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Abstract: The aim of this work was to fabricate microporous poly(trimethylene carbonate) (PTMC)
vascular structures by stereolithography (SLA) for applications in tissue engineering and organ models.
Leachable CaCO3 particles with an average size of 0.56 µm were used as porogens. Composites of
photocrosslinkable PTMC and CaCO3 particles were cast on glass plates, crosslinked by ultraviolet
light treatment and leached in watery HCl solutions. In order to obtain interconnected pore structures,
the PTMC/CaCO3 composites had to contain at least 30 vol % CaCO3. Leached PTMC films had
porosities ranging from 33% to 71% and a pore size of around 0.5 µm. The mechanical properties
of the microporous PTMC films matched with those of natural blood vessels. Resins based on
PTMC/CaCO3 composites with 45 vol % CaCO3 particles were formulated and successfully used
to build vascular structures of various shapes and sizes by SLA. The intrinsic permeabilities of the
microporous PTMC films and vascular structures were at least one order of magnitude higher than
reported for the extracellular matrix, indicating no mass transfer limitations in the case of cell seeding.

Keywords: poly(trimethylene carbonate); CaCO3; composite; additive manufacturing; stereolithography;
microporous; vascular structures

1. Introduction

Fabrication of artificial vascular structures is not only needed for traditional tissue engineering
applications, but for disease models on chip as well [1–5]. Large tissue engineering is regarded as a
viable strategy for the regeneration of organs, which may provide a solution for the limited availability
of donor organs for transplantation [6–8]. However, engineering of tissues remains a challenge, because
the viability of seeded cells as well as in situ tissue formation are dependent on the presence of a
vascular system [9–11]. Therefore, tissue engineering scaffolds as well as chip-based organ models
have been developed both containing vascular structures, using 3D printing of sacrificial templates
and 3D bioprinting [12–17].

Additive manufacturing (AM) allows for the preparation of designed tissue engineering scaffolds
with optimal properties concerning porosity, pore interconnectivity, pore size and pore geometry. Of all
AM techniques, stereolithography (SLA) is the most versatile and accurate method allowing structures
to be built at a resolution of 10–150 µm [18,19]. Although for many applications pores sizes in this
range or somewhat larger are suitable for cell seeding, the presence of (sub)micron-sized pores in
the scaffold struts is advantageous in view of prolonged nutritional supply throughout the scaffold
after implantation. Likewise, the walls of an artificial vascular network need to be microporous for
the delivery of nutrients to cells and removal of waste products. Current commercial SLA machines,
however, are not able to build pores in the (sub)micron range.
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Porosity in tissue engineering scaffolds can be efficiently created by means of particle leaching [20].
NaCl and sugar particles are generally used for relatively large pores, ranging from tens to hundreds
of micrometers, whereas micropores have been formed by leaching 2 µm ZnO crystals or 5–15 µm
NaF particles [21]. We have recently shown that scaffolds for bone regeneration can be built by SLA
using a polymer/nanohydroxyapatite composite [22]. Likewise, it should be possible to build vascular
structures by SLA using a polymer/leachable particle composite. In this study, we used CaCO3 as a
porogen, because of the uniform size of the particles which show little tendency to aggregate and can
be easily leached.

Synthetic polymers are widely used to build structures by SLA for biomedical applications [23,24].
In previous work, we have used flexible poly(trimethylene carbonate) (PTMC) to prepare tubular
scaffolds for vascular tissue engineering by dipcoating or molding [25,26]. PTMC is an amorphous
rubber-like polymer that degrades by surface erosion in vivo without the formation of acidic degradation
products [27–29]. Because of these characteristics, which are lacking in other polymers like poly(lactic
acid) and poly(ε-caprolactone), PTMC is a very suitable material for vascular tissue engineering.
The mechanical properties and degradation rate of PTMC networks can be tuned by varying the crosslink
density as well as by copolymerization with, e.g., poly(lactic acid) and poly(ε-caprolactone) [28–30].
In a previous study, we have built a microvascular network from PTMC by SLA [31]. The capillaries had
an inner diameter of approximately 200 µm and a wall thickness of 150 µm. The walls of the channels
were nonporous, which would hamper the formation of tissue around the capillaries. Therefore, in the
present study, we aimed to fabricate microporous PTMC vascular structures by SLA and subsequent
particle leaching.

2. Materials and Methods

2.1. Materials

Trimethylene carbonate (TMC) monomer was kindly provided by Huizhou Foryou Medical
Devices, Huizhou, China. 1,1,1-Tris(hydroxymethyl)propane, 2-Hydroxy-4′-(2-hydroxyethoxy)-
2-methyl-propiophenone (Irgacure 2959), Tin(II)-2-ethylhexanoate (Stannous octoate, Sn(Oct)2),
hydroquinone, methacrylic anhydride and triethylamine were purchased from Sigma Aldrich,
Zwijndrecht, The Netherlands. Propylene carbonate was ordered from Merck Millipore, Darmstadt,
Germany. Ethyl-(2,4,6-trimethyl-benzoyl)-phenylphosphinate (Omnirad TPO-L) was obtained from
IGM Resins, Waalwijk, The Netherlands. Orasol Orange G dye was ordered from CIBA Specialty
Chemicals, Basel, Switzerland. Hydrochloric acid (37% (w/w) in water), analytical grade chloroform,
dichloromethane (DCM), ethanol, methanol and acetone were purchased from VWR Chemicals,
Darmstadt, Germany. CaCO3 was ordered from Alfa Aesar, Tewksbury, MA, USA.

2.2. Synthesis and Functionalization of Three-Armed PTMC

Three-armed PTMC was synthesized by ring-opening polymerization of TMC in a three-neck flask
under argon atmosphere at 130 °C for 3 days [22]. 1,1,1-Tris(hydroxymethyl)propane and Sn(Oct)2 were
used as initiator and catalyst, respectively. As resins for printing contained propylene carbonate diluent,
three-armed PTMC was used to increase the possibility of crosslinking. The obtained PTMC was dissolved
in DCM, and hydroquinone, triethylamine and methacrylic anhydride (MA) were added [22]. This was
reacted at room temperature (RT) under argon protection for 5 days in the dark. PTMC-MA was obtained
by precipitation in cold ethanol and drying in a vacuum oven at RT in the dark. The molecular weight
(Mn) and degree of functionalization of PTMC-MA were determined by 1H-NMR spectroscopy using an
Ascend 400/Avance III 400 MHz NMR spectrometer (Bruker, Billerica, MA, USA).

2.3. Preparation and Characterization of PTMC-MA/CaCO3 Films

PTMC-MA and TPO-L were dissolved in chloroform (1 g PTMC-MA/3 mL chloroform, 5 wt %
TPO-L relative to PTMC-MA). Various amounts of CaCO3 particles were dispersed in chloroform
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by sonication for 20 min. PTMC-MA/TPO-L solutions and CaCO3 dispersions were fully mixed
and cast on glass plates using a casting knife. Chloroform was slowly evaporated overnight in the
dark, after which the films were heated to 60 °C for 1 h to fully evaporate the remaining chloroform.
The PTMC/CaCO3 composite films, containing 30–60 vol % CaCO3 particles in the polymer matrix,
were photocrosslinked for 30 min in an ultraviolet (UV) light box at 365 nm wavelength and 8 mW/cm2

light intensity. To remove the sol fraction, the films were extracted for 3 days in chloroform, which was
refreshed once per day. Finally, the composite films were immersed in ethanol and dried in a vacuum
oven at 40 °C until constant weight.

The gel content of the photocrosslinked PTMC/CaCO3 composite films was determined by
extraction of the sol fraction in chloroform as described above. The following equation was used,

Gel content =
mdry

minitial
× 100% (1)

in which mdry is the mass of a PTMC/CaCO3 composite film after extraction and drying and minitial is
the mass of a photocrosslinked composite film before extraction.

2.4. Leaching of CaCO3 Particles and Characterization of Microporous PTMC Films

Photocrosslinked and extracted PTMC/CaCO3 composite films were immersed for 4 days in 3.7%
(w/w) HCl solution in water, which was refreshed once per day. This yielded microporous PTMC films,
which were finally soaked in distilled water.

The porosity of the photocrosslinked microporous PTMC films was determined gravimetrically
according to the following equation:

Porosity =

[
1−

mdry

V × ρPTMC

]
× 100% (2)

in which ρPTMC = 1.31 g/cm3, mdry is the dry weight of a microporous PTMC film and V the film’s bulk
volume in either dry or hydrated state, yielding the porosity in dry or hydrated state, respectively.

2.5. Water Flux

Circular samples with a diameter of 26 mm were punched from hydrated microporous PTMC
films. The samples were fixed in an Amicon cell 8003 (Merck Millipore, Darmstadt, Germany) with
a filtration area of 0.9 cm2. MilliQ water was introduced onto the membranes at a pressure of 0.13,
0.23 or 0.33 bar. Upon reaching a stable water flow through the films, the permeating water mass was
measured every 10 s for a minimum of 20 min.

2.6. Mechanical Properties

Samples with a length of 60 mm and a width of 5 mm were punched from the microporous PTMC
films. The tensile properties of the films were determined in both hydrated and dry state using a Zwick
Z020 tensile tester (ZwickRoell, Ulm, Germany). The initial grip to grip separation was 30 mm and a
pulling rate of 50 mm/min was applied. The stiffness of the samples was determined from the slope of
the stress–strain curve between 3% and 6% of strain.

2.7. Additive Manufacturing of Microvascular Structures Using PTMC/CaCO3 Resin

A dispersion of calculated amounts of CaCO3 and PTMC-MA in chloroform was homogenized
and precipitated in cold ethanol to yield a composite that was dried in a vacuum oven at 40 °C to
constant weight. Resins were prepared by homogenizing the composite in propylene carbonate and
adding TPO-L photoinitiator and Orasol Orange G dye. The resin formulation is shown in Table 1.
Structures were designed using Rhino 3D design software (Rhino 6, McNeel Europe, Barcelona, Spain).
PTMC structures containing 45 vol % CaCO3 were printed using an Ember digital light processing
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stereolithograph (Autodesk, San Rafael, CA, USA) at a pixel resolution of 50 × 50 µm and a step height
of 50 µm. Layers were sequentially photocrosslinked by exposure for 11 s to light with a wavelength of
405 nm and an intensity of 20 mW/cm2. Built structures were extracted for 4 days in chloroform/acetone
(1:1 v/v) solution, which was refreshed once per day. Subsequently, the structures were dried and
immersed for 1 day in chloroform containing 1% (w/v) Irgacure 2959, dried and postcured for 4 h in a
UV cabinet at 254 nm and 10 mW/cm2. The CaCO3 particles were leached for 3 days in 3.7% (w/w) HCl
solution in water, which was finally replaced by distilled water.

Table 1. Resin formulation for stereolithography.

Component Weight (g) Content (%)

PTMC-MA 46.5 22.1
CaCO3 78.7 37.4

Propylene carbonate 85.0 40.5
TPO-L 2.3 5 *

Orasol Orange G 0.07 0.15 *

* relative to the mass of PTMC-MA.

2.8. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA)

Samples were sputtered with gold using a Sputter Coater 108 Auto (Cressington, Watford, UK)
set at 40 mA for 60 s. The average size of the CaCO3 particles was determined by measuring the size of
500 particles by SEM (JSM-IT100, JEOL, Tokyo, Japan). Surfaces and cross-sections of PTMC/CaCO3

composite films and printed microvascular structures, both before and after leaching of the CaCO3

particles, were also observed by SEM. CaCO3 content of the printed PTMC/CaCO3 microvascular
structures was determined by TGA. The measurements were carried out using a temperature range
of 50–550 °C at a heating rate of 20 °C/min and a nitrogen flow of 20 mL/min (PerkinElmer, Pyris 1,
Waltham, MA, USA).

3. Results and Discussion

3.1. Characterization of PTMC-MA, CaCO3 Particles and PTMC-MA/CaCO3 Composite Films

The synthesized PTMC-MA had a molecular weight (Mn) of 4500 g/mol and degree of
functionalization with methacrylate groups of 97%.

As shown in Figure 1, the CaCO3 particle size distribution ranged from 0.1 to 3.6 µm. The average
particle size was 0.56 ± 0.32 µm, which indicated the potential of the CaCO3 particles as a leachable
component given the intended SLA layer thickness of 50 µm.

Figure 1. CaCO3 particle size distribution and SEM image of the particles. Scale bar 1 µm.
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To be able to leach all CaCO3 particles, the porous structure formed upon leaching should
have interconnected pores. Therefore, a percolation threshold study was carried out, by preparing
PTMC/CaCO3 composite films with 30, 40, 50 or 60 vol % CaCO3 particles in the polymer matrix.
As shown in Table 2, the composite films had a gel content of at least 94.9%, which increased with a
decreasing amount of CaCO3 particles. Pure PTMC films without CaCO3 had the highest gel content
of 98.1%. Thus, although the presence of the particles slightly decreased UV crosslinking efficiency,
the high gel contents indicated the formation of stable PTMC/CaCO3 composite films.

Table 2. Gel contents of poly(trimethylene carbonate) (PTMC) and PTMC/CaCO3 composite films.

Sample Code CaCO3 Loading, vol % Gel Content, %

PTMC 0 98.1 ± 0.3
PTMC/30 30 97.2 ± 1.1
PTMC/40 40 97.4 ± 0.7
PTMC/50 50 96.6 ± 0.6
PTMC/60 60 94.9 ± 2.1

For all measurements, N = 4.

Figure 2 shows SEM images of cross-sections of the PTMC/CaCO3 composite films. With increasing
CaCO3 loading more particles were observed, which were homogeneously distributed.

Figure 2. SEM pictures of cross-sections of PTMC/CaCO3 composite films. (A) PTMC/30; (B) PTMC/40;
(C) PTMC/50; (D) PTMC/60. Scale bars 1 µm.

3.2. Characterization of Leached PTMC-MA/CaCO3 Composite Films

All PTMC-MA/CaCO3 composite films were fully leachable in a 3.7% (w/w) HCl solution,
see Figure 3. With increasing CaCO3 content more pores were observed, which were homogeneously
distributed. The average pore sizes, determined from the SEM pictures, ranged from 0.45 to 0.50 µm
(Table 3). This is somewhat smaller than the average size of the CaCO3 particles (0.56 µm). It should
be noted that the pore sizes were determined in the dry state, which resulted in shrinkage of the
leached films. This led to lower porosities of the films in the dry state as compared to the hydrated
state, see Table 3. Moreover, the differences in porosities between dry and hydrated state increased
with increasing CaCO3 content of the composite films. Thus, shrinkage of the dry films was higher
at higher porosities, which is illustrated in Figure 4. Most probably, shrinkage of the leached films
in the dry state was caused by the presence of pores, resulting in a relatively unstable structure, in
combination with the low Tg of PTMC of around −20 °C. In the hydrated state, the pores were filled
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with water which stabilized the structure. The thickness of the leached films in the hydrated state was
around 120 µm.

Figure 3. SEM pictures of cross-sections of leached PTMC/CaCO3 composite films. (A) PTMC/30;
(B) PTMC/40; (C) PTMC/50; (D) PTMC/60. Scale bar 1 µm.

Table 3. Porosity and pore size of leached PTMC/CaCO3 composite films.

Sample Code Porosity, %
Hydrated

Porosity, %
Dry Pore Size, µm

PTMC/30 33.2 ± 1.9 31.4 ± 2.2 0.49 ± 0.27
PTMC/40 43.1 ± 2.4 41.9 ± 1.4 0.50 ± 0.21
PTMC/50 57.3 ± 3.7 52.1 ± 4.3 0.45 ± 0.36
PTMC/60 71.7 ± 5.1 51.3 ± 3.9 0.46 ± 0.29

For all measurements, N = 4, except for pore size N = 75.

Figure 4. Macroscopic images of leached PTMC/CaCO3 composite films in hydrated and dry state.

3.3. Water Permeability of the Microporous PTMC Films

For the delivery of nutrients to cells and removal of waste products, tissue engineering scaffolds
should not only be porous but also permeable to watery solutions. This was tested for the microporous
PTMC films by water flux measurements, see Figure 5. Except for the leached composite films with
30 vol % CaCO3, all other PTMC films showed a water flux through the microporous structures at
pressures up to 0.33 bar. Water flux increased with increasing porosity of the films. Although the
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PTMC/30 composite films could be fully leached, indicating interconnected pores, a pressure of 0.33 bar
in conjunction with the relatively low porosity of 33.2% was apparently not high enough to induce a
flow of water through the films.

Figure 5. Water flux through the microporous PTMC films, vol % refers to the amount of CaCO3

particles used during preparation of the films.

Water pressure of 0.16 bar is a physiological pressure corresponding to 120 mm Hg.
The extrapolated water flux at 0.16 bar was used to calculate the intrinsic permeability of the PTMC/40,
PTMC/50 and PTMC/60 microporous films according to Darcy’s formula [32]. The corresponding
values were 3.13 × 10−17, 6.25 × 10−15 and 1.88 × 10−14 m2, respectively. This is at least 10-fold higher
than the intrinsic permeability of 1.32 × 10−18 m2 reported for the extracellular matrix [33], indicating
that these microporous structures would not hamper the delivery of nutrients to cells and removal of
waste products.

3.4. Mechanical Properties of the Microporous PTMC Films

The mechanical properties of PTMC and microporous PTMC films are shown in Table 4. In the
hydrated state, both stiffness (Emod) and maximum strength (Fmax) of the microporous films decreased
with increasing porosity. Compared to dense PTMC films, the microporous films had lower Emod and
Fmax and higher elongation at break due to the presence of pores. The same was observed for films
in the dry state, albeit that Emod and Fmax decreased much less with increasing porosity due to the
shrinkage of the microporous films upon drying.

Table 4. Mechanical properties of PTMC and microporous PTMC films in hydrated and dry conditions.

Hydrated Dry

Sample
Code

Emod,
MPa

Fmax,
MPa

Elongation
at Break, %

Emod,
MPa

Fmax,
MPa

Elongation
at Break, %

PTMC 8.16 ± 0.43 4.81 ± 0.89 67.1 ± 10.9 9.07 ± 0.34 6.57 ± 0.14 83.6 ± 4.2

PTMC/30 3.52 ± 0.16 3.28 ± 0.72 89.6 ± 12.5 7.76 ± 0.15 5.76 ± 1.21 121.7 ± 12.1

PTMC/40 2.72 ± 0.14 2.79 ± 0.52 109.4 ± 11.7 6.95 ± 0.17 4.58 ± 1.79 131.5 ± 14.2

PTMC/50 1.13 ± 0.05 1.48 ± 0.21 103.5 ± 8.1 5.82 ± 0.18 2.70 ± 0.54 143.3 ± 24.1

PTMC/60 0.30 ± 0.06 0.54 ± 0.04 104.1 ± 10.2 6.13 ± 0.16 2.16 ± 0.11 86.8 ± 19.9

For all measurements, N = 4.
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The leached PTMC/50 films in the hydrated state had similar Emod, Fmax and elongation at break
as native blood vessels [25], indicating the suitability of these structures for cardiovascular applications.

3.5. Structure Design, Resin Formulation and SLA

A branched vascular structure was designed as shown in Figure 6A. The resin for SLA-based
printing contained PTMC, CaCO3, photoinitiator TPO-L and Orasol Orange G dye in propylene
carbonate diluent. The composition of the resin is shown in Table 1 and a macroscopic image of the
resin in Figure 6B. Based on the above percolation threshold study, 45 vol % CaCO3 relative to the PTMC
matrix was chosen as a leachable component for the creation of a microporous structure. The Orasol
Orange G dye content was optimized to ensure a proper curing depth as previously described [34].
Branched vascular structures were successfully built and extracted, see Figure 6D,E, respectively.
As complete leaching of these structures was not possible due to pore collapse, a postcuring step was
implemented after extraction. After printing in various shapes and sizes, postcured structures could
be fully leached as shown in Figure 6F–H.

Figure 6. (A) design of branched vascular structure; (B) PTMC/CaCO3 composite resin; (C) built
structures attached to printing head after SLA; (D) vascular structure before extraction; (E) vascular
structure after extraction; (F) vascular structure after extraction, postcuring and leaching (hydrated);
(G) branched vascular structures of different sizes (extracted, postcured and leached, hydrated);
(H) vascular tubes of different sizes (extracted, postcured and leached, hydrated).

3.6. Characterization of the Branched Vascular PTMC Structures

SEM images of the vascular structures shown in Figure 6E,F are presented in Figure 7.
Cross-sections showed branched open tubular structures, both in the case of nonleached and leached
samples (Figure 7A,G, respectively). The outer surfaces clearly showed that the structures were built
layer by layer, see Figure 7D,E,J,K. Cross-sections of nonleached samples showed CaCO3 particles,
which were replaced by pores after leaching (Figure 7C,F,I,L, respectively).
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Figure 7. SEM images of (A–F) nonleached and (G–L) leached SLA-built vascular structures after extraction
and postcuring. (A–C) and (G–I) show cross-sections, whereas (D–F) and (J–L) show the outer surfaces of
the channels. Scale bar 500 µm (A,D,G,J), scale bar 50 µm (B,E,H,K), scale bar 5 µm (C,F,I,L).

As shown in Table 5, the leached vascular structures in the hydrated state had an inner diameter
of 482 µm and a wall thickness of 146 µm. Both values were lower in the dry state, caused by shrinkage
of the structures similar to observed for the films. Taking shrinkage into account, pore sizes in the
dry state around 0.40 µm were in agreement with a mean particle size of 0.56 µm. On SEM pictures
(Figure 7I,L), some larger pores were visible, probably formed by particle agglomerates. The CaCO3

content determined by TGA of the nonleached vascular structures was 50.2 vol % (Table 5), which is
higher than the theoretical value of 45 vol %. This can be explained by the extraction of noncrosslinked
PTMC before postcuring. This was also observed for PTMC/nanohydroxyapatite composite scaffolds
fabricated by SLA [22]. The porosity of the leached vascular structures in the hydrated state was 59%,
which is in agreement with the CaCO3 particle content. Again because of shrinkage, the porosity of the
structures in the dry state was lower (35%). Based on the water flux through the walls of the vascular
structures, as shown in Table 5, an intrinsic permeability of 0.61 × 10−16 m2 was calculated. This is
50-fold higher than reported for the extracellular matrix, see discussion above for the films, indicating
that the branched vascular structures will be highly permeable to nutrients and cellular waste products.
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Table 5. Parameters of SLA-printed vascular structures.

Non-Leached Leached, Hydrated Leached, Dry

Inner diameter, µm 480.2 ± 10.9 482 ± 10.2 416.3 ± 7.5

Wall thickness, µm 162.5 ± 4.3 146.0 ± 6.1 90.1 ± 3.8

Pore size, µm - - 0.40 ± 0.27

CaCO3 content, vol % 50.2 ± 2.9 - -

Porosity, % - 59 ± 3 35 ± 4

Water flux at 0.16 bar, mL/min·cm2 - 0.09 ± 0.02 -

For all measurements, N = 4, except for pore size N = 75.

As our previous microvascular PTMC network built by SLA facilitated the adhesion and
proliferation of human umbilical vein endothelial cells [31], a good biocompatibility of the vascular
structures printed in the present study is expected as well. This is supported by other studies, in which
PTMC scaffolds built by SLA were shown to be biocompatible with human mesenchymal stem cells
and annulus fibrosus cells [22,35,36]. Both in vitro and in vivo, photocrosslinked PTMC networks
degrade by surface erosion. Degradation rate increases with increasing macromer molecular weight,
i.e., decreasing crosslink density [28]. This also holds for networks prepared from linear PTMC
crosslinked by γ-irradiation [37,38].

In previous work, we have prepared porous tubular scaffolds for vascular tissue engineering
by sequential dipcoating and salt leaching [25]. Using this technique, it is not possible to fabricate
branched structures. A strategy to implement branched vascular structures in scaffolds for tissue
engineering or organ models is the use of sacrificial templates, e.g., of poly(vinyl alcohol) [16] or
carbohydrate [17,39]. The template is immersed in a hydrogel matrix that is crosslinked, after which
the template is leached. A drawback of this approach is the lack of a barrier between, e.g., endothelial
cells seeded in the channels and other cells present in the surrounding matrix. Therefore, carbohydrate
sacrificial templates were coated with thin layers of synthetic polymers such as poly(ε-caprolactone) [17]
or poly(lactic-co-glycolic acid) [39]. The layers had a thickness of 10–50 µm and were made porous
by phase separation or inclusion of leachable NaCl particles, respectively. Although interesting,
the polymer coatings had relatively low tensile strengths around 85 kPa [17] and large pore sizes up to
50 µm [39].

Microporous vascular structures built by SLA have not been described in literature before.
Composites of commercial resins and leachable NaCl particles were used to print cubes, pyramids
and macroporous scaffolds [40], but not branched vascular structures. Moreover, the smallest particle
sizes ranged from 75 to 180 µm, resulting in large pores [40]. Printing of branched porous vascular
structures by SLA using a cytocompatible polyacrylate has been reported, but the designed pores had
a diameter of 100 µm which could not be covered by endothelial cells [41]. This problem will not be
encountered with the microporous vascular structures presented in the present paper.

4. Conclusions

Leachable CaCO3 particles with an average size of 0.56 µm were found to be suitable as porogens
for the preparation of microporous PTMC films and vascular structures by casting and SLA, respectively.
In order to obtain interconnected pore structures, the PTMC/CaCO3 composites had to contain at least
30 vol % CaCO3. The mechanical properties of the microporous PTMC films matched with those
of natural blood vessels. The intrinsic permeabilities of the microporous PTMC films and vascular
structures were at least one order of magnitude higher than reported for the extracellular matrix,
indicating no mass transfer limitations in the case of cell seeding.
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