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ABSTRACT
Abdominal aortic aneurysm (AAA) is one of the most common diseases worldwide.
3D segmentation of AAA provides useful information for surgical decisions and
follow-up treatment. However, existing segmentation methods are time consuming
and not practical in routine use. In this article, the segmentation task will be
addressed automatically using a deep learning based approach which has been
proved to successfully solve several medical imaging problems with excellent
performances. This article therefore proposes a new solution of AAA segmentation
using deep learning in a type of 3D convolutional neural network (CNN) architecture
that also incorporates coordinate information. The tested CNNs are UNet, AG-DSV-
UNet, VNet, ResNetMed and DenseVoxNet. The 3D-CNNs are trained with a
dataset of high resolution (256 × 256) non-contrast and post-contrast CT images
containing 64 slices from each of 200 patients. The dataset consists of contiguous CT
slices without augmentation and no post-processing step. The experiments show that
incorporation of coordinate information improves the segmentation results. The
best accuracies on non-contrast and contrast-enhanced images have average dice
scores of 97.13% and 96.74%, respectively. Transfer learning from a pre-trained
network of a pre-operative dataset to post-operative endovascular aneurysm repair
(EVAR) was also performed. The segmentation accuracy of post-operative EVAR
using transfer learning on non-contrast and contrast-enhanced CT datasets achieved
the best dice scores of 94.90% and 95.66%, respectively.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence, Computer Vision
Keywords Abdominal aortic aneurysm, Computed tomography, 3D segmentation, Deep learning,
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INTRODUCTION
Abdominal aortic aneurysm (AAA) is a common disease of the aorta, characterized by
abnormal dilatation. In Western countries, the disease is common in males older than 65
with prevalence of about 4–7% (Gianfagna et al., 2016). Risk of rupture and associated risk
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of mortality increases with dilation size. In the United States, more than 10,000 people die
from rupture each year (Upchurch & Schaub, 2006; Lilienfeld et al., 1987). In addition, for
predicting the rupture risk, 3D geometry of AAA could provide useful information, which
could also be used for a pre-operative evaluation of endovascular stenting approach.
Therefore, it is necessary to obtain the 3D segmentation of the outer wall of AAA, in order
to generate its 3D geometry. The outer wall of AAA is the structure that is the outer surface
surrounding AAA. Segmenting the outer wall of AAA could be considered as a difficult
segmentation task, since its pixels’ intensity values are very similar to surrounding organs
in CT images.

Several previous approaches based on prior medical knowledge have been proposed for
AAA segmentation, such as intensity-based and contour-based methods (Lareyre et al.,
2019; Siriapisith, Kusakunniran & Haddawy, 2019; Shum et al., 2010; Shang et al., 2015;
Kurugol et al., 2015; Freiman et al., 2010; Wang et al., 2017). Convolutional neural
networks (CNN) have recently been used for analyzing medical images in CT, MRI and
ultrasound (Cheng et al., 2016; Jackson et al., 2018; Litjens et al., 2017; Shen, Wu & Suk,
2017; Ronneberger, Fischer & Brox, 2015). However, there are yet only a few studies
applying CNNs to AAA segmentation on computed tomographic angiography (CTA)
(Zheng et al., 2018; Lu et al., 2019; López-Linares et al., 2019; Salvi, Finol & Menon, 2021;
Dziubich et al., 2020). The previous studies addressed only segmentation for post-operative
endovascular aneurysm repair (EVAR) of AAA (Freiman et al., 2010) with limited
amounts of training data (Krizhevsky, Sutskever & Hinton, 2012; Long & Shelhamer, 2015).

The method proposed in this article incorporates coordinate or location information as
well as spatial information into a 3D CNN-based approach to AAA segmentation on non-
contrast and contrast-enhanced datasets. Recent work on use of CNNs for medical image
segmentation has explored various network architectures to improve performance (Shen,
Wu & Suk, 2017; Kim et al., 2019). With this line of work seeming to have reached a
plateau, a promising approach to achieve further improvement is to incorporate additional
data, such as coordinate information (Liu et al., 2018; Ren & Hao, 2020). Segmentation of
AAA is a good candidate for this approach since the AAA is a tubular structure almost
always oriented from head to toe. To examine the generality of using coordinate
information, we use several kinds of CNN networks in the experiments including standard
UNet (Ronneberger, Fischer & Brox, 2015), AG-DSV-UNet (Turečková et al., 2020), VNet
(Milletari & Navab, 2016), ResNetMed (Chen, Ma & Zheng, 1904) and DenseVoxNet
(Yu et al., 2017). The raw datasets are non-contrast and post-contrast enhanced CT
datasets, which are different in low and high contrast resolution of AAA. We also directly
compare the accuracy of segmentation with ground-truth and with an advanced graph-cut
based segmentation technique. Furthermore, we experiment with transfer learning of
segmentation from a pre-operative model to post-operative EVAR. EVAR is a procedure
of stent-graft implantation inside AAA under endovascular intervention in order to
decrease the size of the aortic lumen. Measurement of AAA volume after EVAR is one of
the considerations of imaging surveillance for patient follow up (Geraedts et al., 2020).
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If AAA size continues to increase after EVAR, it indicates a complication called endoleak.
Directly training a model to segment EVAR images would require a dataset for that
problem, which would be highly labor intensive to produce. Thus, it is useful to explore
whether transfer learning can be used to reduce the amount of effort required. The
problem is challenging since the appearance of AAA after EVAR is changed, with the inner
lumen replaced by a metal stent-graft (much smaller in size) and the presence of a further
metal artifact in the image (Fig. 1).

One of the key contributions of this article is to evaluate the performance gains
from incorporation of coordinate/location based information into the CNN-based
approach to AAA segmentation in different low and high contrast resolution datasets of
non-contrast and contrast-enhanced CT images. The proposed method archives
outstanding performance when compared with existing methods in the literature. The
second main contribution is to adopt the transfer learning-based approach using a pre-
trained model of pre-operative AAA to post-operative EVAR, with only a small amount of
data for the re-training. This approach has benefits in clinical applications for both pre-
operative and post-operative AAA segmentation.

Figure 1 Anatomy of AAA. The anatomy of abdominal aortic aneurysm in abdominal CT images. The
upper row is untreated AAA (arrow) (A) before (non-contrast) and (B) after contrast (post-contrast)
administration. The lower row is post-operative endovascular aneurysm repair of AAA (arrow) (A)
before and (B) after contrast administration. The non-contrast images are lower in contrast resolution as
compared with post-contrast images. Full-size DOI: 10.7717/peerj-cs.1033/fig-1
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RELATED WORK
Coordinate or positional encoding recently became a hot topic in computer science that
was first implemented in the language processing domain (Vaswani et al., 2017; Gehring
et al., 2017). In language processing, position encoding is used to assign the order of words
in a sentence in a sequence in order to represent the position of the word. The positional
encoding was implemented by a linear function (Gehring et al., 2017) and sinusoidal
function (Vaswani et al., 2017). In the image processing domain, the coordinate
information encoding was also proposed in recent literature (Liu et al., 2018; Ren & Hao,
2020) by adding extra channels in input images. Liu et al. (2018) proposed incorporating
coordinate information in two extra channels for the x, y axes of 2D images using a
continuous sequence of integers starting with zero in row and column. They demonstrated
an improvement of CNNs in image classification, objection detection and generative
models. Ren & Hao (2020) proposed a similar coordinate information embedding in the
extra channels of images as the input of a downstream CNN. They demonstrated an
improvement of object detection in traffic sign images.

Ronneberger, Fischer & Brox (2015) proposed a fully convolutional network and
training strategy for biomedical images. They modified and extended a previous
architecture (Long & Shelhamer, 2015) such that is could work with very few training
images and archived better segmentation results. The upsampling module of this network
architecture consists of many channels to extract features which would be propagated to
their upper layers. The architecture is U-shaped because the expansive path is symmetric
to the contracting path, and is thus called U-Net. U-Net applies elastic deformations for
data augmentation on training images. This allows the network to compensate for the
reduced amount of data, so that it can be applied to tasks with relatively little available
training data. Jackson et al. (2018) proposed a CNN for segmentation of kidneys in non-
contrast CT images using a 3D U-Net architecture. Non-contrast CT images contain less
contrast difference and are thus more difficult to distinguish from adjacent structures as
compared with post-contrast CT images. They reported mean dice scores of 91% and 86%
for right and left kidney segmentation, respectively.

López-Linares et al. (2018) proposed a fully automatic approach to AAA segmentation
in post-operative CTA images, based on deep convolutional neural networks (DCNN).
The proposed method has two steps. In the first step, the DCNN (Long & Shelhamer, 2015)
provides 2D region-of-interest candidates for the thrombus. The second step is fine
thrombus segmentation with a holistically-nested edge detection (HED) network (Xie &
Tu, 2015). The DCNN is used to detect the thrombus region in the region of interest
followed by HED for subsequent fine thrombus segmentation. The HED reduces the need
for large deconvolution filters and increases the output resolution. The networks are
trained, validated, and tested on 13 post-operative AAA images, archiving 82% dice score.
Lu et al. (2019) recently proposed CNN segmentation of pre-operative AAA. The proposed
method modified the 3D U-Net combined with ellipse filling for detection and
segmentation of AAA. The model was trained on 321 CT examinations (non-contrast 168,
post contrast 153) with testing on 57 examinations (non-contrast 28, post-contrast 29).
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The AAA was present in 77% of the training dataset, yielding samples for non-contrast and
post-contrast of about 129 and 117 examinations, respectively. The test was evaluated in
terms of the maximum diameter of the aorta with an average dice score of 91.0%. Dziubich
et al. (2020) proposed CNN-based AAA segmentation with an ensemble of 2D U-Net,
ResNet and VBNet. The ensemble predictions from these frameworks were reported to
have a dice score of 94.0%. In addition, Siriapisith, Kusakunniran & Haddawy (2019)
proposed an advanced graph-cut segmentation method on post-contrast CT images of
AAA. The on integration of intensity-based and contour-based properties was deployed in
the graph-cut with probability density function (GCPDF) and graph-cut based active
contour (GCBAC). The performance, reported based on 20 CT examinations, yielded an
average dice score of 91.88%.

In this study, we explore the incorporation of pixel-level coordinate/location
information into a variety of network architectures, including UNet, VNet, ResNet and
DenseNet. The AG-DSV-UNet (Turečková et al., 2020) is the recent advanced integration
of attention gate (AG) and deep supervision (DSV) modes into the standard UNet.
The AG module generates an attention-awareness mechanism (Wang et al., 2017) in the
images that improves the performance in difficult structures. The DSV module solves the
problem of vanishing gradients in the deeper layers of the CNN (Turečková et al.,
2020). The VNet (Milletari & Navab, 2016) is an extension of UNet by replacing the
max-pooling and upsampling with convolutions. The VNet increases the number of
hyperparameters of a trained CNN as compared with standard UNet. ResNetMed (Chen,
Ma & Zheng, 1904) is a 3D modification and a representative of 2D ResNet to allow the
network to train with 3D medical data (He et al., 2016). ResNet improves the performance
of deep convolutional neural networks by increasing the number of network layers and
slowly degrading the features at deeper layers (He et al., 2016). ResNet is a popular network
that has been proven effective with image medical data (Tian et al., 2022; Park et al., 2022;
Wang et al., 2022). It is widely used in classification and detection in various medical
images such as thoracic, ophthalmology and abdominal studies (Wang et al., 2022).
DenseVoxNet (Yu et al., 2017) is 3D modification and a representative of DenseNet, which
preserves the concept of dense connectivity. The DenseVoxNet has direct connections
from a layer to all its subsequent layers and makes the network much easier to train.

MATERIALS AND METHODS
Network architecture
To examine the generality of the value of incorporating coordinate information in the
segmentation process, we experiment with five CNN network architectures: standard
UNet, AG-DSV-UNet, VNet, ResNetMed and DenseVoxNet. We describe each network
architecture in turn. The 3D UNet (Ronneberger, Fischer & Brox, 2015) network
architecture consists of contracting and expansive paths. The contracting path follows the
classical convolutional network architecture. It consists of the repeated operation of 3 × 3 ×
3 kernel size of two convolution layers, each of them followed by a rectified linear unit
(ReLU) and then 2 × 2 × 2 kernel size of a max pooling operation. The detailed architecture
of UNET was previous described in Ronneberger, Fischer & Brox (2015). In the
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downsampling step, the number of filtering kernels is double of the one in the previous
layer. Whereas, in the corresponding upsampling step, the number of filtering kernels is
halved back to the number before the downsampling step. The features from the
contraction path are concatenated with the features from the corresponding upsampling
step, in all pairs of downsampling-upsampling steps. Specifically, in the final layer, each 64-
dimension feature vector must be projected to have the same dimension as the number of
classes, using a convolution layer with 1 × 1 × 1 kernel size In total the network has 23
convolutional layers. Two classes (aorta and background) were applied at the output layers
with threshold 0.5 to generate the binary classification of the aorta.

The 3D AG-DSV-UNet (Turečková et al., 2020; Kearney et al., 2019) is based on the
standard UNet with the addition of AG and DSVmodules. The AGmodule is added in the
connection between pair of corresponding encoding and decoding modules. The features
from the encoding path is combined with the input features, in which both of them
are processed through a convolutional layer with 1 × 1 × 1 × kernel and a batch
normalization, in order to compute the attention map. DSV (Turečková et al., 2020;
Kearney et al., 2019; Turečková et al., 2019) is the module added at the final step of the
network by combining multiple segmentation maps from different resolution levels with
element-wise sum. The detail of architecture was previously described in Turečková et al.
(2020). It was based on the combination of two maps before upsampling to the next
level-up. The second segmentation map was constructed by applying a 1 × 1 × 1
convolution on each level of decoding paths.

The 3D VNet (Milletari & Navab, 2016) consists of encoder and decoder paths. The
encoder path of the VNet is divided into many levels that operate at different resolutions.
Each level comprises one to three convolutional layers with a 5 × 5 × 5 kernel. The data
resolution is reduced with the convolution. The second operation extracts features by non-
overlapping 2 × 2 × 2 volume patch, which reduces the size of the output feature map by
half. The max-pooling operation in UNet is replaced with convolution in VNet. The
decoder path of VNet expands the lower resolution maps in order to assemble the output
volumetric segmentation. Each level of decoder path consists of deconvolution operation
to increase the size of the inputs followed by one to three convolutional layers with 5 × 5 ×
5 kernel.

The ResNetMed (Chen, Ma & Zheng, 1904) is composed of 34 plain convolution layers
of encoders and decoders. The first two sets of encoder layers are composed of (1) a
convolution layer with a 3 × 3 × 3 kernel size and 256 channels, and (2) a convolutional
layer with a 3 × 3 × 3 kernel and 128 channels. Each convolution layer has a 3 × 3 × 3
kernel with the same output of the feature map. The remaining two groups of decoder
layers are similar to the first two groups except doubling the number of channels per layer
progressively. The final convolution layer is a Conv with a 1 × 1 × 1 kernel size to generate
the final output.

The DenseVoxNet (Yu et al., 2017) has down-sampling and up-sampling components.
The down-sampling component is divided into two densely-connected blocks called
DenseBlocks and each DenseBlock is composed of 12 transformation layers with dense
connections. Each transformation layer is sequentially composed of batch normalization
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(BN), ReLU and 3 × 3 × 3 Conv. The up-sampling component is composed of BN, ReLU,
1 × 1 × 1 Conv and two 2 × 2 × 2 deconvolution (Deconv) layers. The final layer is 1 × 1 × 1
Conv to generate the final label map.

Coordinate information
The coordinate matrices (CoMat) were constructed using three matrices

X 2 RHxWxDx1, Y 2 RHxWxDx1; Z 2 RHxWxDx1 to embed the x, y, and x coordinate
information of the input dataset I 2 RHxWxD, where H is the height, W is the width and D is
depth of the input data. The initial value of CoMat is a sequence integer indices in each axis
plane of the image in the ranges Xi;j;k 2 0;H½ �;Yi;j;k 2 0;W½ �;Zi;j;k 2 0;D½ �, as shown in
Figs. 2 and 3. No additional object prediction is required to generate this coordinate
information. The experiments create three types of coordinate information, CoMat1,
CoMat2 and CoMat3. The CoMat1 is composed of x, y, z coordinates separately in three
channel matrices. Because the aorta is tubular in shape along the z-axis, CoMat2 contains
only the z coordinate information in one channel. The CoMat3 is a summation of x, y, z
coordinate information into one channel using Eq. (1). The CoMat information is
embedded into the original image data as the additional input channels of downstream
CNN training. The original image data for medical images is one channel, so the input data
for CNN will be two or four. It can be simply applied and does not change the core training
network.

I0 ¼ X þ Y þ Zð Þ=3 (1)

Dataset and experiment
The experiments in this article were conducted under the approval of the institutional
review board of Siriraj Hospital, Mahidol University (certificate of approval number: Si
818/2019). The raw datasets of this experiment were collected from 220 patients with AAA
on whom performing both before and after contrast administration of CTA acquisition.
The exclusion criteria included any surgery and other diseases of abdominal aorta such as

Figure 2 The coordination data. The value initialization in x, y and z dimensions of coordinate
information created in three axes. Full-size DOI: 10.7717/peerj-cs.1033/fig-2
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bleeding, infection, and dissection. All CTA study was acquired with the 256-slice multi-
detector row CT scanner (Revolution CT; GE Medical Systems, Milwaukee, WI, USA)
using a nonionic monomer iodinated compound. The initial source of CT images was in
axial slices with 1.25 mm slice thickness covering the entire abdominal aorta. The 64
DICOM images of each CTA were selected at the region of aortic aneurysm and the data
was incorporated into a single volume file. To preserve the original pixel intensity, the
dataset was kept in 12 bits grayscale. The volume metric of each dataset was 512 × 512 × 64
pixels. No additional feature map or augmentation was performed in this study.

The pytorch (v1.8.0) deep learning library in Python (v3.6.9) was used in the
implementation. The CNN input volume was a matrix with 256 × 256 × 64 voxel
dimensions. The pre-processing step was only voxel rescaling from 512 × 512 pixels to 256
× 256 pixels in the x-y plane. Each voxel contained the raw 12 bits grayscale as input data.
The number of CT slices was limited to 64 due to the limitation of GPU memory. The
coordinate information array of the volume dataset in xyz-direction was concatenated to
the dataset and then fed into the training process (Figs. 2, 3). The experiments used three
types of coordinate information, CoMat1, CoMat2 and CoMat3, which have three, one and
one channels, respectively. Figure 4 demonstrates the overview flow of the data training
process. Our experiments were operated on a single GPU (Nvidia DGX-A100) with
CUDA-enabled containing 40 GB RAM. The networks were learned with specific
optimizer (i.e. RMSprop) and error loss (i.e. mean squared). The training parameters were
set with learning rate of le-3, weight decay of le-8, and momentum of 0.9. The random seed
was initially set to be zero. The dataset was split into training and validating sets with a
respect ratio of 9:1. The training process was allowed to perform till a maximum of 300

Figure 3 Three types of coordinate information. An illustration of coordinate information data
creation. The CoMat1 concatenates x, y, and z-coordinate matrices into three channels of data. The
CoMat2 contains only the z-coordinate matrix (one channel). The CoMat3 is an average of x, y, and z-
coordinate matrices into one channel data. Full-size DOI: 10.7717/peerj-cs.1033/fig-3
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epochs. The processing time required was 150–210 s for each epoch resulting in a total of
12.5–17.5 h for a one-time training process.

The non-contrast (NCCT) and contrast-enhanced (CECT) CT datasets were acquired
from each patient in the same study. The network training was performed in two separate
groups of experiments: NCCT and CECT datasets (Fig. 3). We call the trained models
A1 and A2, respectively. The datasets for training with validation had 200 cases each. Each
experiment randomly split the dataset into 90% for training and 10% for validation. The
total number of images for training and validation was 12,800 for each experiment. The
NCCT test dataset consisted of 1,280 images from 20 cases. The CECT test dataset also
contained 1,280 images from 20 cases.

Transfer learning
The segmentation of post-operative EVAR was done with a network trained using transfer
learning. The pre-training 3D CNN models (A1, A2) were trained on large pre-operative

Figure 4 Method framework. Framework of full training of pre-operative abdominal aortic aneurysm
(AAA): The pre-processing step is to select 64 slices of contiguous CT images at infrarenal segments of
abdominal aorta, which are then converted into a single 3D volume dataset. networks are trained using
3D CNN and set up in two separate experiments. The coordinate information is embedded into input
data as the additional channels. The pre-contrast and contrast-enhanced CT datasets are used to
train each network to create two models A1 and A2, respectively.

Full-size DOI: 10.7717/peerj-cs.1033/fig-4
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AAA datasets. The transfer learning fine-tuned the shallow layers (contracting path) of
the 3D CNN (Amiri, Brooks & Rivaz, 2020) which represents low-level features. The
training dataset was small, containing only 20 cases of NCCT and CECT datasets. These
training datasets were not the same cases as the pre-trained AAA models. All of the data
was used for training without validation (Fig. 4). The hyper-parameters were manually
set to be the same values as used in the pre-trained model. The models are named E1 and
E2, corresponding to the NCCT and CECT datasets, respectively. To evaluate the
performance of the transfer learning, 20 cases with post-operative EVAR were also used for
test datasets.

Performance evaluation
To validate the performance of our proposed CNN segmentation method, it is compared
with the performance of the advanced graph-cut-based method that combines GCPDF
with GCBAC (Siriapisith, Kusakunniran & Haddawy, 2019). The experiment was
performed on only contrast-enhanced AAA without stent graft implantation in 20
datasets. The ground-truth of AAA segmentation in all axial slices was prepared by a
cardiovascular radiologist with 18 years of experience using the 3D slicer software version
4.10.0 (Fedorov et al., 2012). The quantitative assessment was evaluated by pixel wise
comparison with the ground-truth using the dice similarity coefficient (DSC), Jaccard
similarity coefficient (JSC) and Hausdorff distance (HD) as shown in Eqs. (2)–(4), where
the insight toolkit library of 3D slicer software (Fedorov et al., 2012) was used to calculate
an average HD value. The significant differences in the comparison coefficient among the
several groups of experiments (comparison between CNN alone and CNN+CoMat) were
assessed using a paired Student’s t-test. A statistically significant difference could be
identified when P values <0.05. The consistency of the ground-truth was accessed by pixel
wise inter-rater correlation of DSC using two cardiovascular radiologists with 18 and 14
years of experience. The process of inter-rater correlation was performed by randomly
selecting 40 CT images from the NCCT dataset (two slices for each case).

% Dice similarity coefficient ¼ 2 RA \ RRj j
RA þj jRRj jð Þ � 100 (2)

% Jaccard similarity coefficient ¼ RA \ RRj j
RA [ RRj j � 100 (3)

Hausdorff distance ¼ maxx2RA miny2RR x; yj jj jf g� �
(4)

where RA is the region of the segmentation result, and RR is the region of ground truth by
manual segmentation.

RESULTS
Table 1 demonstrates the patient demographics. The training dataset contains case with an
average age of 73.69 years, maximum aortic diameter of 57.9 mm, and average volume of
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155.7 ml. The testing data has a similar distribution, with average age 72.52 years,
maximum aortic diameter 62.5 mm, and average volume 161.60 ml.

Most recent studies have used manual drawing to create the ground-truth for evaluating
the AAA segmentation result. However, in this study, the ground-truth was created by
manual drawing of the CT images slice by slice by one experienced cardiovascular
radiologist. The quality of the ground-truth segmentations was validated by inter-observer
correlation which was found to be 97.68 ± 0.82%. This could indicate excellent inter-
observer agreement.

The experiments on the proposed 3D CNN-based methods of AAA segmentation
demonstrate excellent results in most networks (i.e. UNet, AG-DSV UNet, VNet and
ResNetMed). The training accuracy of all networks is demonstrated in graph (Fig. 5).
Performances on the CECT dataset tend to be better than on the NCCT datasets. The
best accuracy on NCCT and CECT datasets are AG-DSV-UNet+CoMat3 and standard
UNet+CoMat1 with DSC values of 96.56 ± 2.18 and 96.69 ± 1.11, respectively. The
coordinate information improved the segmentation results in all networks, particularly,
CoMat1 and CoMat3. CoMat3 shows improvement of segmentation in most training
networks on NCCT and CECT datasets, except UNet on CECT datasets and DenseVoxNet
on both NCCT and CECT datasets, for which CoMat1 is best. The DenseVoxNet without
coordinate information shows the worst accuracy on both NCCT and CECT datasets with
DSC values of 35.85 ± 12.16 and 24.67 ± 12.75, respectively. However, the accuracy is
significantly improved when coordinate information with CoMat1, CoMat2 and CoMat3
is added. The best improvements of DenseVoxNet occur with CoMat1 on both NCCT and
CECT datasets with DSC values of 89.30 ± 5.70 and 87.48 ± 10.50, respectively.

For the transfer learning approach to the post-operative EVAR, the coordinate
information also improves the segmentation results on both NCCT and CECT datasets.
The CECT dataset also tends to get better accuracy than the NCCT dataset. The best
accuracy on NCCT and CECT datasets is achieved by UNet+CoMat2 and UNet+CoMat3
with DSC values of 94.90 ± 4.23 and 95.66 ± 2.70, respectively. The CoMat2 is the best
coordinate information to improve the segmentation accuracy in all training networks of
the NCCT dataset. In the NCCT dataset, the coordinate information can provide an
improvement in all re-training networks except UNet+CoMat1. In the CECT dataset,
coordinate information can make an improvement on only UNet, AG-DSV-UNet and
DenseVoxNet. The DenseVoxNet shows also the best performance gain for all types of
added coordinate information on both NCCT and CECT datasets (p = 0.00).

Table 1 Patient characteristics of the CNN training and testing dataset.

Training dataset Testing dataset

No of patients 200 20

Average age (years) 73.69 (51–93) 72.52 (42–88)

Maximum aortic diameter (mm) 57.9 (32.1–107) 62.5 (50.9–85.9)

Average volume (ml) 155.7 (39.2–549.0) 161.60 (85.8–360.5)
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Figure 5 Training curve. Model training accuracy of UNet, AG-DSV-UNet, VNet, ResNetMed, Den-
seVoxNet on non-contrast, contrast-enhanced datatsets of pre-operative abdominal aortic aneurysm
datasets. The left column is the non-contrast and right column is the post-contrast CT dataset. The label
color of non-coordinate, CoMat1, CoMat2, and CoMat3 are blue, light blue, green and orange,
respectively. Full-size DOI: 10.7717/peerj-cs.1033/fig-5
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DISCUSSION
CNNs have been applied to a number of medical image segmentation problems. Jackson
et al. (2018) implemented a CNN for kidney segmentation in NCCT images. The NCCT is
more difficult than CECT datasets because it has less contrast information in raw images.
However, they reported good segmentation results with dice scores of 91% and 86% for
right and left kidneys, respectively. The development of CNNs has tended to explore
networks of increasing complexity, which in turn requires more data to train.
Incorporation of coordinate information is an alternative approach that improves
performance by providing more information for training. Recently, the incorporation of
coordinate information has been proposed to improve object detection in 2D images
(Liu et al., 2018; Ren & Hao, 2020). Incorporation of coordinate information has the
advantage of being able to work with existing CNN models without modification to their
architecture.

The coordinate information can provide more information to CNN training by adding
more channels into the dataset. The coordinate or positional encoding is an interesting
topic in the language processing domain that deals with order of words in the sentence.
The positional encoding can be implemented by a fixed position (linear function) (Gehring
et al., 2017) and relative position (sinusoidal function) (Vaswani et al., 2017). The
sinusoidal function is used to deal with the problems of variable length sequences that map
positions into a vector. The variable length of input data always occurs in language
processing but not in image processing with fixed image size. However, the performance of
these two approaches has nearly similar results (Vaswani et al., 2017). In the recent
implementations of image processing, researchers still used a linear function to generate a
simple index sequence of coordinate information (Liu et al., 2018; Ren & Hao, 2020). The
coordinate information tends to be of more benefit on the NCCT dataset than the
CECT dataset because the NCCT dataset has less contrast resolution. This additional
coordinate information provides useful information for the segmentation on the NCCT
dataset. The segmentation of AAA is a good problem to test the concept of incorporation
of coordination information because the structure is tubular in shape and orientation is
almost always along the z-axis. Because of the tubular shape of AAA and fixed size of
the volume dataset, the best option of embedded coordinate information is as fixed
coordinate information in a linear index sequence. Our proposed method achieves
excellent results on NCCT and CECT datasets of AAA segmentation with dice scores of
96.75% and 96.69%, respectively. (Table 2, Fig. 6). The result on non-contrast AAA is
slightly better than post-contrast but not statistically significant (p > 0.05). The best
segmentation result on the NCCT dataset is AG-DSV-UNet+CoMat3. By integration of
coordinate information (CoMat3) into the network, the accuracy almost significantly
improved from AG-DSV-UNet alone (p = 0.06). On the other hand, on the CECT dataset,
the best segmentation result is standard UNet with a dice score of 96.62%. The coordinate
information (CoMat1) provides a little improvement on the result with a dice score of
96.69% (p = 0.38). The post-contrast AAA has an enhanced aortic lumen used to define the
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candidate region of AAA. However, in the case of no enhancement of aortic lumen in the
non-contrast images of AAA, less information is available for training of the network.

In our experiment, we demonstrate that incorporating coordinate information can
generally improve the segmentation performance in a variety of network architectures
such as UNet, VNet ResNet and DenseNet models. In the NCCT dataset, the segmentation
performance is improved by incorporating CoMat1 and CoMat3, which have more
coordinate information from all xyz-directions, whereas CoMat2 has only z-direction
coordinate information. Most of the networks are best with CoMat3 but they are not
significantly different from CoMat1. In the CECT dataset, most of the networks are also
best with CoMat3 except UNet and DenseVoxNet. The DenseVoxNet alone provides poor
performance because with only 2M parameters, it has less complexity than the other
models. It could be noticed that DenseVoxNet has fewer feature maps by reducing the
number of features in each layer. Incorporating coordinate information in this less
complex model would be a challenging area for future research. However, the coordinate
information gives maximum benefit on DenseVoxNet on all types of CoMat1 data which
can give a significant improvement of performance (p = 0.00). Furthermore, the coordinate
information can enhance the stability of the DenseVoxNet on both NCCT and CECT
datasets during the network training, as seen by less fluctuation of training accuracy on the

Table 2 Experimental results of UNet, AG-DSV-UNet, VNet, ResNetMed and DenseVoxNet with and without coordinate information on
non-contrast, post-contrast CT datasets of preoperative abdominal aortic aneurysm.

Network/
parameters

Non-contrast dataset Contrast-enhanced dataset

Coordinate DSC JSC HD (mm) DSC JSC HD (mm)

UNet – 95.62 ± 3.28 91.78 ± 5.81 0.26 96.62 ± 1.53 93.50 ± 2.83 0.07

CoMat1 96.55 ± 2.09 93.40 ± 3.74 0.17 96.69 ± 1.11 93.62 ± 2.09 0.06

CoMat2 94.62 ± 4.87 90.16 ± 7.98 0.21 96.15 ± 1.98 92.65 ± 3.59 0.08

CoMat3 96.56 ± 2.18 93.44 ± 3.93 0.12 96.25 ± 2.19 92.86 ± 3.99 0.10

AG-DSV-UNet – 96.22 ± 2.77 92.85 ± 4.79 0.19 92.56 ± 6.25 86.72 ± 10.01 0.66

CoMat1 95.66 ± 2.82 91.81 ± 5.04 0.18 92.11 ± 6.28 85.94 ± 9.82 0.20

CoMat2 96.30 ± 3.44 93.06 ± 5.85 0.33 93.93 ± 5.08 88.97 ± 8.51 0.23

CoMat3 96.75 ± 2.00 93.78 ± 3.61 0.07 95.83 ± 2.62 92.11 ± 4.70 0.16

VNet – 95.83 ± 1.73 92.04 ± 3.18 0.08 95.48 ± 3.99 91.60 ± 6.59 0.31

CoMat1 95.88 ± 2.46 92.19 ± 4.29 0.09 95.92 ± 1.63 92.20 ± 2.97 0.08

CoMat2 95.46 ± 2.80 91.44 ± 4.87 0.10 94.53 ± 2.97 89.78 ± 5.21 0.15

CoMat3 95.92 ± 2.45 92.26 ± 4.33 0.12 96.20 ± 2.22 92.76 ± 3.97 0.17

ResNetMed – 93.50 ± 5.67 88.25 ± 8.69 0.32 92.06 ± 3.84 85.52 ± 6.45 0.27

CoMat1 93.90 ± 4.30 88.79 ± 6.94 0.26 92.12 ± 3.59 85.59 ± 6.04 0.22

CoMat2 94.62 ± 4.87 90.16 ± 7.98 0.21 96.15 ± 1.98 92.65 ± 3.59 0.08

CoMat3 96.56 ± 2.18 93.44 ± 3.93 0.12 96.25 ± 2.19 92.86 ± 3.99 0.10

DenseVoxNet – 35.85 ± 12.16 22.52 ± 9.16 25.93 24.67 ± 12.75 14.68 ± 8.36 5.17

CoMat1 89.30 ± 5.70 81.12 ± 8.82 0.71 87.48 ± 10.50 79.10 ± 14.54 0.45

CoMat2 88.48 ± 6.60 79.95 ± 10.25 1.78 84.49 ± 6.52 73.69 ± 9.58 5.38

CoMat3 85.85 ± 8.08 76.06 ± 12.05 1.55 78.39 ± 9.04 65.32 ± 11.64 1.04
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epoch stream (Fig. 5). The coordinate information does not only provide the benefit on a
less complex model but also in an advanced model. The AG-DSV-UNet, which is an
example of an advanced and complex model architecture with 104 million parameters, also
gets the benefit of incorporating coordinate information on both NCCT and CECT
datasets.

The coordinate information can help to eliminate false detection in low contrast
resolution images (NCCT dataset). For example, in one case in the NCCT dataset (Fig. 7),
the standard UNet model detects two AAAs. The left AAA is the real AAA, while the right
one is a well-distended gallbladder. The distended gallbladder has a round well-defined
shape similar to AAA. After applying coordinate information in the model (UNet
+CoMat3) the false AAA is no longer detected.

A number of previous studies have explored the use of CNNs for AAA segmentation. Lu
et al. (2019) proposed a CNN for segmentation of pre-operative AAA. They modified 3D
UNet combined with ellipse filling for detection and segmentation of AAA. The dataset
was a mixture of non-contrast, contrast-enhanced, normal diameter aorta, and presence of
AAA. The training dataset was 321 CT examinations (non-contrast 168 and contrast-
enhanced 153; 247 with AAA and 74 without AAA). They used 5-fold cross-validation for
CNN training, with 64 cases in each fold. The labeled ground-truth dataset was annotated
by multiple annotators. The test was evaluated in terms of the maximum diameter of
the aorta with an average dice score of 91%. In our experiment, we used a larger amount of
training data in separate non-contrast and contrast-enhanced datasets with presence of

Figure 6 Example of AAA result. An example of CNN segmentation of abdominal aortic aneurysm.
The upper row is non-contrast CT images of source image (A) CNN segmentation (B) and ground-truth
(C). The lower row is contrast-enhanced CT images of source image (D) CNN segmentation (E) and
ground-truth (F). Full-size DOI: 10.7717/peerj-cs.1033/fig-6

Siriapisith et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1033 15/23

http://dx.doi.org/10.7717/peerj-cs.1033/fig-6
http://dx.doi.org/10.7717/peerj-cs.1033
https://peerj.com/computer-science/


AAA. Normal diameter of aorta less than 3.0 cm was excluded from our experiment.
No additional augmentation or cross validation technique was used during the CNN
training process. The cross validation technique is often used for model testing in the case
of limited sample size (Krstajic et al., 2014). Dziubich et al. (2020) proposed a CNN-based
approach to AAA segmentation using 3D UNet, ResNet and VBNet. The training set
was 8,126 images from 16 scans. The experiment gave the best result of DSC 94%. In
contrast, our model incorporating coordinate information achieves a dice score accuracy
of over 96%.

Previous studies have also explored non-deep learning approaches to AAA
segmentation. Wang et al. (2017) proposed registration-based geodesic active contour
to segmentation of the outer wall of AAA in MRI images. The experimental result showed
an average DSC of 89.79%. Of particular note is a graph-cut based method that achieves
strong results by iteratively interleaving intensity-based (GCPDF) and contour-based
(GCBAC) segmentation (Siriapisith, Kusakunniran & Haddawy, 2019). The algorithm
is designed for contrast-enhanced CT images. The accuracies of that graph-cut approach
and this proposed CNN based method have dice scores of 95.04% and 96.69%,
respectively. The result of our 3D CNN based method is slightly higher than the graph-cut
but not significantly so (p > 0.05). However, the 3D CNN based method has the limitation

Figure 7 False positive exmaple. False positive prediction of AAA. The left column is non-contrast
AAA with standard UNet prediction on axial view (A) and 3D volume rendering on coronal view
(D). There is false prediction of a second AAA on the right side of the abdomen (*) that is a well distended
gallbladder. The middle column is non-contrast AAA with UNet+CoMat3 prediction on axial view
(B) and 3D volume rendering (E) images on the same patient. The false prediction does not occur on
UNet+CoMat3. The ground-truth is demonstrated on the right column on non-contrast axial view
(C) and 3D volume rendering (F) CT images. Full-size DOI: 10.7717/peerj-cs.1033/fig-7
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of matrix size of the dataset. In this experiment, the maximum allowed size of the dataset is
64 slices in the z-axis of the training dataset. The previous implementation of graph-cut
has less limitation of dataset allowing 150–200 slices of dataset. In the CNN approach,
the size of the dataset can be doubled or tripled by adding more slices of labeled ground-
truth to use in the CNN training.

The AAA segmentation in post-operative stent graft images is challenging because of
the existing metallic artifact of the device. López-Linares et al. (2018) proposed a fully
automatic approach to AAA segmentation of post-operative CTA images based on DCNN.
The proposed method has two steps. The first step uses the DCNN network to define the
candidate region of the thrombus. The second step is fine-tuned segmentation of the
thrombus. The models were tested with 13 post-operative AAA cases. The method
achieved a dice score of 82%. The segmentation result on NCCT and CECT datasets of
post-operative EVAR achieves excellent results with the dice scores of 94.90% and 95.66%,
respectively (Table 3, Fig. 8). The best network for NCCT and CECT datasets of post-
operative EVAR is standard UNet+CoMat2 and standard UNet+CoMat3, respectively.

In our proposed approach, the post-operative EVAR has slightly worse results than pre-
operative results because of the presence of metallic stent graft and smaller size of aortic
lumen as compared with pre-operative. Our result showed that a transfer learning

Table 3 Experimental result of transfer learning of UNet, AG-DSV-UNet, VNet, ResNetMed and DenseVoxNet with and without coordinate
information on non-contrast and post-contrast CT dataset of post-operative endovascular aneurysm repair (EVAR).

Network/
parameters

Non-contrast EVAR Contrast-enhanced EVAR

Coordinate DSC JSC HD (mm) DSC JSC HD (mm)

UNet – 94.29 ± 7.69 90.02 ± 11.38 0.23 95.65 ± 3.84 91.90 ± 6.53 0.23

CoMat1 92.32 ± 12.14 87.49 ± 15.67 0.38 94.50 ± 4.69 89.92 ± 7.85 0.16

CoMat2 94.90 ± 4.23 90.59 ± 7.22 0.21 86.97 ± 14.08 79.20 ± 18.16 0.81

CoMat3 94.54 ± 8.26 90.55 ± 11.50 0.43 95.66 ± 2.70 91.81 ± 4.84 0.40

AG-DSV-UNet – 91.01 ± 13.31 85.57 ± 17.08 0.57 85.57 ± 10.54 76.14 ± 14.99 0.76

CoMat1 93.14 ± 11.59 88.74 ± 14.66 0.57 93.73 ± 9.16 89.30 ± 12.78 0.33

CoMat2 93.52 ± 10.81 89.25 ± 14.03 0.43 95.34 ± 4.49 91.41 ± 7.46 0.14

CoMat3 92.29 ± 11.11 87.21 ± 14.92 0.41 94.09 ± 7.16 89.56 ± 10.77 0.73

VNet – 85.99 ± 23.58 80.55 ± 25.03 1.34 94.85 ± 4.50 90.52 ± 7.54 0.57

CoMat1 91.38 ± 14.04 86.32 ± 17.03 0.91 94.64 ± 7.00 90.54 ± 10.62 0.77

CoMat2 94.06 ± 7.47 89.58 ± 11.28 0.33 92.90 ± 10.12 88.09 ± 14.30 1.24

CoMat3 93.23 ± 12.32 89.05 ± 15.08 1.34 92.82 ± 10.62 880.7 ± 14.85 1.82

ResNetMed – 81.80 ± 15.52 71.68 ± 19.09 2.41 88.13 ± 13.94 80.78 ± 16.30 0.98

CoMat1 82.43 ± 15.55 72.68 ± 19.53 0.85 86.80 ± 9.51 77.81 ± 13.57 0.56

CoMat2 88.29 ± 11.14 80.52 ± 14.98 0.58 87.50 ± 12.15 79.40 ± 15.23 1.69

CoMat3 83.18 ± 18.54 74.76 ± 22.55 2.21 85.81 ± 12.35 76.70 ± 14.55 1.19

DenseVoxNet – 40.63 ± 14.34 26.58 ± 12.15 27.55 27.88 ± 14.01 17.04 ± 10.44 4.67

CoMat1 87.07 ± 13.21 79.03 ± 16.66 2.04 87.95 ± 10.46 79.88 ± 14.93 1.10

CoMat2 88.91 ± 12.84 81.98 ± 16.93 2.72 72.02 ± 18.79 59.42 ± 21.65 12.68

CoMat3 89.47 ± 14.48 83.40 ± 18.84 2.39 85.53 ± 10.25 76.01 ± 14.41 2.05
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approach with a small amount of training data is sufficient to provide good segmentation
results. The benefit of transfer learning is that small amounts of data to train still provide
excellent results. In the NCCT dataset of post-operative EVAR, all of the networks are
best with CoMat2 but there is no significant difference from other types of coordinate
information. The reason is that metallic stent-graft (high pixel intensity) can enhance
contrast resolution in the center of the AAA lumen, in which CoMat2 has enough
information to enhance the performance. In the CECT dataset, the coordinate information
provides benefit only for AG-DSV-UNet and DenseVoxNet. The contrast and metallic
stent in the lumen of AAA should be strong coordinate information for training the
models. Furthermore, all types of coordinate information also significantly improved the
performance with the DenseVoxNet network (p = 0.00) on both NCCT and CECT similar
to pre-operative dataset.

The major limitation of the CNN-based approach is the matrix size of the dataset. In
this implementation, the maximum allowed size of the CT dataset due to limited GPU
memory is 64 slices in the z-axis and 256 × 256 in the transverse plane. The original 512 ×
512 matrix of the CT image was thus scaled down to 256 × 256. Future development of
GPUs with increased size of memory will enable using the original matrix size and longer
slices of the training dataset. An alternative approach to this problem is to separate the
volume into multiple patches such as 256 × 256 × 32 pixels to maintain the original
resolution of the dataset volume. However, because of the difference in patient body size

Figure 8 Example of post EVAR. An example of CNN segmentation of post-operative EVAR of AAA,
visualized on axial and 3D volume rendering. The upper row is post-contrast axial CT images of source
image (A) CNN segmentation (B) and ground-truth (C). The lower row is post-contrast coronal
reformatted CT image of source image (D) coronal reformatted CT image with 3D volume rendering of
CNN segmentation (E) and ground-truth (F). Full-size DOI: 10.7717/peerj-cs.1033/fig-8
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and variation of the aorta, the aorta may get distributed among different patches, resulting
in a decrease in accuracy of segmentation at the edges of adjacent patches. In addition, the
multiple patches also require post-processing steps.

CONCLUSIONS
This article has introduced a CNN-based approach for AAA segmentation with
incorporated coordinate information. It was shown that the proposed solution using 3D
CNN can be effectively applied for segmenting AAA in both NCCT and CECT
preoperative datasets. No data augmentation or pre-processing was required in our
proposed method. The best networks for pre-operative NCCT and CECT datasets are
AG-DSV-UNet+CoMat3 and standard UNet+CoMat1, respectively. Our model can be
effectively transferred to the post-operative EVAR dataset with high accuracy. The best
networks for post-operative NCCT and CECT datasets are standard UNet+CoMat2 and
standard UNet+CoMat3, respectively. The incorporated coordinate information
demonstrates the non-dependent improvement of performance in AAA segmentation on a
variety of CNN networks. A further extension of this research can be carried forward by
extending the segmentation algorithm to cover the entire aorta. Future research could
examine advanced encoding methods for incorporating coordinate information to
improve performance in the image processing domain. The segmentation result could be
reliable for volumetric assessment for further clinical research. We believe that this CNN
approach with incorporated coordinate information also has a potential to solve difficult
segmentation problems in the other grayscale medical images.
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