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ABSTRACT

DNA methylation differences capture substantial in-
formation about the molecular and gene-regulatory
states among biological subtypes. Enrichment-
based next generation sequencing methods such
as MBD-isolated genome sequencing (MiGS) and
MeDIP-seq are appealing for studying DNA methy-
lation genome-wide in order to distinguish between
biological subtypes. However, current analytic tools
do not provide optimal features for analyzing three-
group or larger study designs. MethylAction ad-
dresses this need by detecting all possible pat-
terns of statistically significant hyper- and hypo-
methylation in comparisons involving any number
of groups. Crucially, significance is established at
the level of differentially methylated regions (DMRs),
and bootstrapping determines false discovery rates
(FDRs) associated with each pattern. We demon-
strate this functionality in a four-group compari-
son among benign prostate and three clinical sub-
types of prostate cancer and show that the bootstrap
FDRs are highly useful in selecting the most robust
patterns of DMRs. Compared to existing tools that
are limited to two-group comparisons, MethylAction
detects more DMRs with strong differential methy-
lation measurements confirmed by whole genome
bisulfite sequencing and offers a better balance be-
tween precision and recall in cross-cohort compar-
isons. MethylAction is available as an R package at
http://jeffbhasin.github.io/methylaction.

INTRODUCTION

Differential DNA methylation distinguishes a broad range
of biological subtypes including stages of mammalian em-
bryonic development (1), eusocial insect behavioral types
(2), immune cell activation and memory (3,4), human tissue

types (5), ages of human blood and brain tissue (6,7) and
regions of the human brain (8). There is also considerable
utility to detecting differential DNA methylation among
disease subtypes, particularly in the case of cancer. DNA
methylation differences are well established between tumor
and normal tissues (9), and more work remains to define
differences across inter- and intra- tumoral heterogeneity
of human cancers. Moreover, differential DNA methyla-
tion has been detected in many other diseases, including
schizophrenia (10), obesity (11), epilepsy (12) and rheuma-
toid arthritis (13), and may delineate subtypes in these dis-
eases as well.

Next generation sequencing techniques, such as MeDIP-
seq (14), MethylCap-seq (15) and MBD-isolated genome
sequencing (MiGS/MBD-seq) (16), enrich for methylated
DNA fragments from genomic DNA for sequencing library
construction and provide mapped read abundances that re-
veal hyper- and hypo- methylation states. These techniques
are advantageous for distinguishing biological and clinical
subtypes because they are genome-wide and are substan-
tially more cost effective compared to whole genome bisul-
fite sequencing (WGBS). This is especially true for exper-
imental designs with larger sample sizes involving two or
more groups (17). Moreover, MiGS correlates highly with
bisulfite-based sequencing assays (18). The methylome pro-
duced by MiGS can be paramount in revealing molecu-
lar mechanisms that confer different conditions and disease
states because recent work has implicated DNA methyla-
tion in modulation of transcription factor binding (19), al-
ternative splicing (20-22), alternative promoters (23) and
enhancer function (24) in a genomic-context dependent
manner (25,26).

Current computational tools for analyzing enrichment-
based sequencing data do not address important require-
ments for studies focused on biological and disease sub-
types. These requirements include support for three or more
group comparisons, determination of false discovery rates
(FDRs) via bootstrapping and the stratification of differ-
entially methylated regions (DMRs) based on frequency of
methylation within groups (Table 1). For example, BayMeth
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uses a Bayesian model to estimate DNA methylation lev-
els but provides no mechanisms for differential testing (27).
While MEDIPS provides two-group statistical testing in
non-overlapping windows genome-wide (28), it does not
provide region-level P-values or solutions to share informa-
tion between adjacent windows and to reduce the multiple-
testing burden. While designed for ChIP-seq data, diffReps
employs a two-stage testing approach that does provide dif-
ferential region detection. However, the method is restricted
to two-group comparisons only, and does not have a means
to stratify DMRs by frequency with respect to expected
methylation status. In contrast to previous methods, Methy-
lAction provides functionality that specifically fulfills the
needs of studies of biological subtypes as it detects all pos-
sible hyper- and hypo- methylation patterns of frequent and
statistically significant DMRs among any number of exper-
imental groups genome-wide.

Here, we describe the functionality of MethylAction and
demonstrate its utility in a four-group comparison among
benign prostatic tissue and three clinically relevant sub-
groups of prostate cancer. DMRs were detected for all pos-
sible differential methylation patterns between the groups,
and bootstrapping narrowed these patterns down to four
that had FDRs below 10%. An analysis of the bootstraps
(resampling with replacement) revealed that the number of
iterations performed was adequate to provide stable esti-
mates of the FDRs. By lowering significance thresholds,
FDRs could be reduced even further. We then used a com-
parison between MeDIP-seq data from skin keratinocytes
and skin fibroblasts to compare DMRs detected by Methy-
lAction and those detected by two existing tools that are
limited to two-group comparisons (MEDIPS and diffReps).
MethylAction found more DMRs than MEDIPS and cov-
ered nearly all differential windows found by MEDIPS. Re-
gions unique to diffReps contained low effect sizes between
conditions and did not reflect large differences in percent
methylation measurements from whole genome bisulfite se-
quencing (WGBS) available for one of the samples. Ad-
ditionally, we compared DMRs from prostate cancer and
colon cancer data sets detected by all three tools to differ-
ential methylation cataloged by The Cancer Genome Atlas
(TCGA), and established that MEDIPS tends to high pre-
cision, diffReps tends to high recall but low precision, and
MethylAction can provide a balance between both preci-
sion and recall. By providing region-level statistical analy-
sis, bootstrapping of pattern-level FDRs and stratification
by DNA methylation frequency in comparisons not limited
to two groups, MethylAction is a valuable tool for the deter-
mination of DMRs that distinguish biological subtypes and
provides an advance over the capabilities of existing pro-
grams.

MATERIALS AND METHODS
Detection of differential DINA methylation with methylaction

MethylAction is implemented as an R package (http:
/ljeffbhasin.github.io/methylaction) and provides a pre-
processing function, a DMR calling function and visual-
ization functions. For pre-processing, MethylAction gen-
erates read counts in non-overlapping windows genome-
wide. DMR calling involves initial filtering, stage one test-
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ing, stage two testing, frequency calling and bootstrapping
(Figure 1). Visualization is achieved via export of tracks in
BED or BigWig format for the UCSC Genome Browser
(29,30), karyograms plotted by ggbio (31) and heatmaps.

Initial filtering. The genome is divided into equally-sized
(50 bp by default) and non-overlapping windows. The num-
ber of fragments overlapping each window are then counted
to produce a counts matrix. For single-end data this is
achieved by extending each sequencing read by a user-
provided mean fragment length. For paired-end data, valid
mate pairs can be used to establish the fragments used for
counting. These read counts are filtered to produce a set
of windows deemed to contain signal in at least one sam-
ple by removing all windows with either all zero counts or
all counts below sample-specific cutoffs. These noise cutoffs
are established by generating a histogram of the observed
number of windows containing each number of reads (i.e.
1 read, 2 reads, 3 reads, etc.) and comparing the observed
number of windows at each read count level to the number
expected under a null distribution generated with a Pois-
son model (16). An FDR is established for each number
of reads, and windows with greater than or equal to the
lowest level of reads with an FDR of less than 10% (user-
adjustable) are considered to contain signal.

Stage one and stage two testing. To fully exploit the
genome-wide nature of enrichment-based sequencing data,
MethylAction can find differential regions of any length at
any location in the assembled and mappable genome. To de-
tect regions of differential methylation across multiple repli-
cated groups, we employed a two-stage testing approach
similar to the differential ChIP-seq program diffReps (32)
combined with an analysis of deviance (ANODEYV). In
MethylAction, the first stage performs the negative bino-
mial test from DESeq (33) for each pairwise comparison.
Normalization based on library size is also performed us-
ing DESeq prior to statistical testing, and these normal-
ized counts are saved for visualization and reporting pur-
poses. The pairwise stage one P-values and the direction
of the change are used to detect a pattern, which specifies
how the means of all groups relate to each other (i.e. which
groups are hyper- or hypo- methylated with respect to each
other). Patterns are derived from pairwise comparisons us-
ing a decision table (Supplementary Figure S1). By default,
a P-value cutoff of 0.05 is used both for the adjusted AN-
ODEYV P-values and for the pairwise post-test P-values, and
these cutoffs are user-adjustable. Windows with equivalent
adjacent patterns, and within a user-specified gap distance
(200 bp by default), are then joined to create a set of candi-
date regions. The coordinates of these regions are then pro-
vided to stage two, where reads are re-counted within the
region and an ANODEYV is performed using DESeq. Be-
cause the ANODEYV is implemented as a Generalized Lin-
ear Model (GLM), adjustment for covariates can be added,
enabling adjustment for group variables such as ancestry
and for paired subject designs. The ANODEV P-values
are adjusted using the Benjamini-Hochberg procedure (34),
and pairwise post-tests are performed for all regions with
significant P-values (by default, P < 0.05) to confirm their
patterns when considered as a contiguous region. The com-
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Table 1. MethylAction uniquely provides statistically significant differential region detection and bootstrapping FDRs for n-group comparisons. Compar-
ison of features relevant for biological subtype studies for existing data processing tools that could be applied to DNA methylation enrichment sequencing
data. The tools compared are MethylAction, MEDIPS (28), diffReps (32) and BayMeth (27)

MethylAction MEDIPS diffReps BayMeth
Intended for MiGS? Yes Yes ChIP-seq Yes
Two-group differential Yes (region-level) Yes (window-level) Yes (region-level) No
testing?
n-group differential testing? ~ Yes No No No
Computes bootstrap FDRs? ~ Yes No No No
Implementation R package R package Perl program R package

Input: Read alignments from MiGS, MBD-seq, MeDIP-seq, or similar techniques

(1. Pre-Processing

J

(2. Initial Filtering )

(3. Stage One Testing )

) 1.1 Count reads in 50bp windows genome-wide

2.1 Remove windows where read counts from all samples are zero or
below sample-specific Poisson noise cutoffs

3.1 Pairwise pre-tests (DESeq negative binomial)
3.2 Call patterns based on direction and significance (p < 0.05)
3.3 Join adjacent windows of the same pattern within a gap distance

* 4.1 Count reads in the regions from Stage One
4.2 Analysis of Deviance (ANODEV)

(4. Stage Two Testing )

4.3 Adjust ANODEV p-values using Benjamini-Hochberg procedure
4.4 Pairwise post-test (DESeq negative binomial)
4.5 Call patterns based on direction and significance (p < 0.05)

* 4.6 Call frequencies of samples above noise cutoffs per group
4.7 Stratify into “frequent” (2/3 agreement in each group) and “other”

(5. Bootstrap Iterations

5.1 Randomize groups and re-run Stage One and Stage Two
5.2 Compute empirical FDRs for each DMR pattern

Output: Differentially Methylated Regions (DMRs)

Figure 1. Stages and component steps in MethylAction. Note that the window size, P-value cutoffs, and ‘frequent’ fraction are user-adjustable.

bination of the ANODEY and pairwise testing theoretically
allows the method to be used for any number of groups
within hardware limitations. In practice, we have tested the
method with up to eight groups.

Frequency calling.  Finally, DMRs are classified as ‘fre-
quent’ if a user-specified fraction of samples (two thirds by
default) within each group have consistent methylation sta-
tus. DMRs are classified as ‘other’ if the group-wise differ-
ences in mean read counts are statistically significant but
the DMR either lacks sufficient within-group consistency
or does not reflect an expected DMR. Some regions may
have statistically significant quantitative differences, but the
total read counts across all conditions are either very high
or very low, and thus are unlikely to represent changes in
DNA methylation. The ‘frequent’ classification was devel-

oped to filter these situations and provide a set of DMRs
that qualitatively represent an expectation of binary methy-
lation differences. The expectation of methylation used for
filtering is determined using the same Poisson cutoff from
the initial filtering stage.

Bootstrap or permutation testing. The two-stage approach
is advantageous because it can detect regions not specified
a priori and controls for error across regions of differences.
However, it does not guarantee type I error control across
the experiment due to the possible inflation of significance
caused by the two rounds of testing (35). We addressed this
concern by implementing a rigorous permutation (sampling
without replacement) or bootstrapping (sampling with re-
placement) analysis to empirically quantify the false dis-
covery rates (FDRs) for all patterns of differential methy-



lation detected. This is accomplished by re-running the en-
tire DMR detection procedure through stage one, stage two
and frequency calling for randomized sample to group as-
signments. Empirical FDRs for each pattern are computed
by dividing the average number detected in the null cases
with a certain pattern by the number of DMRs in the real
data with the same pattern. Convenience functions are pro-
vided to assist in running, merging and computing FDRs
for thousands of permutations across multiple computers
or in high performance computing (HPC) environments.

MBDe-isolated sequencing (MiGS) data for four-group and
two-group comparisons of prostate cancer specimens

MiGS (16) reads were obtained from a study of aggres-
sive prostate cancer deposited in GEO under accession
GSE66505 (36). Reads were aligned to hgl9 using bowtie2
(37), and reads with MAPQ < 10 were removed. In addition
to the benign, low grade and high grade groups provided by
this data set, the low grade group was additionally stratified
into African American and European American subgroups
using the ancestry metadata for the four-group comparison.
For the two-group comparison, only the European Amer-
ican samples were used to correspond with the TCGA co-
hort. In this case, benign samples were compared to the low
grade and high grade groups combined together. For both
analyses, MethylAction was run using a window size of 50
bp, minimum DMR size of 150 bp, P-value cutoffs of 0.05
for all stages, ancestry as a covariate adjustment, 2/3 as the
frequent cutoff, and a join distance of 200 bp.

MAP-seq data for two-group comparisons of colon cancer
specimens

Enrichment sequencing reads generated by MAP-seq
(38,39) were obtained for paired normal colon and colon
cancer samples (40) from GEO accession GSE21442.
MethylAction was run using the same settings as for the
prostate MiGS data.

MeDIP-seq and WGBS data for two-group comparison of
skin cells

MeDIP-seq (14) read alignments for penis foreskin fi-
broblast primary cells and penis foreskin keratinocyte
primary cells were obtained from the Roadmap Epige-
nomics Project (41). The data consist of samples from
three individual donors with each cell type collected
from each donor for a total of six MeDIP-seq experi-
ments. Aligned reads in BED format were obtained from
GEO accessions GSM707022, GSM941726, GSM958180,
GSM707021, GSM941725, GSM958182 and converted to
BAM format using bedtools bamtobed (42). The read
depths for two donors were greater than those of the third
and these samples were downsampled to match the mean
of the depth of the two samples from the donor with the
lowest depth (42 994 232 reads) using samtools (43). This
was to minimize normalization differences potentially con-
founding DMR comparison between tools. Data were pre-
processed using a fragment size of 266 bp, and MethylAc-
tion was run using a window size of 50 bp, minimum DMR
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size of 250 bp, P-value cutoffs of 0.05 for all stages, donor
ID as a covariate adjustment, 2/3 as the frequent cutoff and
a join distance of 200 bp. Whole genome bisulfite sequenc-
ing (WGBS) data were available for both cell types from a
single donor only (skin03), and processed percent methy-
lation measurements were obtained from GEO accessions
GSM1127120 and GSM 1127056 in WIG format.

Two-group DMR detection using MEDIPS and diffReps

Data were pre-processed for MEDIPS (28) using the
MEDIPS.createSet() function with the options: extend =
266, shift = 0, window_size = 50 and uniq = FALSE.
Differential windows were called for MEDIPS using the
MEDIPS.meth() function with the options: p.adjust = fdr,
diff. method = edgeR, MeDIP = FALSE, CNV = FALSE
and minRowSum = 20. Significant windows were selected
using the MEDIPS.selectSig() function with the options:
p.value = 0.05 and adj = TRUE. The diffReps (32) Perl
script was run using the options: —meth nb, —frag 266,
—window 200, —pval 0.05, and differential regions were
loaded from the saved report text file into R for analysis.
For the colon cancer and prostate cancer data sets, fragment
size of 120 bp was used.

Computational performance comparison

Run time and peak RAM usage was measured while run-
ning MethylAction, MEDIPS and diffReps using Syrupy
(https://github.com/jeetsukumaran/Syrupy). All runs were
performed using individual (one node per run) Linux nodes
in a cluster environment with 20 CPU cores (Intel Xeon
E5-2680v2) and 64GB of RAM available on each. Disk ac-
cess was provided by a Lustre distributed filesystem. Each
run was replicated four times. For MethylAction, 6 cores
were used for preprocessing, and 10 were used for the call
to methylaction(). For diffReps, -nproc was set to 19.

DMR comparison among MethylAction, MEDIPS and
diffReps

While MethylAction and diffReps output regions of sta-
tistical significance, MEDIPS produces statistical signifi-
cance at the window level only. To compare the programs
in a two-group setting, we joined all contiguous genomic
regions covered by one or more significant output range
from any program into a set of consensus DMRs using
the reduce() function from the GenomicRanges R package
(44). These regions were filtered to those with length 250
bp or greater for the skin data and 150 bp or greater for
the prostate and colon cancer data. Then, the number of
consensus regions covered by at least one significant out-
put range from each data set were counted and compared
to produce Venn diagrams using the VennDiagram R pack-
age (45). All heatmaps were plotted using the code from the
maHeatmap() function provided by MethylAction. For the
skin data, reported percent methylation values for all CpG
sites falling within a DMR’s coordinates (specified by chro-
mosome, start, end) were averaged. The differences between
these averages between fibroblasts and keratinocytes were
then computed and distributions plotted for each direction
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of DMR. For visualization of effect sizes for shared and
unique regions to each tool, reads were re-counted in these
regions using the getCounts() function from MethylAction.

Cross-cohort and platform precision and recall analysis

Differential DNA methylation in prostate (PRAD) and
colon (COAD) cancer present in The Cancer Genome Atlas
(TCGA) was considered as a ‘gold standard’ for this com-
parison. Raw data from the Illumina HumanMethylation
450K microarray were obtained from TCGA (http://tcga-
data.nci.nih.gov/). Probes known to be cross-hybridizing
(46) or overlapping with a common SNP (minor allele fre-
quency > 1%) were excluded. For the prostate cancer data,
only those listed as race ‘white’ (the majority of samples)
were used to be more comparable to the European Amer-
ican samples from our own data with respect to genetic
background. Normalization was performed using the pre-
processFunnorm() function available in the minfi R pack-
age (47). Beta-values and M-values were computed for each
CpG site (48) and differential methylation was tested using
the moderated t-statistics on the M-values with limma (49).
A CpG was considered differentially methylated if there
was a delta beta of > 0.1 between the tumor and normal
means and a Benjamini-Hochberg adjusted P-value < 0.05
reported by limma.

Precision and recall were computed with respect to the ar-
ray sites, as each site can only overlap with a single DMR,
whereas DMRs can overlap with multiple array sites. Each
array site was classified as hypermethylated, hypomethy-
lated, or no change based on direction and the signifi-
cance criteria stated above. For the enrichment sequenc-
ing DMRs, the absence of DMR was considered as the no
change class. A 3 x 3 confusion matrix tabulating how each
classification compares between data sets was constructed
for each DMR set (produced by MethylAction, MEDIPS,
or diffReps) versus the TCGA-derived classifications. Pre-
cision was computed as the fraction of ‘true’ (contained in
TCGA) hypermethylation classifications out of all hyper-
methylation classifications produced by the given tool. Re-
call was computed as the fraction of ‘true’ (contained in
TCGA) hypermethylation classifications out of all hyper-
methylation classified by the TCGA data.

RESULTS

MethylAction detects subtype-specific DMRs in a four-group
comparison of prostate cancer specimens

To illustrate the use of MethylAction in investigating bi-
ological subtypes, we performed a four-group analysis
among benign prostatic tissue and three distinct and clin-
ically relevant subsets of prostate cancer. Histopathologi-
cally low grade tumors from African Americans have in-
creased risk of disease recurrence when compared to low
grade tumors from European Americans (50). Thus, we
used MethylAction to detect regions where DNA methy-
lation is present in both low grade cancers from African
Americans and high grade cancers but is absent in low grade
samples from European Americans or benign prostatic tis-
sue (Supplementary Table S1). MethylAction found 159
‘frequent’ DMRs where hypermethlyation is unique to these

two groups, and analysis of 2500 bootstraps calculated an
FDR of 7.8% (Figure 2A). A notable aspect of MethylAc-
tion is that all possible patterns of hyper- and hypo- methy-
lation among the groups are detected with FDRs computed
for each pattern (Supplementary Figure S1). This includes
both ‘frequent’” DMRs that meet consistency criteria (see
Materials and Methods) and any statistical differences in
read counts (‘other’ DMRs). The FDR estimates enable pri-
oritization of patterns least likely to occur by chance in the
data set. In this case, other interesting patterns from the ‘fre-
quent’ subset with FDRs below 10% include hypermethy-
lation shared by all three cancer groups (1790 DMRs, 3.5%
FDR), hypermethylation unique to high grade disease (219
DMRs, 8.4% FDR) and hypermethylation unique to low
grade tumors from African Americans (3754 DMRs, 9.0%
FDR). The sample-level sequencing data for all DMRs can
be plotted on a heatmap, which visualizes the results of the
pattern and frequency calling performed by MethylAction
(Figure 2B). Example plots of mean read levels among the
four groups at loci of interest demonstrate the performance
of the method in capturing DMRs that are both specific
to certain groups with known clinical distinctions from the
others (Figure 2C and D) and shared among all disease sub-
groups (Figure 2E). Additionally, DMRs can be spatially
visualized by creating a karyogram (Supplementary Figure
S2).

Bootstrapping determines empirical false discovery rates
(FDRs) for each pattern of differential methylation among
four groups

A unique aspect of MethylAction is built-in support for per-
mutation (sampling without replacement) or bootstrapping
(sampling with replacement) of the entire DMR calling pro-
cedure (Table 1). To establish confidence in our FDR esti-
mates, we re-sampled the 2500 iterations into smaller sub-
sets and demonstrated that 2500 iterations were more than
sufficient to produce stable estimates of FDRs for the ‘fre-
quent” DMR subset (Supplementary Figure S3A). These
estimates of FDRs can be used to justify lower P-value
cutoffs, and we found that some ‘frequent’ patterns with
FDRs greater than 10% can be filtered at lower ANODEV
P-values to produce subsets of DMRs with lower FDRs if
desired (Supplementary Figure S3B). Thus, sufficient boot-
strapping to attain stable estimates of FDRs is essential in
comparisons involving more than two groups, as the FDRs
aid in prioritization of the most robust patterns and can be
used to select more significant subsets of DMRs if FDRs are
unacceptably high at the default ANODEV P-value cutoff
of 0.05.

MethylAction detects more DMRs consistent with expecta-
tions of differential methylation when compared with existing
tools

Because the existing tools, diffReps and MEDIPS, are lim-
ited to two-group analyses, we selected a two-group com-
parison of MeDIP-seq data between skin fibroblasts and
skin keratinocytes (41) to compare the differential methy-
lation results generated by these three tools. This compar-
ison highlights the use of DMR detection to compare be-
tween developmental lineages, which are also known to
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Figure 2. MethylAction detects differentially methylated regions (DMRs) that distinguish among benign prostatic tissue and three clinically relevant
subgroups of prostate cancer. (A) Number of DMRs detected for all possible patterns of hyper- (black squares) and hypomethylation (white squares). The
table is sorted by false discovery rates (FDRs) that are the result of 2500 bootstraps. Patterns with FDR < 10% are indicated with an asterisk. ‘Frequent’
DMRs require the methylation status of two thirds or more of the samples in a group to agree. (B) Heatmap of read count distributions for all ‘frequent’
DMRs detected, ordered by pattern as in (A). Patterns with FDR < 10% are indicated with numerals corresponding to those indicated in (A). Columns
represent samples, and rows represent DMRs. Normalized read counts have been divided by the window size and square root-transformed for visualization
purposes. (C) Example hypermethylation DMR that is shared between high grade and African low grade. The x-axis represents genomic coordinates, and
the y-axis represents normalized read counts. The read counts are plotted as the mean + standard error for 50 bp non-overlapping windows. The region of
the DMR called by MethylAction is indicated by the box under the x-axis. (D) Example hypermethylation DMR that is specific to high grade. (E) Example
hypermethylation DMR that is shared by European low grade, African low grade and high grade.
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have opposing gene expression signatures with relevance for
understanding the process of wound healing (51). Methy-
1Action detected 100 239 DMRs hypermethylated in ker-
atinocytes and 104 031 DMRs hypermethylated in fibrob-
lasts. The ‘frequent’ subset of 28 179 keratinocyte hyper-
methylation DMRs and 21 001 fibroblast hypermethylation
DMRs are visualized in Figure 3A. Note that bootstrapping
was not performed due to the paired nature of the compar-
ison, wherein each type of cell was obtained from the same
set of donors.

We first compared the genomic ranges of all DMRs
output by MethylAction (both the ‘frequent’ and ‘other’
DMRs) to the differential regions produced by the other
tools. MethylAction DMRs did not greatly differ in width
or CpG density distributions between the ‘frequent’ and
‘other’ groups (Supplementary Figure S4). Regions from
all three tools were reduced into consensus regions, and
the comparison revealed 77 684 regions common among
all three tools (Figure 3B). Nearly all regions detected by
MEDIPS were also detected by the other two tools, as only
14 regions were unique to the MEDIPS set. There were a
large number of regions both unique to diffReps (95 991)
and MethylAction (34 888). This raises the question of how
many of these regions unique to each tool represent actual
differences in DNA methylation and how strong the differ-
ences are in these regions with respect to fold changes.

Because simply detecting more DMRs does not indicate
a DMR set is more reflective of true differential methyla-
tion, we compared percent methylation values from whole
genome bisulfite sequencing (WGBS) data available for one
of the three skin cell donors among the unique regions re-
ported by each tool (Figure 3C). The regions shared be-
tween all three tools had high differences in percent methy-
lation: a median of 45% more in keratinocytes versus fi-
broblasts for keratinocyte hypermethylation DMRs and
a median of 46% less in keratinocytes versus fibroblasts
for fibroblast hypermethylation DMRs. While the large
number of regions unique to MethylAction and the much
smaller number unique to MEDIPS had median differ-
ences of 18% or more, the regions unique to diffReps had
very low percent differences (9% and —4%) with distribu-
tions closely overlapping no change. This analysis indicates
that the DMRs unique to MethylAction represent validated
changes in DNA methylation that are not detected by the
other two tools. When considering the fold changes between
sequencing reads for the two groups, the fold changes for
the DMRs unique to MethylAction are comparable to those
for the DMRs shared by all tools (Figure 3D). In contrast,
the diffReps regions show very small effect sizes, consistent
with these regions not representing differential methylation
in the WGBS sample. The performance of MethylAction is
not at the expense of computational timing, as MethylAc-
tion had the shortest runtime of all three tools on our hard-
ware (Figure 3E). While MethylAction had a higher peak
RAM usage than diffReps, it used considerably less RAM
than our run of MEDIPS (Figure 3F). Thus, MethylAc-
tion detected a set of DMRs that was more comprehensive
than MEDIPS, show methylation changes when compared
to WGBS data, and have fold changes in the MeDIP-seq
data comparable to the regions shared by all three tools.

MethylAction DMRs provide an improved balance between
cross-cohort and cross-platform precision and recall in com-
parison to existing tools

To compare the accuracy of each tool in a controlled set-
ting, we performed a cross-cohort and cross-platform com-
parison between two enrichment-sequencing cohorts and
methylation microarray data from The Cancer Genome At-
las (TCGA). Using all three tools, DMRs were detected and
compared for both a prostate cancer and colon cancer co-
hort (Supplementary Figure S5). Differential methylation
from the TCGA cohort was considered as the gold stan-
dard, and precision (fraction of differential regions called
by the tool that are differential in TCGA) and recall (frac-
tion of regions that are differential in TCGA that are called
by the tool) of cancer hypermethylation classification was
calculated for MethylAction, MEDIPS and diffReps. For
the prostate data set (Figure 4A), MEDIPS had the high-
est precision (0.92), followed by ‘frequent’” MethylAction
DMRs (0.76), and all MethylAction DMRs (0.69). By com-
parison, diffReps had much lower precision (0.46), yet had
the second highest recall (0.4). While the set of all Methy-
lAction DMRs achieved a recall comparable to diffReps
(0.41), the MEDIPS DMRs had much lower recall (0.18).
The ‘frequent’” MethylAction DMRs were similar in per-
formance, though with somewhat less precision and recall
(0.16) than MEDIPS. In colon cancer, MethylAction finds
28 278 DMRs not detected by MEDIPS while having only
a slight reduction in precision and achieving a recall closer
to that of diffReps (Figure 4B and Supplementary Figure
S5D). Therefore, in a cross-cohort and platform compari-
son, MethylAction is capable of achieving a better balance
between precision, recall and total number of DMRs than
existing tools.

DISCUSSION

MethylAction is a valuable tool for identifying DMRs that
can distinguish biological subtypes, including clinically rel-
evant disease subtypes. This is accomplished by providing
analyses lacking in existing tools, namely, support for any
number of groups, bootstrap FDRs and stratification by
methylation frequency within groups. In a four-group com-
parison among benign prostate and three clinical subtypes,
MethylAction detected all possible patterns of DMRs be-
tween the groups. Bootstrap FDRs were essential for nar-
rowing the patterns down to those that are the most robust
and establishing confidence in the DMR detection. Com-
parisons involving more than two groups are of increas-
ing interest due to the need to discover possible molecu-
lar drivers of disease subtypes for precision medicine. Ex-
ceeding the two-group limit can also be powerful for stud-
ies of normal physiology and development, where multiple
cell types from the same tissue can be compared in order to
elucidate possible epigenetic regulators of cell fate.

We demonstrated the ability of MethylAction to detect
more DMRs that more likely represent biologically rele-
vant differential DNA methylation in both cancer biology
and developmental contexts and across multiple different
enrichment sequencing protocols for data produced by dif-
ferent laboratories. However, these comparisons to existing
tools are restricted to be two-group comparisons by the fact
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Figure 3. Comparison among DMRs detected by MethylAction, MEDIPS and diffReps between MeDIP-seq data for skin fibroblasts and skin ker-
atinocytes. (A) Heatmap of read count distributions for all ‘frequent’ DMRs detected by MethylAction. Columns represent samples, and rows represent
DMRs. Normalized read counts have been divided by the number of windows in the DMR and square root-transformed for visualization purposes. (B)
Venn diagram of the number of outputted differential regions unique to each or in common among all of the three tools. The DMR sets from all three
analysis results were reduced into a set of consensus regions to enable the comparison. Both the ‘frequent’ and the ‘other” DMRs from MethylAction were
used. (C) Boxplots showing the distribution of the difference in percent methylation as measured by whole genome bisulfite sequencing (WGBS) in one of
the skin donors for shared DMRs and DMRs unique to each tool. Differences were computed as % methylation in keratinoctyes minus % methylation in
fibroblasts. (D) Distributions of log2 fold changes in MeDIP-seq reads between fibroblasts and keratinocytes for consensus regions shared by all three tools
or unique to each tool. (E) Comparison of total time elapsed (wall time) for a complete run of each tool. Values shown are the mean+SEM of four separate
program executions. (F) Peak RAM usage (the maximum RAM usage over the course of program execution when sampled in 1 second increments) for
each tool shown as mean+SEM of four separate program executions.
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a colon cancer MAP-seq cohort (40) and the TCGA COAD cohort.

that MEDIPS and diffReps are limited to this study de-
sign. However, there are interesting biological questions to
explore in each example involving subgroups that are not
tractable with the existing tools. For example, MethylAc-
tion can analyze tumors containing different somatic muta-
tions or analyze melanocyte data alongside the fibroblasts
and keratinocytes in a single analysis and statistical frame-
work. Because of the regional nature of the DMRs, simply
running these tools for all pair-wise comparisons and reduc-
ing them is non-trivial, and would also increase the multiple
testing burden in the absence of an ANOVA or ANODEV-
style approach such as that taken by MethylAction.

Our head-to-head comparisons demonstrated the im-
portance of MethylAction’s region-based testing approach.
MEDIPS only tests for differential reads within windows,
which creates a large burden of multiple testing that reduces
power and likely explains the smaller number of DMRs de-
tected by this tool. Moreover, MEDIPS does not support
consideration of the paired design of the skin and colon co-
horts, which can cause a loss of power. MethylAction still
performs the generalized linear model (GLM)-based AN-
ODEYV in the two-group cases, which allows for covariate
adjustments. While diffReps uses a two-stage testing ap-
proach (without performing an ANODEYV) to attain signifi-
cance across differential regions, it is designed for ChIP-seq
data and does not have faculties for stratifying the results
based on expectations of differential DNA methylation.
While diffReps finds a large number of regions that are not
reported by MethylAction, these regions have very low fold
changes in MeDIP-seq reads between samples. Our analysis

of WGBS data for both cell types from one of the donors in-
dicates that these only rarely represent true changes in DNA
methylation status, whereas the regions unique to Methy-
lAction represent more robust differences. By implement-
ing a pre-filtering approach based on Poisson thresholds
and performing two stages of hierarchical testing, Methy-
lAction takes a data-driven approach to reduce the multi-
ple testing burden. While this may inflate type I error rates
(35), we quantify this effect by providing permutations and
bootstraps to compute empirical FDRs, which is feasible
for the large prostate cancer cohort that can be divided into
more than two groups. Then, by post-filtering to groups that
are the most consistent and assigning the ‘frequent’ classifi-
cation, MethylAction defines a subset of DMRs with lower
FDRs. Compared to diffReps and MEDIPS, MethylAction
outputs a set of DMRs that more closely match expecta-
tions of qualitative differential DNA methylation, and this
expectation is supported by comparison to WGBS data.
MethylAction is also able to achieve a favorable balance
between precision and recall when DMRs are compared
to a gold standard. Here, we used differentially methylated
CpGs detected in methylation microarray data from TCGA
for both prostate cancer and colon cancer. In the case of
prostate cancer, MEDIPS had very high precision but low
recall, whereas diffReps had higher recall at the expense of
precision. MethylAction, on the other hand, had slightly
higher recall than diffReps while maintaining a precision of
0.69. In the case of colon cancer, MethylAction was more
comparable to MEDIPS, as MEDIPS had a higher recall
in this example. The ‘frequent’ stratification of MethylAc-



tion was also able to provide an increase of 0.18 in precision,
highlighting the usefulness of considering both subsets for
different data sets. It is important to note that the major-
ity of DMRs detected by MethylAction from enrichment
sequencing were not even assayed by the array design, as
only 9071 out of 24 788 total DMRs (36.6%) overlapped
with one or more site on the array. This underscores the
benefit of the genome-wide data set produced by enrich-
ment sequencing which can enable the detection of DNA
methylation changes at distal regulatory elements. The use
of TCGA data as a gold standard here is an arbitrary choice,
and it should be noted that lack of perfect recall or preci-
sion is not necessarily a methodological defect of the DMR
detection software, and can represent biological and techni-
cal differences between the different cohorts and platforms.
By comparing the tools head-to-head, we establish that for
the subset of DMRs that do overlap with the TCGA sites,
MethylAction can perform as well as or better than the ex-
isting tools. This implies that MethylAction likely also has
comparable performance for the additional regions not cov-
ered by the arrays and in cohorts involving multiple groups
that the other tools are not designed to process.

As the importance of epigenetics in understanding the
molecular differences between biological conditions contin-
ues to grow, cost-effective detection of DMRs will be essen-
tial. DMRs can serve not only as biomarkers but can also re-
veal functional differences between conditions that change
gene regulation via a multitude of mechanisms (52). Recent
advances in epigenetic editing have demonstrated the use of
TAL effectors in both methylating (53) and de-methylating
(54) specific loci in the genome and have unlocked op-
portunities for targeted functional testing of DMRs. Thus,
the combination of MeDIP-seq/MiGS and DMR detection
among biological subtypes using MethylAction provides a
substantial solution for research seeking molecular deter-
minants of clinical phenotypes. Such studies will lead to ad-
vances both in precision medicine and our understanding of
the function of DNA methylation in regulating genes and
conferring phenotypes.
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