy.

Studies have shown that CAFs are responsible for the synthesis and remodelling of the
ECM and play various roles in cancer metastasis, angiogenesis, and drug resistance. Even
though extensively studied in vitro, the CAF population remains largely uncharacterized
in regards to its origin, biology, and subtypes [11], presenting phenotypic heterogeneity
and functional diversity [12].

3. Origins of CAFs

A number of different tissue types are responsible for the origin of CAFs (Figure 1),
highlighting the heterogeneity of this specific cell population. CAFs can be produced
from normal tissue fibroblasts that are activated by nearby tumour cells. This activation
is strongly dependent on stimuli such as hypoxia, oxidative stress and growth factors
produced by neighbouring tumour and immune cells [13]. More specifically, activation via
the transforming growth factor-β (TGF-β), epidermal growth factor (EGF), platelet-derived
growth factor (PDGF), and fibroblast growth factor 2 (FGF2), are the main contributors to
fibroblast recruitment [14,15].

The best-studied cell population of CAF origin consist of mesenchymal stem cells
(MSCs). In vitro and in vivo studies have provided evidence that MSCs from bone marrow
(BM-MSCs) can differentiate into a CAF subtype in tumours such as gliomas, breast, and
pancreatic cancers [16,17].

In addition to the adjacent sources, a number of CAFs can be identified from a
non-fibroblastic origin. Such cells can be epithelial or endothelial cells, through epithelial-
to-mesenchymal transition (EMT) or endothelial to mesenchymal transition (EndMT),
respectively. The latter transition, was first observed during heart formation where an
exchange in TGF-β signalling from endothelial to fibroblast-like cells was identified in
cardiac tissues, suggesting that a similar phenomenon occurs in cancer tissues [18]. During
this process loss of endothelial markers (e.g., CD31) and expression of mesenchymal
markers (e.g., fibroblast specific protein (FSP) and α-smooth muscle actin (α-SMA)) is
often visible.
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Figure 1. Potential cellular sources for cancer associated fibroblasts (CAFs). Several cellular types 
might yield CAFs in the TME. This includes normal fibroblasts through activation, recruitment and 
differentiation of bone marrow-derived mesenchymal stem cells (MSCs); epithelial cells through 
epithelial-to-mesenchymal transition (EMT) and endothelial cells through endothelial-to-mesenchy-
mal transition (EndMT). Another source could be adipocytes through upregulated expression of 
mesenchymal bone marrow lineage-committed markers.  

The best-studied cell population of CAF origin consist of mesenchymal stem cells 
(MSCs). In vitro and in vivo studies have provided evidence that MSCs from bone marrow 
(BM-MSCs) can differentiate into a CAF subtype in tumours such as gliomas, breast, and 
pancreatic cancers [16,17]. 

In addition to the adjacent sources, a number of CAFs can be identified from a non-
fibroblastic origin. Such cells can be epithelial or endothelial cells, through epithelial-to-
mesenchymal transition (EMT) or endothelial to mesenchymal transition (EndMT), re-
spectively. The latter transition, was first observed during heart formation where an ex-
change in TGF-β signalling from endothelial to fibroblast-like cells was identified in car-
diac tissues, suggesting that a similar phenomenon occurs in cancer tissues [18]. During 
this process loss of endothelial markers (e.g., CD31) and expression of mesenchymal 
markers (e.g., fibroblast specific protein (FSP) and α-smooth muscle actin (α-SMA)) is of-
ten visible. 

Adipocytes can also transform into fibroblasts through expression of mesenchymal 
bone marrow lineage-committed markers (e.g., transcription factor (SOX9), peroxisome 
proliferator activated receptor-γ (PPARγ)) [15]. Adipocytes are located next to cancer cells 
and due to their interaction with tumour cells, they have become of major interest [19]. 
Moreover, an adipocyte-like cell population recruited from the bone marrow, known as 
fibrocytes, settles in the tumour stroma and is considered a subset of CAFs [20].  

The difficulty of recognizing CAFs and their origin, lies in the absence of specific 
markers, although markers that are not expressed in normal cells can be used as an indi-
cator, such as the aforementioned α-SMA [9]. Another way to distinguish them from other 
cells is by exclusion criteria based on their morphological characteristics (e.g., spindle 
shape characteristics) and the absence of non-mesenchymal markers [21]. In analysing tis-
sue biopsies for example, cells not carrying epithelial, endothelial, and leukocyte markers, 
having elongated morphology and no mutations associated with cancer cells, can be con-
sidered CAFs. Taking into account the latter characteristic, cancer cells undergoing EMT 
can be also excluded. However, gaining a better understanding of the origin of this cell 
type and the various subsets could help to identify markers and ways to target these cells 
and their function. 

4. Functions of CAFs 
Several studies utilizing cell culture as well as in vivo experiments in mouse models, 
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Figure 1. Potential cellular sources for cancer associated fibroblasts (CAFs). Several cellular
types might yield CAFs in the TME. This includes normal fibroblasts through activation, recruit-
ment and differentiation of bone marrow-derived mesenchymal stem cells (MSCs); epithelial cells
through epithelial-to-mesenchymal transition (EMT) and endothelial cells through endothelial-
to-mesenchymal transition (EndMT). Another source could be adipocytes through upregulated
expression of mesenchymal bone marrow lineage-committed markers.

Adipocytes can also transform into fibroblasts through expression of mesenchymal
bone marrow lineage-committed markers (e.g., transcription factor (SOX9), peroxisome
proliferator activated receptor-γ (PPARγ)) [15]. Adipocytes are located next to cancer cells
and due to their interaction with tumour cells, they have become of major interest [19].
Moreover, an adipocyte-like cell population recruited from the bone marrow, known as
fibrocytes, settles in the tumour stroma and is considered a subset of CAFs [20].

The difficulty of recognizing CAFs and their origin, lies in the absence of specific
markers, although markers that are not expressed in normal cells can be used as an indicator,
such as the aforementioned α-SMA [9]. Another way to distinguish them from other cells
is by exclusion criteria based on their morphological characteristics (e.g., spindle shape
characteristics) and the absence of non-mesenchymal markers [21]. In analysing tissue
biopsies for example, cells not carrying epithelial, endothelial, and leukocyte markers,
having elongated morphology and no mutations associated with cancer cells, can be
considered CAFs. Taking into account the latter characteristic, cancer cells undergoing
EMT can be also excluded. However, gaining a better understanding of the origin of this
cell type and the various subsets could help to identify markers and ways to target these
cells and their function.

4. Functions of CAFs

Several studies utilizing cell culture as well as in vivo experiments in mouse models,
have suggested a diverse number of functions that CAFs might employ. In their study,
Olumi et al. were among the first to show that CAFs promote tumour growth in a prostate
cancer mouse xenograft model while normal fibroblasts have more inhibitory proper-
ties [22]. In addition to tumour growth-promoting function of CAFs, the authors also
described involvement in angiogenesis, tumour cell proliferation and metastasis, shedding
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light on the contribution of these cells towards malignant progression. In this section, we
will refer to each of these functions separately (Figure 2).
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Figure 2. Diverse functions of CAFs: promotion of tumour growth, angiogenesis, cell invasion and metastasis to surrounding
tissues, regulation of innate and adaptive immune responses. In addition to tumour-protective roles, CAFs occasionally
have anti-tumorigenic functions. VEGF: Vascular Endothelial Growth Factor, FAP: Fibroblast Activation Protein, MMPs:
Matrix Metalloproteinases, PDGF: Platelet-Derived Growth Factor, IL-6: Interleukin 6, CD146: Cluster of Differentiation 146,
HGF: Hepatocyte Growth Factor, FSP1: Fibroblast-specific Protein 1.

4.1. Promotion of Tumour Growth

It is well known that tumour growth depends on the uncontrollable proliferation of
tumour cells [23]. This rapid phenomenon can cause changes in the TME and besides
stromal cells, CAFs have also been reported to cause induction of tumorigenesis through se-
cretion of various growth factors and cytokines affecting the neighbouring cancer cells [24].
For example, overexpression of growth factor TGFβ and hepatocyte growth factor (HGF)
in mouse fibroblasts was shown to induce breast cancer when co-injected with normal
epithelium [25]. In another study, Grum-Schwensen and coworkers showed that Fibroblast-
specific protein 1 (FSP1) knockout mice transplanted with cancer cells were less likely
to form tumours when compared to mice injected with fibroblasts overexpressing FSP1.
The evidence suggested that FSP1 secreted by CAFs alters the TME and thereby enhances
cancer progression [26]. In a different example, expression of N-cadherin in melanoma
cells allows interaction with N-cadherin-expressing fibroblasts to mediate cell adhesion
and to improve the ability of melanoma cells to migrate through stroma and towards the
vasculature. This expression of N-cadherin in fibroblasts during melanoma development
not only provides adhesion ground to melanoma cells, but also promotes survival hence
establishing a highly proliferative and malignant phenotype [27].

Reactive oxygen species (ROS) can modulate metabolic reprogramming of cancer cells
but also of CAFs, thus supporting the acclimatization to oxidative stress that initiates CAF
differentiation and tumorigenesis. Generation of ROS can trigger the initiation of events
associated with metabolic switch in both cancer and CAF development. More specifically,
production of hydrogen peroxide (H2O2) by cancer cells initiates oxidative stress in CAFs,
followed by reduction of mitochondrial function, increase of glucose uptake and ROS
levels, and finally leads to CAF differentiation. As a result, a reactive TME is generated
by ROS, where CAFs sustain the energy needed for cancer cell proliferation [28,29]. Such
environmental changes, and in particular increased H2O2 levels, can act as markers for
therapeutic interventions [30].

4.2. Protection Against Tumour Growth

Notably, tumour-protective functions of CAFs have been also reported despite their
potent role in tumorigenesis. In a mouse model of pancreatic ductal adenocarcinoma
(PDAC), depletion of hedgehog signalling caused reduced stromal content, a more ag-



Cancers 2021, 13, 1100 5 of 18

gressive tumour phenotype and decreased survival [31]. The hypothesis was that the
hedgehog-activated stroma prevents tumour angiogenesis and blocks tumour growth.
In a different study, Brechbuhl et al. suggested that CAFs can affect oestrogen receptor
(ER) expression and growth dependency in luminal breast cancer. In particular, breast
cancer fibroblasts carrying a CD146-positive phenotype, may represent a subset of CAFs,
which might confer oestrogen-dependent tumour cell proliferation and sensitivity to ta-
moxifen treatment [32].

4.3. Cell Invasion and Metastasis

In addition to promoting tumour growth, CAFs are also capable of rendering cells
to invade surrounding tissues through cell-to-cell interactions and secretion of different
invasive molecules (e.g., cytokines, chemokines, inflammatory molecules), hence, modi-
fying the adjacent ECM [29]. The migration into the ECM is known to be a prerequisite
for cancer cells to intravasate and ultimately metastasize [33]. In their study, Fukumura
and coworkers used GFP transgenic mice under the control of the VEGF promoter and
showed that CAFs positive for GFP were infiltrating tumour regions; however, it was
difficult to assess whether it was CAFs contributing to this infiltration or the epithelial cells
themselves [34]. One hypothesis was that CAFs may support the migration of cancer cells
by guiding the migration rather than directly stimulating the cancer cells. In fact, in vitro
co-culture experiments have suggested that cells of stromal origin are leading invasive cells
by degrading the ECM through a combination of protease and force-mediated remodelling.
Then, CAFs trigger structural modification of the ECM in order to pave the way towards
the invasive cells [35]. In any case, it could be the cooperative interaction of these stromal
cells with the epithelia that may lead to the invasive phenotype.

Enhanced expression and activation of matrix metalloproteinases (MMPs) by CAFs
can also contribute to the remodelling of the ECM and thereby promote cell invasion.
During normal homeostasis, MMPs keep the ECM in a balanced and well-organized
state [36]. Overexpression of MMPs, however, can cause severe remodelling of the ECM,
facilitating invasion and metastasis. In their study, Li et al. co-cultured primary CAFs
with adenoid carcinoma cells (ACC) using a microfluidic device, where CAFs invaded the
Matrigel via MMP activity. This could suggest that, besides the secretion of soluble factors,
CAFs can create an invasive track in the ECM allowing other cells to follow them [37].

Fibroblast activation protein (FAP), a type II membrane bound glycoprotein, can
also contribute to matrix reorganization by acting as a serine protease to degrade type I
collagen [38]. Lee et al. described that FAP acts through various proteins by modulating
the protein levels, and also through increasing levels of fibronectin and collagen fiber
organization. As such FAP promotes tumour invasion [39] (Figure 3). In a different
study, Wang et al. reported that overexpression of FAP in a human hepatic stellate cell
line caused cell migration via activation of ECM proteins, including MMP2 [40]. FAP
expression levels have been found to correlate with poor disease prognosis in several types
of cancer, including colon [41], pancreatic [42], and hepatocellular carcinoma [43]. Being the
predominant component of cancer stroma in most types of cancer [38], FAP can therefore
be considered a significant target for therapeutic intervention, which will be discussed in
later sections.
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4.4. Angiogenesis

Tumour growth and metastasis highly depend on angiogenesis for the tumour to
develop, as the formation of new blood vessels is essential for the supply of oxygen and
nutrients [44]. CAFs are capable to produce angiogenic factors, such as VEGF, and their
production is induced by several components, the most important being hypoxia. In re-
sponse to such conditions, CAFs upregulate the expression of VEGF protein in a manner
that depends on oxygen deprivation [45]. CAFs can also affect angiogenesis through other
angiogenic factors [46]. For example, the platelet derived growth factor/Platelet derived
growth factor receptor (PDGF/PDGFR) signalling pathway has been described in angiogen-
esis through its involvement in CAF-mediated activation of VEGF. More specifically, PDGF
directly attracts CAFs that secrete VEGF and thereby indirectly promotes angiogenesis [47].

Secretion of interleukin-6 (IL-6) by CAFs has also been reported to play a role in angio-
genesis. IL-6 has the features of an angiogenic cytokine and was originally identified as a
regulator of immune and inflammatory responses [48]. It is involved in various processes
such as cell proliferation, migration, and angiogenesis. Dysregulated IL-6 production
is associated with poor prognosis in many cancer types [49]. It was found that gastric
cancer-derived isolated CAFs produced high amounts of IL-6 that enhance migration and
EndMT of gastric cancer cells, a phenotype that was abrogated by inhibition of IL-6 [50].
These findings suggested that IL-6 can be directly inhibited to enhance responsiveness
to therapy.

4.5. CAFs and Immune Response

It is becoming more and more evident that there is a cross-talk not only between
tumour cells and immune cells, but also between CAFs and immune cells. This is because
CAFs have been implied to affect both innate and adaptive immune responses [51].

Cells of the innate immune response (macrophages, neutrophils, dendritic cells (DC),
natural killer cells (NK), mast cells, and cytotoxic T-lymphocytes) act as early responders
to cancer-mediated inflammation, and also as precursors for the adaptive immunity [52].
The interaction between CAFs and M2 macrophages, carrying distinct signatures (e.g.,
high expression levels of FAP, α-SMA, and FSP1 for CAFs and expression of CD163 and
Dendritic-Cell specific intercellular adhesion molecule-3-Grabbing Non-Integrin (DCSIGN)
for macrophages), was reported in advanced colon cancer patients, and their co-presence
was correlated with a differential disease progression and survival [53]. In particular high
mRNA levels of CAF markers were correlated with poor disease-free survival and overall
survival and when combined with M2 macrophage markers, these correlations became
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even more pronounced. In PDAC it was hypothesized that the communication between
tumour cells and CAFs may be the initiator of cancer-associated inflammation [54]. This
hypothesis was supported by the finding that the in vitro secretome of CAFs included
immune cell chemokines (i.e., SDF-1) and anti-inflammatory proteins (i.e., CXCL6/GCP-2)
that regulate the inflammatory response [54]. Pancreatic CAF precursors, known also as
stellate cells, have been reported to interact with mast cells (e.g., a cell type that covers
vessels and takes part in allergic responses) and tumour cells in models of PDAC. Together,
tumour cells and stellate cells could activate mast cells in vitro, as was indicated by the mast
cell release of TNF-α, thereby promoting tumour cell migration. Blocking this interaction
led to tumour suppression [55].

With regards to cells of the adaptive immune system, the relationship between CAFs
and the adaptive immune response is yet to be fully elucidated. This is in part due to
the lack of sufficient and relevant multi-cellular in vitro assays as well as the majority of
in vivo studies being performed in immune-suppressed animal models, both impeding
the effects that CAFs can have on T cells. During early tumour initiation, naïve T cells are
activated and migrate to the TME in order to eliminate cancer cells [56]. Findings from
in vivo models suggest that when targeting specific CAF-related molecules, attenuation of
tumour growth and metastasis will appear followed by a change of T cell response. For
example, ablation of FAP-positive CAFs in vivo, in a breast cancer model, led to a switch
from Th2- to Th1-type immunity (T cell mediated immune response is classified in Th1- or
Th2-type immunity, based on the cytokine expression profile), followed by expression of
cytotoxic cytokines IL-2 and IL-7 and increased CD8+ T cell tumour infiltration, all critical
for tumour immunotherapy [57].

In 2013, Pena et al. reported that PDGF-activated fibroblasts could increase migration
and invasion of colorectal cancer cells, a process driven by the glycoprotein stanniocalcin-1
(STC1) [58]. STC1 is known to exert anti-inflammatory responses that affect both the innate
and adaptive immune system, either by affecting macrophage function through induction
of UCP2 (e.g., reduces mitochondrial membrane potential necessary for proper immune
response) [59], or via inhibiting the migration of both human macrophages and T-cells
towards human umbilical vein endothelial cells (HUVEC) [60].

In short, these studies and others [61–63] suggest that during tumorigenesis, CAFs
acquire the ability to recruit immune cells and later on modulate them to an immunosup-
pressive phenotype that is compatible with disease progression.

In light of the functional and morphological heterogeneity, one question that frequently
appears is how does the transition of a normal fibroblast to CAF really occur? Studies sug-
gest both genetic alterations [63,64] and epigenetic changes that may account responsible
for this tumour-promoting phenotype, with the latest being the most prevalent [65–69].

4.6. The Role of miRNAs in CAFs

MicroRNAs (miRNA), which negatively regulate gene expression at a post-transcrip-
tional level, have been reported to be involved in the conversion of fibroblasts to CAFs [69].
CAFs isolated from patients and analysed for miRNA expression presented 11 altered
miRNAs when compared to normal fibroblasts [70]. Of those, three miRNAs (miR-221-5p,
miR-31-3p, miR-221-3p) were found to be up-regulated, and eight (miR-205, miR-200b,
miR-200c, miR-141, miR-101, miR-343-3p, let-7g, miR-26b) were down-regulated in CAFs.
All 11 miRNAs affect important signalling pathways, such as those activated by IL-6, TGF-
β, and hepatocyte growth factor, playing essential roles in cell proliferation, differentiation,
cell migration, and interaction with TME components. It is noteworthy that CAFs could be
transformed back to normal fibroblasts by mimicking this downregulation via gene transfer
of miRNAs and miRNA inhibitors. On the other hand, normal fibroblasts containing
reprogrammed miRNA showed upregulated expression of genes similar to CAFs. These
genes were highly enriched in chemokines, known to be important in CAF function. This
illustrates that miRNAs contribute to the cross-talk between CAFs and tumour cells. The
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aforementioned investigations provide strong evidence that epigenetic markers can be
essential therapeutic targets for CAFs, and consequently for the TME.

5. Targeting CAFs as an Approach to Anti-Cancer Therapy

As mentioned earlier, a number of studies have suggested that CAFs and their actions
are linked to disease outcome and therefore appear as a very attractive target for the
development of anticancer therapies. In the past years, many have tried to target CAFs
either directly by promoting conversion to a more normal fibroblast phenotype or indirectly
by influencing their communication with nearby cells. Our increasing knowledge of CAF
biology has led to more pre-clinical studies developing novel FAP-targeting anti-cancer
strategies that could potentially show great promise in the clinic.

Several approaches have been applied on the targeting of CAF-related surface markers,
such as FAP and α-SMA [71], since they are highly expressed in a number of tumour tissues,
including pancreatic, lung, and breast cancer [72]. Some of these novel approaches include
the use of monoclonal antibodies (mAb), small molecules [73], or chimeric antigen receptor
(CAR) T-cells [74]; immunotherapy [75]; targeting of metabolism; conversion strategies.

5.1. Use of Antibodies, Small Molecules, or CAR-T Cells

The expression of FAP is unique for CAFs; FAP expression in other cells and tissues
have been reported to be near undetectable [76]. This has led to the believe that chemical
inhibition of FAP could have a therapeutic effect. In line with this, multiple FAP-targeting
antibodies and smaller molecules have been developed and evaluated.

Ostermann et al. developed a promising mAb against FAP (FAP5-DM1), which
showed long-lasting inhibition of tumour growth and good tolerability in preclinical
mouse models of pancreatic, lung, and head-and-neck cancer [73]. Unfortunately, no
tumour regression was observed during clinical trials in the majority of patients and the
maximum tolerated dose was not reached with this mAb [77].

In 2013, Roberts et al. reported that depletion of FAP-positive cells from three sites (e.g.,
skeletal muscle, adipose tissue and pancreas) caused loss of muscle mass and reduction
of erythropoiesis, and B-lymphopoiesis inducing cachexia and anaemia in mice [78]. This
study strongly advocates that strategies targeting CAFs must consider the potential side
effects that may appear under such a regime. Meanwhile, Feig and coworkers showed that
depletion of FAP-positive CAFs, in PDAC-bearing mice, enabled the immune control of
tumour growth and the antitumour activities of α-CTLA-4 and PDL1 antibodies [79].

Peptide-like small molecule inhibitors, such as Val-boro-Pro (also known as Talabostat
or PT-100), were initially developed to target dipeptidyl peptidase IV (DPPIV) but also
showed effect on FAP [80]. This inhibitor was tested in several clinical trials for the treat-
ment of different types of cancer [81], yet never got approval for clinical use. It did manage
however, to form the starting point for the development of FAP inhibitors with improved
activity, better stability and higher selectivity [82–84]. Currently, the best available FAP
inhibitor described in literature is UAMC-1110. UAMC-1110 has low nanomolar activity
combined with more than 500-fold specificity for FAP over off-target peptidases such
as DPPIV and PREP [85]. Currently, the effectiveness of UAMC-1110 and its analogues
have been evaluated pre-clinically and to the best of our knowledge no reports of clinical
evaluation are available.

In another study, Lo et al. demonstrated that depletion by adoptive transfer of FAP-
targeted CAR T-cells caused immune independent effects on tumour growth through reduc-
tion of ECM components, either directly by disrupting stromal-cell and matrix-dependent
signalling in tumour cells, or by inhibition of angiogenesis [74]. It was also reported that
depletion of FAP-expressing cells in Lewis lung carcinoma tumour models triggered acute
hypoxic death of both tumour cells and stroma cells, that was regulated by interferon-γ
(IFN-γ) and tumour-necrosis factor-α (TNF-α). The authors suggested that such a strategy,
in combination with other immune-therapeutics, may be more beneficial [86].
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Furthermore, therapeutics currently entering clinical trials might be more efficient
when combined with CAF-targeting approaches. Hirata et al. reported that melanoma
cells carrying BRAF mutations are more tolerant to the BRAF inhibitor, PLX4720, in areas
where dense stroma is present. The authors suggested that PLX4720 has an effect on
tumour stroma through ECM remodelling and supplies signals that make tumour cells
more tolerant to therapeutic interventions [87].

5.2. Blocking CAF Function with IL-6

Sun et al. showed for the first time that IL-6, produced by CAFs, supported degra-
dation of oestrogen receptor-α (ER-α) via the ubiquitin-proteasome pathway. Upon ad-
ministration of a proteasome inhibitor, sensitivity to chemotherapy was restored in breast
cancer cells. The decreased expression of ER-α was suggested to be due to the induction
of EMT by IL-6, and these effects disappeared by targeting CAFs with a IL-6 neutralizing
antibody [88]. Since IL-6 is the main mediator of such effects, it could be targeted only in a
portion of CAFs and therefore more precise markers are needed to efficiently discriminate
IL-6-producing CAFs from the rest of the population.

5.3. Hijacking the Metabolic Needs

Tumour cells largely depend on glucose and glutamine for their metabolic needs and
may hijack CAF metabolism in order to meet those requirements. This specific cross-talk be-
tween tumour cells and CAFs provides applications for anticancer therapy [89]. In prostate
cancer, elevated glutamine levels were detected in CAFs, which correlated with activation
of signalling pathways in tumour cells, most importantly RAS. As a result, the CAF-
derived glutamine supports the mitochondrial metabolism and induces neuroendocrine
differentiation and consequently resistance to androgen deprivation therapy (ADT) [90].

In PDAC, the pancreatic stellate cells constitute a major cell type of the tumour
stroma. Upon activation, due to production of cytokines or oxidative stress, they abnor-
mally proliferate and produce a large number of ECM components until they establish a
myofibroblasts-like phenotype [91]. It is this phenotype that is responsible for the fibrotic
environment observed in chronic pancreatitis and PDAC. In a study by Jacobetz et al.,
enzymatic breakdown of hyaluronic acid, a prominent component of the stroma environ-
ment, was shown to cause remodelling of microvasculature, leading to a more enhanced
therapeutic response [92]. This highlighted a way of overcoming chemoresistance through
impairment of the microenvironment.

5.4. Conversion of CAFs to a Quiescent Phenotype

Another approach that may potentially target CAFs is hidden in the regulatory path-
ways that cause the transformation of normal fibroblasts into CAFs [21]. In their extensive
review paper, Melissary et al. provide a detailed overview of the currently known methods
that fibroblasts use for their conversion into CAFs including synthetic activation, epigenetic
and metabolic reprogramming [93]. Of those, the one most interesting is the Vitamin D
receptor (VDR). VDR is expressed in the stroma environment of gastrointestinal tumours,
acts as a modulator of CAFs and when targeted with the ligand calcipotriol, could repro-
gram CAFs to a more quiescent state, thereby reducing inflammation and pancreatitis [94].
However, the various functions of VDR still remain to be elucidated. In their recent study,
Gorchs, et al. reported that even though pancreatic CAFs responded to therapeutic stim-
ulation of VDR, by promoting a less tumour-supportive CAF phenotype, at the same
time the T cell mediated response against tumour cells was less efficient [95]. This only
raises questions about the suitability of such approach and maybe a combination with
immunotherapy strategies can prove more beneficial.

The strategies described above (Figure 4) highlight the impact of targeting CAFs
during treatment of cancer and also provide additional knowledge into their biology.
Several approaches have been described and few are entering clinical testing and a number
of them have been utilized to target CAFs with novel radiolabelled probes. The latter will
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be discussed in the following section. However, questions are still present that are related
to the heterogeneity of this population and whether the same outcome will be observed
in a clinical scenario. Careful analysis of the stromal responses will potentially aid our
understanding of the source of CAF-mediated drug resistance, as well as spark a rational
design for future patient studies targeting CAFs [10].
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6. Targeting CAFs for Imaging and Therapy

As described above, the tumour stroma represents an attractive target for the deliv-
ery of diagnostic and therapeutic compounds. As mentioned earlier, CAFs feature high
expression of FAP that is not detectable in adult normal tissue but is associated with a
poor prognosis in cancer patients [41,42]. Several approaches have been applied to target
CAFs with novel radiolabelled probes based on antibodies, peptides and small molecule
inhibitors in different cancer types [72,96].

Fischer et al. [97] selected novel human Fab fragments from an antibody phage library
that bound both human and murine FAP, two candidates were engineered into fully
human IgG1 antibodies with affinities in the low nanomolar range. Radioimmunotherapy
with 177Lu-labeled anti-FAP antibodies in melanoma-bearing mice delayed growth of
established tumours and extended mouse survival, showing the potential for diagnostic
and therapeutic use. No clinical studies have been performed yet with these tracers.

The development of the selective and potent FAP inhibitor UAMC-1110 has led to
synthetization of other promising radiolabelled FAP inhibitors tested in different tumour
entities (FAPIs) [98–110]. In particularly the quinoline group of UAMC-1110 allows for
chemical modification: on the 5 and 6 position different chelators have been attached via
various linkers. Lindner et al. [105] were the first to synthesize radiolabelled FAP inhibitors
(FAPIs). Giesel et al. [98] described the tissue biodistribution and preliminary dosimetry
of [68Ga]Ga-FAPI-2 and [68Ga]Ga-FAPI-4 in two patients, whereas further PET/CT scans
were acquired of 25 patients. Similar to literature values for [18F]FDG (Average SUVmax
7.41, [98]), [68Ga]Ga-DOTA-TATE (Average SUVmax 16 ± 10.08, [111]), and [68Ga]Ga-PSMA-
11 (Average SUVmax 11.3 ± 7.5, [112]) 200 MBq of [68Ga]Ga-FAPI-2 or [68Ga]Ga-FAPI-4
corresponded to an equivalent dose of approximately 3–4 mSv. Using [68Ga]Ga-FAPI-2,
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the tumour uptake from 1 to 3 h after injection decreased by 75%, whereas for [68Ga]Ga-
FAPI-4 this was only 25%. In comparison to [18F]FDG at 1 h after injection, tumour
uptake was almost equal. Continuing with [68Ga]-FAPI-4 PET/CT, Kratochwil et al. [103]
quantified tumour uptake in eighty patients. The highest average SUVmax was found
in sarcoma, oesophageal, breast, cholangiocarcinoma, and lung cancer, the lowest in
pheochromocytoma, renal cell, differentiated thyroid, adenoid cystic, and gastric cancer,
whereas the average SUVmax of hepatocellular, colorectal, head-neck, ovarian, pancreatic,
and prostate cancer was intermediate. Because of low background in muscle and blood
pool, tumour-to-background (TBR) contrast ratios were more than 3-fold in the intermediate
and more than 6-fold in the high-intensity uptake group. FAP-specific PET imaging was
also applied preclinically and clinically in gliomas [109]. IDH-wildtype glioblastomas
and grade III/IV, but not grade II, IDH-mutant gliomas showed elevated tracer uptake.
Immunohistochemistry showed FAP-positive cells in glioblastomas and an anaplastic
IDH-mutant astrocytoma.

Next, several novel FAPI variants were described (Table 1). Tumour-to-normal-organ
ratios were improved for most of the compounds, resulting in images with higher contrast,
especially for FAPI-21 and -46 [106]. A separate study performed with [68Ga]Ga-FAPI-46
showed a favourable dosimetry profile with an estimated whole-body dose of 5.3 mSv for
an administration of 200 MBq. The biodistribution study showed high TBRs increasing
over time, making this an interesting tracer for future theranostic applications [108].

Loktev et al. [107] developed promising iodinated (FAPI-1) and DOTA-coupled (FAPI-
2) radiotracers also based on FAPI. FAPI-1 showed time-dependent efflux and robust
deiodination, whereas FAPI-2 showed enhanced binding and uptake to human FAP as
compared with FAPI-01. [99mTc]Tc-FAPIs were developed as well and showed specific
binding to recombinant FAP-expressing cells with high affinity [104]. The lead candidate
[99mTc]Tc-FAPI-34 was applied for diagnostic scintigraphy and SPECT of patients with
metastasized ovarian and pancreatic cancer for follow-up to therapy with [90Y]Y-FAPI-46.
[99mTc]Tc-FAPI-34 accumulated in the tumour lesions also shown in PET/CT imaging using
[68Ga]Ga-FAPI-46, making this a powerful tracer for diagnostic scintigraphy, especially
in cases where PET imaging is not available. Additionally, the chelator used in this
compound allows labelling with the therapeutic radionuclide 188Re. Watabe et al. applied
radionuclides with relatively long half-lives, 64Cu and 225Ac to label FAPIs for studies in
mice with human pancreatic cancer xenografts. Accumulation levels in the tumour and
most normal organs were significantly higher for [64Cu]Cu-FAPI-4 than for [68Ga]Ga-FAPI-
4. [225Ac]Ac-FAPI-4 injection showed significant tumour growth suppression in PANC-1
xenograft mice indicating that [64Cu]Cu-FAPI-4 and [225Ac]Ac-FAPI-4 could be used in
theranostics for the treatment of FAP-expressing pancreatic cancer [101].

Toms et al. [102] synthesized an 18F-labelled FAPI ([18F]FGlc-FAPI) and concluded
from a preclinical study it is an interesting candidate for translation to the clinic, taking
advantage of the longer half-life and physical imaging properties of 18F. Giesel et al. [113]
describe the NOTA-chelator ligand FAPI-74 that can be labeled with both Al [18F]F and
68Ga. In ten patients with lung cancer PET-scans were acquired after administration of
[18F]F-FAPI-74, with the highest contrast achieved 1 h p.i. in primary tumours, lymph
node and distant metastases with SUVmax > 10, respectively. The radiation burden of
a diagnostic [18F]F-FAPI-74 PET-scan was lower than that of PET-scans with [18F]F-FDG
and other [18F]F-tracers, whereas [68Ga]Ga-FAPI-74 was comparable to other 68Ga-ligands.
The high contrast and low radiation burden of FAPI-74 PET/CT favours multiple clinical
applications. So, tumour-to-background contrast ratios of different FAPIs were equal to or
even better than those of [18F]FDG [98,114]. In contrast to [18F]FDG, no diet or fasting in
preparation for the examination is necessary, and image acquisition can potentially start a
few minutes after tracer application. Despite their advantages, utilization of FAPIs in the
clinic may face some limitations as there is still not enough information on its specificity,
suggesting a decreased performance in patients who might have other diseases that are
characterized by high levels of fibrosis.
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Table 1. FAP-targeting tracers used for theranostic applications.
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phage-display screening platforms or chemical inactivation of FAP peptide substrates, 
will open new opportunities for FAP theranostics. A number of antibodies against FAP 
have been also developed and despite their superiority, in terms of affinity and specificity, 
such molecules can be challenging in regards to toxicity towards healthy tissues. Third, 
an opportunity for developing FAP theranostics are stimuli-responsive tracers, in which 
the enzymatic activity of FAP itself and the environment created by CAFs and tumour 
cells is employed. For example, site-specific enzymatic cleavage of FAP can result in the 
formation of nanoparticles [117] or release of functionality [118]. Furthermore, due to met-
abolic changes in CAFs and cancer cells [28], the TME is acidified harbouring increased 
levels of H2O2 and glutathione. These tumour specific properties are currently evaluated 
in pro-drug strategies [119–121] and could be of value in developing theranostic tracers. 

8. Conclusions 
Despite the increasing progress in cancer research and the development of novel 

therapeutics, conventional therapeutics are not adequate enough. The majority of efforts 
so far were only focused on targeting the cancer cells and even though highly abundant, 
CAFs have long been ignored in these efforts. The emerging role of CAFs is slowly ap-
pearing to be of great importance and their functions in tumour progression and metas-
tasis have become an attractive target for imaging and therapy. However, a number of 
challenges need to be addressed in order to reach translation from bench to bedside. Look-
ing at their structural and functional complexity, diagnostic markers that can specifically 
recognize CAFs are still limited. This complexity is also outlined by the various CAF cell 
origins. In the TME, CAFs co-exist with tumour cells providing them the paracrine niche 
and nutrients that are needed for tumours to grow. Breaking this contact and pinpointing 
the role of each of the microenvironment compartments, may appear pivotal for discov-
eries of novel therapeutic interventions. Fortunately, technological advances over the past 
years are opening new opportunities in understanding the complex biology of CAFs in 
cancer and will pave the way for new targets that can be used in future developments, 
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The efficacy of clinical radioligand therapy via crossfire effects is not yet known.
[90Y]Y-FAPI-4 was chosen for a proof of principle approach in a final stage breast cancer
patient with bone metastases [105]. This was associated with a significant reduction of
opioids given as pain medication. Furthermore, no side effects were observed, especially
no therapy-related hematotoxicity.

7. Future Opportunities for FAP-Mediated Imaging and Treatment

The results of the first FAPI tracers are very encouraging for theranostic applica-
tions for a wide variety of tumours. Here, we highlight several opportunities for future
FAP tracers.

As most clinically valuable tracers belong to one family of small molecule tracers,
based on FAP inhibitor UAMC-1110, it is currently the only available FAP inhibitor with
low nanomolar activity and high selectivity. This calls for the development of novel small
molecule FAP inhibitors, of which the scaffolds can be used for the design of new FAP
theranostics with new and potentially improved properties. Another strategy, adopted
by Clovis Oncology, is based on a peptidomimetic (FAP-2286) to target FAP [115] and
the much anticipated results will provide more clues on this method. The properties
of FAP (its location on the outside of the CAF membrane and its unique expression)
makes it an interesting target for peptide receptor radionuclide therapy (PRRT). The best
example of PRRT is that of targeting the Somatostatin receptor in Neuroendocrine tumour
patients [116]. This therapeutic strategy is even EMA and FDA approved. To the best of
our knowledge, no FAP-targeted peptide-based molecule that can be applied for PRRT
is reported in literature. However, development of such molecules, through for example
phage-display screening platforms or chemical inactivation of FAP peptide substrates,
will open new opportunities for FAP theranostics. A number of antibodies against FAP
have been also developed and despite their superiority, in terms of affinity and specificity,
such molecules can be challenging in regards to toxicity towards healthy tissues. Third,
an opportunity for developing FAP theranostics are stimuli-responsive tracers, in which
the enzymatic activity of FAP itself and the environment created by CAFs and tumour
cells is employed. For example, site-specific enzymatic cleavage of FAP can result in the
formation of nanoparticles [117] or release of functionality [118]. Furthermore, due to
metabolic changes in CAFs and cancer cells [28], the TME is acidified harbouring increased
levels of H2O2 and glutathione. These tumour specific properties are currently evaluated
in pro-drug strategies [119–121] and could be of value in developing theranostic tracers.

8. Conclusions

Despite the increasing progress in cancer research and the development of novel
therapeutics, conventional therapeutics are not adequate enough. The majority of efforts so
far were only focused on targeting the cancer cells and even though highly abundant, CAFs
have long been ignored in these efforts. The emerging role of CAFs is slowly appearing to be
of great importance and their functions in tumour progression and metastasis have become
an attractive target for imaging and therapy. However, a number of challenges need to be
addressed in order to reach translation from bench to bedside. Looking at their structural
and functional complexity, diagnostic markers that can specifically recognize CAFs are
still limited. This complexity is also outlined by the various CAF cell origins. In the TME,
CAFs co-exist with tumour cells providing them the paracrine niche and nutrients that are
needed for tumours to grow. Breaking this contact and pinpointing the role of each of the
microenvironment compartments, may appear pivotal for discoveries of novel therapeutic
interventions. Fortunately, technological advances over the past years are opening new
opportunities in understanding the complex biology of CAFs in cancer and will pave the
way for new targets that can be used in future developments, one of those targets being
FAP. The high and rather selective tumour uptake of very promising FAP-targeting tracers
as described opens up applications for non-invasive tumour characterization, staging
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examinations, and radioligand therapy in many different cancers with a high content of
activated fibroblasts.
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