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Abstract

Metastasis contributes to more than 90% of mortality in breast cancer. Critical stages in the development of aggressive breast cancer
include growth of the primary tumours, and their abilities to spread to distant organs, colonize and establish an independent blood 
supply. The integrin family of cell adhesion receptors is essential to breast cancer progression. Furthermore, integrin-linked kinase can
‘convert’ localized breast cancer cells into invasive and metastatic cells. Upon stimulation by growth factors and chemokine ligands, inte-
grin-linked kinase mediates the phosphorylation of Akt Ser473, and glycogen synthase kinase-3. The current notion is that overexpres-
sion of integrin-linked kinase resulted in an invasive, metastatic phenotype in several cancer model systems in vivo and in vitro, thus,
implicating a role for integrin-linked kinase in oncogenic transformation, angiogenesis and metastasis. Here, we will review the role of
integrin-linked kinase in breast cancer metastasis. Elucidation of signalling events important for breast tumour metastasis should
 provide insights into successful breast cancer therapies.
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Introduction
Despite its clinical relevance, metastasis is the most poorly under-
stood aspect of carcinogenesis. The potential of malignant cells to
spread to distant organs is the leading cause of death from breast
cancer. Some breast cancer metastases display tissue-specific
patterns to distant organs, such as the brain [1, 2] and bone
[3–5]. Although complex, current studies recognize epithelial-to-
mesenchymal transitions, cell-to-cell and cell–matrix interactions,
activation of specific chemokines/cytokines and proteases, and
contributions from signal transduction pathways to the metastastic
process [6]. Contrary to normal breast cancer cells, malignant
cells must display enhanced migratory behaviour, the ability to

breach blood vessel walls and the dense collagenous matrix sur-
rounding tumours. Additionally, metastatic cells must overcome the
dynamics of a foreign microenvironment, to colonize and survive at a
distant target site.

Once metastasis has occurred, tumour growth is highly
dependent on the ability of tumours to induce their own vascular-
ization [7]. Angiogenesis, which is defined as the formation of new
blood vessels from the pre-existing vasculature, is regulated by
multiple stimulatory and inhibitory factors that are able to modu-
late the migration and/or proliferation of microvascular cells [8].
Angiogenesis is a normal process in growth and development, as
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well as in wound healing. However, excessive or insufficient blood
vessel formation results in critical diseases [8]. Vasculature
remodelling is regulated by signals derived from receptors for
growth factors and chemokines, as well as extracellular matrix
(ECM) molecules [9]. There are key events to which malignant
cells must adhere to complete angiogenesis: invasion of the 
surrounding stromal tissue, intravasation and evasion of pro-
grammed cell death, arrests with the vasculature at a distant site,
extravasation, as well as establishment and growth within a new
microenvironment [6].

This review will discuss the contributions of integrin-mediated
signalling, namely the integrin-linked kinase (ILK), to the induction
and progression of metastasis in breast cancer.

Role of integrins in tumourigenesis

Integrins and their downstream signalling targets, which regulate
tissue integrity and function, are essential in breast cancer cell
migration (reviewed in Ref. [10]). The family of 24, heterodimeric
adhesion receptors functions as cell-surface glycoproteins, which
allows cells to interact with each other and the extracellular envi-
ronment [11]. Each integrin heterodimer exist as complexes of
non-covalently linked � and � subunits, often overlapping with
specificity for ECM proteins, such as collagen, fibronectin and
laminin (Fig. 4). Thus within breast tissue, this interaction with the
basement membrane is required for the structural and functional
integrity of the epithelial component of the mammary gland,
including proliferation, differentiation and survival of each individ-
ual mammary epithelial cell [10, 12–16].

Several studies have implicated integrins in the complex inter-
actions required for tumour cells to expand into normal tissue sur-
roundings, and form the functional vasculature necessary for
tumour oxygenation and growth [17–19]. During wound healing,
for example, several members of the integrin family of adhesion
receptors are expressed on the surface of cultured smooth mus-
cle and endothelial cells [20–23]. Gene ablation for specific inte-
grins, or blockade of their functions, can exert profound effects on
the angiogenic response of endothelial cells, supporting that inte-
grins are directly involved, or regulate angiogenic processes [24].
Evidence of their involvement first appeared from studies that
introduced small peptides and antibodies against �v�3 integrin
into the chick chorioallantoic membrane (CAM). Brooks et al.
demonstrated that these antagonists lead to the rapid regression
of tumours transplanted onto the CAM, and apoptotic induction of
proliferative angiogenic vascular cells [25, 26]. Similar studies
soon followed that targeted closely related integrins �v�5 and
�v�3, and demonstrated effective angiogenesis inhibition [27,
28]. Conversely, studies consistently observed that mice lacking
�3- or both �3/�5 integrins increased primary tumour growth and
tumour angiogenesis [29–31], suggesting that neither integrin are
essential for neovascularization. However, interestingly, human
patients suffering from the disease Glanzmann thrombasthenia,
many of whom lack a functional �3 subunit, do not show 
significant defects in vascular development or angiogenesis [32].

Integrins also promote breaching of the ECM and endothelial
barrier to pass through to the surrounding blood and lymph ves-
sels for transport [33]. Lung metastasis from an experimental
xenograft model of human breast cancer was impaired following
administration of an inhibitory anti-�1 integrin antibody [34].
Similarly, a peptide designed against �5�1 and �v�3 receptors
was found to impair the growth and metastasis of invasive human
breast cancer cells in a separate xenograft study [10, 35]. Matrix
degradation involves membrane-bound or secreted proteases,
such as those of the matrix metalloproteinase family (MMP),
which is dependent on integrin expression in invasive breast can-
cer cells [36, 37].

Role of integrins in signalling

Integrin-mediated signalling is significant to normal cellular
behaviour, and beneficial to tumourigenesis. Signalling is con-
veyed in two forms: (i ) ‘inside-out’—the regulation of the affinity
and conformation of the receptor from inside the cell; and (ii ) ‘out-
side-in’—the triggering of intracellular events by ligand occupa-
tion of the receptors [11]. Integrin engagement with their ligands
transduces various signals through calcium influx or activation of
down-stream kinases, such as focal adhesion kinase (FAK), mito-
gen-activated protein kinase (MAPK) and protein kinase C (PKC),
to recruit protein scaffolds to the cell membrane. Moreover,
kinase-lacking integrins interact with other kinases and adaptor
molecules that have signalling capacities, such as ILK, FAK, talin,
paxillin, parvins, p130Cas, Src-family kinases and Rho-GTPases
[12]. Integrin expression and ligand binding can be specific to the
tissue type. For example, �2�1 is specific for collagen on platelet
cells, but can also bind laminin on other cell types [11].
Furthermore, the specificity and affinity of an integrin receptor
may not be constant with the same receptor on the same cell [11].

Research substantially documents the contributions of �6�1
and �6�4 to breast cancer cell survival, especially in response to
cellular stress [38]. Three proteins that have emerged as impor-
tant regulators of integrin-mediated signalling in breast metasta-
sis are the ILK, and associated adaptor proteins PINCH and parvin
[39–41]. These molecules form a heterotrimeric complex that
functions as a signalling platform for integrins by communicating
with the actin cytoskeleton and many diverse signalling pathways
(Table 1). Further, ILK has been reported to com-immunoprecipi-
tate with �1, and is capable of phosphorylating its cytoplasmic
domain in vitro [42–44].

Integrin-linked kinase (ILK)

The omnipresent protein, ILK, is a serine/threonine kinase first
identified from a yeast 2-hybrid system through its association
with the �1 subunit of integrins [42]. Structurally, ILK is com-
posed of three functionally significant domains. The C-terminus
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harbours a protein kinase domain that serves as a binding site for
the �- integrin subunits. Four ankyrin (ANK) repeat domains exist
at the N-terminus, which mediate protein–protein interactions
(Table 2) (as reviewed in Ref. [45]). Additionally, the N-terminus
regulates the localization of ILK within focal adhesion plaques
[46]. Although the identity of a physiological ligand has not been
resolved, reports have demonstrated that phosphatidylinositol-
3,4,5-trisphosphate binds to a pleckstrin homology (PH) domain,
between the C- and N- termini in ILK [47, 48]. Regulators of ILK
activity include a PI3K phosphatase, phosphatase and tensin homolog
(PTEN) [48–50] and the protein phosphatase 2C, ILKAP [51, 52].

ILK lacks key catalytic domains that are significant to serine/
threonine kinases [50, 51]. An alignment of ILK sequences among
species, compared to protein kinase B-Raf, showed that ILK lacks
both the HRDLXXN domain (catalytic aspartate residue), and the
DFG domain (involved in magnesium ion chelation). However, a
phe-ser-phe (FSF) motif is present in ILK, within the sequence cor-
responding to the activation loop [52, 53]. The charged FSF motif
is similar to the consensus sequence defined for phosphorylation
by PDK-2 (phe-X-X-phe-ser-phe(tyr) [52, 53], which lead many to
believe that ILK is the Akt Ser473 kinase. Delcommenne et al. sug-
gested that ILK is directly involved in apoptosis and cell survival
through its phosphorylation of Akt, and glycogen synthase kinase-3

(GSK-3), a negative regulator of the Wnt signalling pathway [48].
In normal mammary epithelial cells, stable overexpression of
kinase-active ILK directly inhibited GSK-3 activity in vitro.
Moreover, expression of a kinase-deficient ILK resulted in 
inhibition of phosphorylation on Ser473 in Akt. However, ILK failed
to directly phosphorylate Ser9 on GSK-3, which results in its inhi-
bition [48].

Lynch et al. suggested that ILK cannot be the immediate kinase
for Ser473 on Akt, since point-mutations to charged residues
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Table 1 Major ILK-binding

Binding protein ILK binding site Target on ILK

Transmembrane receptors

�1 integrins
�1 cytoplasmic
domain

Kinase domain

�3 integrins N/A N/A

Adaptor proteins

PINCH LIM1 ANK domain

CH-ILKBP CH2 Kinase domain

Affixin CH2 Kinase domain

Paxillin LD1 Kinase domain

Catalytic proteins

ILKAP N/A ANK-PH domains

PKB/Akt N/A Kinase domains (?)

GSK-3 N/A Kinase domains (?)

PDK-1 N/A Not determined

PIP3 PH domain Not determined

Major ILK-binding proteins were described by Wu et al. [122]. CH,
calponin homology; CH-ILKBP, calponin homology (CH) domain-contain-
ing ILK-binding protein; PDK-1, 3-phosphoinositide-dependent protein
kinase 1; PIP3, phosphatidylinositol-3,4,5-trisphosphate; PH, pleckstrin
homology domain.

Table 2 Molecules associated with ILK signalling

Action Molecule

Stimulates ILK activity Integrins

PI3K (?)

Activated by ILK Affixin

MLC

ERK

Akt/PKB (?)

Inhibits ILK PTEN 

ILKAP

Inhibited by ILK GSK-3 (?)

mTOR (?)

Growth factors/Cytokines ER�

Osteopontin

VEGF(?)

HER2/ErbB2(?)

Tumour suppressors DOC-2/hDab-2

MDA-7

Other molecules affected by ILK CREB

Cyclin D1

�-catenin

AP-1

MMPs

AKT, protein kinase B (PKB); AP-1, activator protein-1; CREB, cAMP-
response-element-binding protein; DOC-2/hDab-2, differentially-expressed
in ovarian carcinoma-2/human disabled-2; ErbB2, epidermal growth fac-
tor receptor 2; ECM, extracellular matrix; ER�, estrogen receptor �; ERK,
extracellular signal-regulated kinases; GSK3�, glycogen-synthase
kinase-3�; ILKAP, integrin-linked kinase-associated serine/threonine
phosphatase 2C; MDA-7, melanoma differentiation associated gene;
MLC, myosin light chain; MMP, matrix metalloprotease; mTOR, mam-
malian target of rapamycin; PI3K, phosphatidylinositol-3-kinase; PTEN,
phosphatase and tensin homolog VEGF, vascular endothelial growth 
factor. (?)-Denotes that action or pathway is undetermined.
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restored activity in an ILK mutant [54, 55]. In adipocytes, Hresko
and Mueckler observed a 25% increase in insulin-activated Akt
Ser473, despite the presence of an ILK siRNA [56]. Several studies
strongly support that the Rictor-mammalian target of rapamycin
(mTOR) or DNA-dependent protein kinase (DNA-PK) better meet
the requirements as the direct kinase of Ser473 in Akt, than ILK
[57–60]. Instead, ILK may function as a scaffolding protein, allow-
ing catalytic proteins to interact. Regardless of the mystery sur-
rounding its kinase activity, ILK overexpression is a hallmark of
several solid tumours [61]. Deregulation of ILK signalling is
reported in anchorage-independent growth and cell survival,
oncogenic transformation, increased tumourigenicity and
increased invasive potential [62, 63]. In spite of this, the catalytic
mechanism of ILK remains unclear [64].

ILK and binding complexes

The protein–protein interactions (Table 1) of ILK couple integrins,
growth factors and their receptors, and the actin cytoskeleton to
the ECM; which maintains matrix integrity. This association is
crucial to cellular development and invasion since the actin
cytoskeleton is continuously organized through signalling events
[63]. The collective ECM provides a structural framework for the
formation of tissues and organs. Components of the ECM bind to
substrate-adhesion molecules on the surface, which influences
various intracellular signalling pathways that regulate survival,
proliferation, polarity and differentiation. Among the ECM compo-
nents, �1 integrins contribute to a large number of integrin het-
erodimers and are widely expressed. Deletion of �1 integrin in
different organisms has been associated with defects in adhe-
sion, proliferation, survival and polarity [65], which indicates that
associated binding complexes have key roles in the regulation of
cellular behaviour.

Adaptor proteins PINCH (particularly interesting Cys-His-rich
protein) and parvin have emerged as important regulators of inte-
grin-mediated signalling. An ILK-PINCH1 interaction was identi-
fied in 1994, and PINCH2/LIMS2 was later characterized. PINCH
proteins, which contain five ILK-binding LIM domains and tandem
nuclear localization sequences [66–68], are expressed abundantly
in the stroma of breast carcinomas, compared to normal breast
cells [69]. PINCH1 plays a role in mediating epithelial-mesenchy-
mal transition (EMT), as TGF�-1 induced PINCH1 mRNA and pro-
tein expression, while suppressing epithelial markers (E-cadherin
and Zo-1) and increasing fibronectin expression an extracellular
assembly [70]. Parvin family members, parvin �-, �- and �-, bind
to ILK through one of two calponin homology (CH) domains, and
are widely expressed in human mammalian tissues [71]. Binding
by parvin � is partially dependent on PIP3, and phosphorylation
by cyclin-dependent kinase (CDC2), and MAPK [72]. The biological
significance of parvin � is unclear [73], however, Mongroo et al.
demonstrated that parvin � expression was significantly down-
regulated in a number of breast tumours, which correlated with
the up-regulation of ILK signalling. In breast cancer cell lines with
suboptimal expression of parvin �, its transfection demonstrated

significant suppression of colony formation, increased cell adhe-
sion to collagen and suppressed epidermal growth factor (EGF)-
stimulated invasiveness through Matrigel; possibly through inhibi-
tion of ILK-mediated phosphorylation [74]. Inverse relationship
between parvin � expression and ILK signalling suggests that
parvin � suppresses oncogenic ILK signalling. Parvin � is reported
to be more restricted in tissue expression, but possibly interacts
with ILK. Parvin � forms complexes with cytoskeletal proteins,
such as �PIX, �-actinin and paxillin. Interestingly, the ILK-parvin
� complex is critically involved in the initial integrin signalling for
leucocyte migration [75].

ILK in breast cancer

A role for ILK in breast cancer is controversial. Early reports sug-
gested that ILK overexpression resulted in apoptosis in mammary
epithelial cells through Akt activation [76], and reduced the adhe-
sive properties of epithelial cells when plated on integrin ligands
[77]. Overexpressed ILK in epithelial cells also disrupted cell–cell
contacts, which resulted in anchorage-independent growth and
survival [77]. Similarly, overexpression of ILK in the mammary
epithelia resulted in mammary gland hyperplasias, which corre-
lated with elevated levels of Akt, GSK-3� and MAPK phosphory-
lation [78].

Chen et al. presented divergent data for the role of ILK in
malignant growth and invasion [79]. In their system, ILK expres-
sion was lost or down-regulated, and suppressed the growth and
invasive properties of tumour versus normal breast epithelial
cells. One discrepancy, however, was that experiments relied
heavily on mRNA expression, which is not indicative of protein
expression or kinase activity. Further reports demonstrated that
ILK contributed to the survival of breast cancer cells, but not nor-
mal mammary epithelial cells, through Akt activation. Troussard
et al. suggested an ‘oncogenic addiction’ model: a preferential
dependence of breast cancer cells on ILK for Akt activation and
cell survival; given that inhibition of ILK resulted in inhibition of
Akt Ser473 and stimulated apoptosis [80]. This report was unique
for mammary carcinomas, but other systems reported similar
models, such as glioblastomas, pancreatic adenocarcinomas and
thyroid cancer [81–83].

Regulation of ILK activity in breast cancer: 
growth factors, cytokines and tumour 
suppressors

Cancer progression induced by ILK is a result of the induction of
its downstream targets. Cross-talk between growth factor path-
ways and ILK has been identified in its regulation in breast cancer,
which appears to be crucial to the eventual progression and inva-
sion of cancer cells. In MCF-7 breast caner cells, ILK overexpres-
sion elevated cyclin D1 induction and expression, which involved
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PI3K and Akt, and resulted in CREB (cAMP response element-
binding) transactivation through binding at the CRE (cAMP
response elements) promoter on cyclin D1. Wnt-1 overexpression
also increased ILK kinase activity and cyclin D1 in vivo in mammary
tissue [84].

ILK has been shown to play a ‘survival’ role in the progression
and invasion of estrogen receptor positive (ER�) breast cancers,
compared to normal human breast epithelia [80]. A relationship
between estrogen receptors and ILK is likely, since ER� and ILK
regulate overlapping physiological processes and share common
interacting proteins (hs90 and caveolin-1). Estrogen (E2) stimulated
morphological changes in ER� ductal carcinoma cells through the
formation of pseudopodia and filopodia, as well as increased cel-
lular focal points and significant wound closure and migration,
which required estrogen-mediated activation of ILK and PI3K-
derived phosphoinositides. Hence, down-regulation of ILK, and
pharmacological inhibition of ILK and related kinases, prevented
estrogen-dependent migration and wound closure, Akt phospho-
rylation on Ser473 and phenotypic appearances of pseudopodia
and focal contacts, and reduced migration [85, 86]. Likewise, the
growth factor angiopoietin-2 (Ang-2) promoted breast tumour
metastasis through an ILK-mediated pathway, independent of its
known receptor, Tie-2. A small-interfering RNA (siRNA) against
ILK attenuated the Ang-2-stimulated phosphorylation of Akt.
Moreover, inhibition of �1 and �5 integrins and ILK abrogated cell
migration and invasion [87].

Cytokines are involved in ILK-mediated mammary metastasis.
Osteopontin (OPN), which functions as a cytokine through �v�3-
integrin and CD44, and as a cell attachment protein. Correlating
expression of OPN was demonstrated with ILK in a metastatic
mouse mammary tumour cell line, but not in a tumourigenic, non-
metastatic cell line. Expression also correlated with up-regulated
MMP-2, urokinase-type plasminogen activator (uPA) expression
and AP-1 activation. OPN and ILK activities also contributed to
mouse mammary tumour cell adhesion [88].

Tumour suppressors have been deemed a role in the ILK-
mediated regulation of metastasis. The tumour suppressor PTEN,
a phosphodiesterase through 3� phosphatase activity on PIP3, is
established as a regulator of ILK [89]. ILK was constitutively acti-
vated in prostate cancer cells lacking PTEN expression [47].
Similarly, lung cancer cells expressing the tumour suppressor
and cytokine MDA-7 exhibited increased expression of PTEN, but
suppressed the functioning of proto-oncogenes, such as ILK
[90]. However, strong relationships between PTEN/ILK and MDA-
7/ILK have not been fully established in breast cancer. A relation-
ship between a tumour suppressor and ILK has been recognized
with DOC-2/hDab-2 (differentially expressed in ovarian carcino-
ma-2/human disabled-2), a gene whose expression correlates
with the presence of a basement membrane in ovarian and breast
tumours. In breast cancer cells, overexpression of DOC-2/hDab-2
resulted in a significant down-regulation of ILK activity, which
closely correlated with the induction of anoikis [91]. Given the
importance of the loss of tumour suppressor function in breast
cancers [91], elucidation of these relationships with ILK would be
of great interest.

ILK: tumour suppressor?

The genetic alterations that initiate breast cancer, especially spo-
radic cases, are vast and rarely identical. While genetic mutations
are hallmark in familial breast cancers, loss of heterozygocity
(LOH), somatic mutations and decreased protein expression (for
an infinite number of reasons) are frequently observed in sporadic
breast cancers-leading to a loss of control of cellular proliferation,
differentiation, apoptosis and genetic integrity [92, 93]. In contrast
to the work that identifies ILK in enhancing metastasis, studies
have surfaced that implies a role for ILK in tumour suppression.

Breast cancer metastasis has been linked to LOH on chromo-
somes, such as 3p21, 15q14, 16p22, 11p15. Hannigan et al.
mapped ILK to the human chromosome 11p15.5-15.4; a chromo-
some frequently subjected to LOH in breast, and other childhood
and adult cancers [94–100]. Karnik et al. identified two distinct
regions on chromosome 11p15.5 that are subject to LOH during
breast tumour progression and metastasis [94], corroborating 
earlier reports.

Chen et al. described that ILK may not be essential to the pro-
gression of breast cancer metastasis, but contributes to the sup-
pression of breast carcinoma cell growth and invasion [101]. In
breast cancer cell lines previously identified to contain LOH at
11p15.5, there was a complete loss or significant down-regulation
of ILK, whereas the expression was inverse in normal and non-
malignant breast epithelial cells. When an ILK cDNA was re-intro-
duced into MDA-MB-435 breast cancer cells, cells grew at a low
saturation density in vivo, compared to untransfected cells.
Additionally, ILK-mediated growth suppression through cell cycle
arrest at G1 [101]. From these data, one may suggest ILK a new
function as a tumour suppressor, which strongly conflicts with
previous reports. What’s more, ILK overexpression induced cellu-
lar senescence, characterized by larger cell shapes, lower prolifer-
ation capacity and loss of �-galactosidase activity in rat primary
cardiac fibroblasts [102]. This data is an interesting contrast to the
well-published role for ILK, and definitely adds to the body of
breast carcinoma knowledge especially to sporadic cases where
genetic mutations are rare and erratic gene inactivity is prevalent.

VEGF- and HER2-associated 
cross-talks with ILK

VEGF and HER2 are two key mediators critical to the pathogene-
sis of breast cancer, and demonstrate relationships with ILK
kinase activity in other cell lines [103]. Vascular endothelial
growth factor (VEGF) is involved in vasculogenesis, angiogenesis
and cell survival. In breast cancer cells, it was observed that trans-
fection with antisense VEGF cDNA, or with siRNA-VEGF, increased
apoptosis as compared to control cells. VEGF receptor-1
(VEGFR1) expression was abundant, and a specifically targeted
siVEGFR1 significantly decreased the survival of breast cancer
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cells through down-regulation of Akt phosphorylation [104]. Tan
et al. observed, in various cell lines, that overexpression of ILK
resulted in the expression of VEGF in a HIF1� and Akt-dependent
manner. The effects were reversed by pharmacological inhibitors
or siRNA against ILK, which resulted in decreased VEGF expres-
sion. Importantly, ILK was required for the stimulation of VEGF-
mediated endothelial cell migration, which was retracted when
ILK-siRNA was introduced; thus confirming a role for ILK in angio-
genesis [105].

Correspondingly, HER2 also demonstrated a potential rela-
tionship with ILK. A member of the epidermal growth factor
receptor family (ErbB), ErbB-2/HER2 is infamous for its role in
the pathogenesis of breast cancer, and as a target of treatment. In
mouse embryonic fibroblasts overexpressing HER2, ILK was
required for HER2/neu-induced survival signalling, which 
conferred resistance to TNF� and anoikis. ILK kinase activity was
significantly up-regulated and required PI3K. Conversely, the
activity was absent in the presence of PI3K inhibitor, wortmannin.
Moreover, kinase-deficient clones of ILK were more resistant to
TNF�-induced apoptosis and anoikis in mouse fibroblast cells
overexpressing HER2 [106, 107]. Further, HER2-overexpressing
breast cancer cells treated with the ILK antagonist, QLT-0267,
inhibited the phosphorylation of Akt Ser473 [80]. Considering that
VEGF and HER2 are imperative to breast cancer angiogenesis,
metastasis, progression and survival, it would be interesting to
explore these growth factor relationships with ILK in human
breast cancer cells.

Conclusions

Molecular mechanisms of ILK in other tumours

Consistent with reports in breast cancer, increased ILK expression
is noted in other malignant tumours [108–110]. In gastric carci-
nomas, increased expression of ILK was detected in over 60% of
samples studied; as compared to non-neplastic gastric carcino-
mas did not overexpress the kinase [108]. Similar results were
observed in laryngeal squamous carcinomas [112]. Likewise,
tumour samples from non-small cell lung cancer (NSCLC) cells
detected ILK at 31% versus no detection in non-cancerous pul-
monary tissue samples, and minimal detection in healthy cells
[112]. These studies, and others of prostate, colon and ovarian
carcinomas, have significantly correlated ILK expression with
depth of invasion, nodal metastasis and amount of stromal tissue
[114–118]. Overall prognosis of patients with strong ILK expres-
sion was reported to be significantly poorer than that of patients
with weak or no expression of ILK [112, 113]. Furthermore, strong
expression of ILK was associated with an increased recurrence,
which suggests that patients with strong ILK expression may 
be prone to metastasis, or may already have occult systemic dis-
ease [113]. The observation that there was no difference in the

expression of ILK between primary and metastatic colorectal
tumours may suggest that the ILK overexpression has an early
role in disease development, but does not contribute to the acqui-
sition of more aggressive, highly invasive metastatic tumour 
phenotype [114, 115].

Dysregulated signalling axes have been shown to increase ILK
expression and activity [116] in a variety of cell lines, such as: (i )
endothelin-1 [117] and vitronectin [118] in metastatic ovarian 
carcinomas; (ii ) TGF�1 in metastatic melanomas [119] and 
(iii ) thymosin �4 in metastatic colorectal carcinomas [120].
Corroborating with the notion that ILK may serve as a point of
inhibition in metastatic cell diffusion, treating glioma cells with the
ILK specific inhibitor QLT-0254 in vitro, suppressed phosphoryla-
tion of ILK typical targets (Akt, GSK-3� and mTOR), excluding
interference with total protein levels [83]. Notably reduced by 
QLT-0254 was MMP-2 secretion, VEGF and HIF1�, as well as the
invasive capability of glioma cells. Correspondingly in NSCLC
cells, the ILK inhibitor KP-392 along with cisplatin impacted the
incidence of metastasis to the kidney, bone and contralateral lung
[121]. Therefore, based on these collective data, it would be
imprudent not to consider ILK as a therapeutic target for breast
malignancies and other cancers [83, 122], although, the involve-
ment of ILK in tumour suppression and senescence contributes to
the complexity of its function.

The involvement of ILK in angiogenesis, anoikis, anchorage-
independent cell cycle progression, migration, invasion and
tumourigenesis implicates ILK as extremely influential in malig-
nant progression, and as a putative medicinal target. ILK exerts
regulation through an ill-described phosphorylation of Akt Ser473

and GSK-3 [56]. Transfection of dominant-negative ILK 
constructs or siRNA-ILK molecules have been shown to modulate
ILK expression, as well as the phosphorylation of Akt Ser473, 
ultimately affecting transformation. An ILK kinase deficiency was
shown to suppress the constitutive phosphorylation of Akt in
PTEN-mutant cells [41]. Furthermore, ILK kinase inhibition
induced anoikis in an anoikis-resistant breast cancer cell line
[107], inhibited nuclear �-catenin localization and cyclin D1
expression [108], and reduced the invasive properties of ILK-
overexpressing and malignant cells, and in vitro cell growth
[109]. Small molecule antagonist of ILK activity (QLT-0267 and
QLT-0254) have been identified as having therapeutic potential in
breast cancer [81, 83].
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