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Xylella fastidiosa is a fastidious, gram-negative bacterium in the family XAU : PleasenotethatasperPLOSstyle; phylum; order; andfamilyshouldnotbeitalicized:anthomonadaceae

and is a major threat to agricultural crops and ecological and ornamental landscapes in the

world. This bacterium is quite remarkable in regard to its very broad host range that includes

over 600 plant species belonging to 63 diverse plant families. It is specifically limited to the

xylem tissue of its plant hosts [1]. In some of these hosts, it causes severe and devastating dis-

ease. However, in the vast majority of its hosts, it is considered a benign commensal.

X. fastidiosa is endemic to the Americas. Historically, Europe was considered to be free of

X. fastidiosa, but the bacterium was recently detected in Italy. In 2013, olive trees in the Apulia

region of Southern Italy began exhibiting leaf scorch symptoms that were later confirmed to

be caused by X. fastidiosa. Since then, thousands of olive trees have died, and X. fastidiosa has

been detected in various plants species in France, Spain, and Portugal [1–3]. X. fastidiosa has

been responsible for significant economic losses in regions like the United States, Italy,AU : PleasenotethatasperPLOSstyle; eponymictermsshouldnotbepossessive:Hence;PiercesdiseasehasbeenchangedtoPiercediseaseinthetextandfigurecaption:Pleasecheckandcorrectifnecessary:and

Brazil. For example, X. fastidiosa subsp. fastidiosa, the causal agent of Pierce’s disease (PAU : PleasenotethattheabbreviationPDhasbeenintroducedforPiercediseaseinthesentenceForexample;X :fastidiosasubsp:fastidiosa::::Pleasecheckandcorrectifnecessary:D) of

grapevine, leads to crop losses of approximately UAU : PleasecheckifthecurrencyusedinthesentenceForexample;X :fastidiosasubsp:fastidiosa:::iscorrect; andamendifnecessary:S$104 million and costs growers approxi-

mately US$50 million in preventative strategies each year for the California viticulture industry

[4,5]. In the Apulia region, X. fastidiosa subsp. pauca infection in olive orchards is projected to

cost Italy up to €5.2 billion over the next 50 years if trees are not replaced [6]. Current manage-

ment strategies to minimize X. fastidiosa spread in the field include removal of infected plants,

severe pruning, and control of insect vectors with insecticides. The development of resistant

plant lines is also an active area of research, and, recently, 5 new PD-resistant grape varieties

were commercially released to the grape industry [7].

The X. fastidiosa species is subdivided into multiple subspecies that include subsp. fasti-
diosa, multiplex, and pauca [8]. The subspecies designations are loosely associated with host

range, but some strains can infect multiple hosts. In general, disease symptoms associated with

these X. fastidiosa strains are most commonly characterized by marginal leaf necrosis or leaf

scorching like those observed in grapevines infected with X. fastidiosa subsp. fastidiosa. How-

ever, symptoms caused by X. fastidiosa subsp. pauca can be characterized by foliar wilt and

interveinal chlorosis, and symptoms caused by X. fastidiosa subsp. multiplex in some hosts can

exhibit dense canopies and reduced fruit size [1]. X. fastidiosa has no free-living component of

its lifestyle and has only been found associated with its plant and insect hosts.

XAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:ylella fastidiosa has a unique association with its xylem sap–

feeding insect vectors

X. fastidiosa is obligately vectored by xylem-feeding hemipteran insects primarily belonging to

the sharpshooter leafhopper (Cicadellidae) and spittlebug (Cercopidae) families (Fig 1) [9–11].
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These insects are polyphagous (i.e., they feed on many plant species) and are present in warm

regions across the globe [11]. X. fastidiosa is acquired when the insect feeds on the xylem sap

of an infected plant. The bacteria colonize and multiply in the insect foregut (mouthparts) in a

persistent, but noncirculative manner [10,12]. This type of pathogen–vector relationship is

unique among insect-vectored plant pathogens because the bacterial cells propagate within the

insect mouthparts but do not circulate throughout the body of the insect, whereas most propa-

gative pathogens circulate within the insect. When sharpshooters feed on the xylem of infected

vines, X. fastidiosa attaches to and colonizes the insect foregut where it forms adhesive biofilms

(Fig 1). X. fastidiosa experiences extreme shear stress during the xylem sap ingestion and eges-

tion processes that occur during insect feeding. During transmission into a healthy vine, bacte-

rial cells dislodge from the insect foregut, presumably as a result of the high shear stress

created during feeding, and are deposited directly into the xylem of healthy vines [13]. There is

no apparent specificity between a particular X. fastidiosa subspecies and insect vector species.

Fig 1. PD of grapevine cycle. Xylella fastidiosa is acquired by its xylem-feeding insect vectors, such as the GWSS and the BGSS, during the

feeding process. Once acquired, it colonizes the insect’s foregut and forms robust biofilms (indicated by white arrows). X. fastidiosa is

transmitted to a new host plant when the insect vector feeds on a new plant and deposits X. fastidiosa cells directly into the plant xylem. X.

fastidiosa achieves systemic colonization of the xylem by enzymatic degradation of the xylem pit membranes that connect adjacent xylem

vessels. X. fastidiosa colonization induces prolific production of balloon-shaped defense-related protrusions called tyloses in the xylem.

Systemic colonization and vessel occlusion by bacterial biofilms and excess tylose production lead to PD symptom development. Photo credit
for the BGSS: Rodrigo Krugner. Photo credit for the xylem longitudinal sections: Qiang Sun. Pit membrane photo reprinted from Ingel et al.,
2019, Molecular Plant-Microbe Interactions Vol. 32, No. 10: 1402–1414. Insect foregut image reprinted from Rapicavoli et al., 2015, Applied and
Environmental Microbiology Vol 81, No. 23: 8145–8154. Created with BioRender.com. BAU : AnabbreviationlisthasbeencompiledforthoseusedthroughoutFig1:Pleaseverifythatallentriesarecorrect:GSS, blue-green sharpshooter; GWSS, glassy-winged

sharpshooter; PD, Pierce disease; PM, pit membrane; VW, vessel wall.

https://doi.org/10.1371/journal.ppat.1009813.g001

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009813 September 9, 2021 2 / 6

http://biorender.com/
https://doi.org/10.1371/journal.ppat.1009813.g001
https://doi.org/10.1371/journal.ppat.1009813


In fact, individual glassy-winged sharpshooter (GWSS) (Homalodisca vitripennis) can acquire

more than 1 X. fastidiosa subspecies in its foregut and can potentially transmit these strains to a

variety of plants where the bacterium can behave as pathogen or a commensal endophyte [2,14].

In the context of PD of grapevine caused by X. fastidiosa subsp. fastidiosa, the pathosystem

with the broadest literature base, the 2 xylem-feeding insects transmit X. fastidiosa that have

received the most research focus are the blue-green sharpshooter (BGSS) (Graphocephala atro-
punctata) and the GWSS. The BGSS is native to riparian areas in California and feeds on new

plant growth that emerges in the spring [9,10]. The GWSS is invasive to California and was

introduced into Southern California approximately in 1989 [15]. The introduction of this inva-

sive pest drastically changed the epidemiology of PD in the southern part of California because

GWSS can feed on both green and dormant woody tissues, enabling transmission even in win-

ter. In addition, GWSS can fly longer distances than native sharpshooter species, which could

explain how PD incidence was elevated to epidemic proportions in Southern California. Sub-

sequently, there has been a concerted effort among growers and the California Department of

Food and Agriculture to control vector populations and prevent the spread of GWSS. The pre-

dominant vector linked to olive quick decline syndrome in Italy is the meadow spittlebug, Phi-
laenus spumarius [16].

Xylella fastidiosa colonizes host compartments that are primarily

nonliving

As far as presently known, X. fastidiosa interacts primarily with nonliving tissues in both its

insect and plant hosts. These include the cuticular surface of the insect foregut and the plant

xylem, which is nonliving at maturity (Fig 1). The xylem consists of a network of vessels that

are connected by pit membranes. These are thin, porous structures composed of primary plant

cell wall, which allow for the passage of water but prevent the movement of pathogens and air

embolisms. X. fastidiosa produces plant cell wall–degrading enzymes, a polygalacturonase and

several endoglucanases, which act in concert to degrade pit membranes, allowing X. fastidiosa
to breach this barrier and move from vessel to vessel to achieve systemic colonization [17–19].

X. fastidiosa is also a prolific producer of outer membrane vesicles that also modulate xylem

colonization [20]. Interestingly, X. fastidiosa does not possess a type III secretion system

(T3SS) typical of other pathogenic bacteria that enables them to inject cognate type III effectors

into living host cells, likely because the bacterium interacts primarily with nonliving cells.

Instead of relying on T3SS effectors to bypass host immunity, X. fastidiosa delays early plant

recognition in grapevines by camouflaging itself with a rhamnose-rich O antigen, the most

external portion of its lipopolysaccharide layer as one mechanism that allows it to skirt initial

triggering of the grape immune system to establish itself in the plant [21]. It is not known

which living plant tissues are primarily responsible for initiating and propagating a response

to X. fastidiosa, but it is likely the living xylem parenchyma cells adjacent to the xylem vessels.

One of the remarkable internal symptom phenotypes of infected grapevines is the prolific

production of tyloses in response to X. fastidiosa colonization of the xylem (Fig 1). Tyloses are

outgrowths of the living xylem parenchyma cells that protrude into the xylem and are part of

the plant defense response. Their role, in part, is to slow or prevent pathogen movement within

the xylem. However, overproduction of tyloses can cause a reduction in hydraulic conductivity

within the xylem that is detrimental to the plant [22,23]. In PD-infected vines, tyloses become

the dominant form of xylem occlusion during the early stages of disease, and, as a conse-

quence, infected vines have a significant loss in hydraulic conductivity. Tyloses exacerbate PD

symptoms, and it is thought that this uncontrolled production of tyloses is what ultimately

leads to the demise of the plant [24].
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Another notable feature of X. fastidiosa’s behavior in planta is the manner in which it regu-

lates its own biofilm formation as it colonizes the xylem. In general, entering into and main-

taining robust biofilms are linked to promoting virulence for many bacterial pathogens [25].

On the contrary, mutant strains of X. fastidiosa that are impaired in biofilm formation and

effectively locked in a planktonic phase have a hypervirulent phenotype in grapevines [26–29].

Thus, it is speculated that X. fastidiosa enters the surface adhesive biofilm state as a means to

attenuate its own virulence by controlling its movement in planta by adhering to the xylem

wall. This self-limiting behavior during parasitism in symptomatic/susceptible hosts may be a

remnant from its lifestyle as a commensal in nonsymptomatic hosts, where tightly regulating

and limiting rapid movement in the plant would promote a commensal interaction rather

than a parasitic interaction.

Xylella fastidiosa acts as both a commensal and a pathogen

depending on its host environment

The bulk of the research on X. fastidiosa is biased toward isolates that are pathogenic in eco-

nomically important hosts. The mechanism by which X. fastidiosa causes disease only in cer-

tain hosts, but not others, has not been fully elucidated, and its interactions with commensal

hosts is largely understudied. However, it is speculated that compatibility between xylem pit

membrane carbohydrate composition and X. fastidiosa–secreted cell wall–degrading enzymes

mediate disease onset and progression [19,30]. In addition, the O antigen is a critical compo-

nent in evading initial immune recognition in the susceptible grapevine immune system, and

it is tempting to speculate that O antigen composition dictates the type of symbiotic associa-

tion with the plant commensalism versus parasitism [21]. Understanding the mechanisms that

underlie how different Xylella–plant host interactions skew toward parasitism or commensal-

ism is an area of research that is ripe for exploration.
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