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Abstract: Epigenomic modifications are unique in the type and amount of chemical modification
at each chromosomal location, can vary from cell to cell, and can be externally modulated by small
molecules. In recent years, genome-wide epigenomic modifications have been revealed, and rapid
progress has been made in the identification of proteins responsible for epigenomic modifications
and in the development of compounds that regulate them. This Special Issue on “Epidrugs: Toward
Understanding and Treating Diverse Diseases” aims to provide insights into various aspects of the
biology and development of epigenome-regulating compounds.
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The epigenome forms, in many of its parts, a basic compacted structure, the nucleo-
some, consisting of the histone octamer (two copies each of H2A, H2B, H3, and H4) and
145 to 147 base pairs of DNA [1,2]. The major epigenomic modifications include acetyla-
tion, methylation, and phosphorylation of the side chains of residues in the N-terminal
tails of the histones [3,4]. Another important epigenomic modification is the methylation
of cytosine bases in the CpG sequence of DNA [5,6]. In epigenomic regulation, there
are often three types of actions for each chemical modification: (1) writing, (2) reading,
and (3) erasing [4,7]. The proteins responsible for each action usually contain a cavity to
recognize the small epigenetic modifications (such as acetylation or methylation), often
allowing their structural and functional control by small molecules, a critical feature for
epidrug development.

Several epidrugs that target histone or DNA modifications have already been devel-
oped as therapeutic agents for refractory cancers. For example, some histone deacetylase
inhibitors, such as vorinostat (SAHA) and romidepsin (FK228), are therapeutic agents for
cutaneous T-cell lymphoma [8,9]. In addition, tazemetostat, an inhibitor of the histone
methyltransferase EZH2, was recently approved by the United States Food and Drug
Administration (FDA) for the treatment of follicular lymphoma [10,11]. The nucleoside ana-
logues 5-azacytidine and decitabine are known drugs that inhibit DNA methyltransferases
(DNMT) in the treatment of myelodysplastic syndromes [12,13]. Nucleoside non-analogues
that selectively inhibit DNMT1 [14,15] have also recently been of interest for the treatment
of acute myeloid leukemia.

Epidrugs and related chemical probes are expected to be useful not only for disease
therapy but also for elucidating the basic functions of the epigenome. For example, trapoxin,
a histone deacetylase inhibitor, led to the cloning of the first histone deacetylase gene by
the ligand affinity method [16]. Epidrugs have also been useful in analyzing the dynamics
of modification in the histone proteome [17] and for developing the chem-seq method
to identify the genome-wide location of a compound bound to a protein of interest [18].
In addition, the “bump-and-hole” strategy, in which a target protein can be orthogonally
regulated by a compound, has been realized for BET proteins involved in recognizing
histone acetylation [19]. Furthermore, inhibitors of BET proteins have been used in studies
to degrade target proteins using PROTAC (proteolysis targeting chimera) [20–22], leading
to the postulation that PROTAC is a promising strategy for future epidrug development.
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Finally, epidrug development to date has primarily focused on refractory cancers.
Indeed, aberrant gene expression in cancer may be regulated by the positive feedback of
epigenomic modification and its recognition [23,24], and epidrugs may suppress many
intractable cancers in addition to those mentioned above. Furthermore, clinical trials of
epidrugs are increasingly targeting diseases other than cancer, which may lead to the use
of epidrugs against a wide variety of diseases in the future.
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