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Patients with chronic myeloid leukemia (CML) show resistance to tyrosine

kinase inhibitors (TKIs) targeting ABL1 due to the emergence of BCR::

ABL1 mutants, especially compound mutants during the treatment, which

brings great challenges to clinical practice. Combination therapy is an

effective strategy for drug resistance. GMB-475, a proteolysis targeting

chimera (PROTAC) targeting the myristoyl pocket of ABL1 in an allosteric

manner, degrades the BCR::ABL1 through the ubiquitin–proteasome

pathway. In this study, we combined GMB-475 with orthosteric TKIs

targeting ABL1 to overcome resistance. We constructed Ba/F3 cells carrying

BCR::ABL1 mutants by gene cloning technology and compared the effects of

combination therapy with those of monotherapy on the biological

characteristics and signaling pathways in CML cells. We found that the

effects of ABL1 inhibitors, including imatinib, dasatinib, ponatinib, and

ABL001, on growth inhibition and promoting apoptosis of Ba/F3 cells with

BCR::ABL1 mutants, especially compound mutants, were weakened. GMB-475

combined with TKIs, especially dasatinib, synergistically inhibited growth,

promoted apoptosis, and blocked the cell cycle of Ba/F3 cells carrying BCR::

ABL1 mutants and synergistically blocked multiple molecules in the JAK-STAT

pathway. In conclusion, dasatinib enhanced the antitumor effect of GMB-475;

that is, the combination of PROTAC targeting ABL1 in an allosteric manner and

orthosteric TKIs, especially dasatinib, provides a novel idea for the treatment of

CML patients with BCR::ABL1 mutants in clinical practice.
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Introduction

Chronic myeloid leukemia (CML) is a bone marrow

proliferative hematopoietic cell malignancy (Eden and

Coviello 2021) characterized by the BCR::ABL1 fusion gene

that is formed by genetic translocation between chromosome

9 and chromosome 22 (Haider and Anwer 2021). The BCR::

ABL1 fusion oncoprotein, which has tyrosine kinase activity

(Cetin et al., 2021) and activates different downstream signal

pathways, such as JAK-STAT, MAPK/ERK, and PI3K/Akt/

mTOR, promotes the occurrence and development of

leukemia (Singh et al., 2021). In the United States, there are

approximately 8000 newly diagnosed cases of CML per year

(Patel et al., 2017). Imatinib, the first-generation tyrosine kinase

inhibitor (TKI), significantly improved the prognosis of CML

patients (Milojkovic et al., 2021; Morita and Sasaki 2021), but

approximately 40% of chronic phase patients with CML had to

stop imatinib due to failure and/or drug intolerance (Özgür and

Eşkazan 2020; Koyama et al., 2021). The mechanisms of CML

patients resistant to TKIs can be divided into BCR::ABL1-

dependent and BCR::ABL1-independent resistance; the former

includes BCR::ABL1 mutation and amplification, and the latter

includes abnormal energy metabolism and the persistence of

leukemia stem cells (Lei et al., 2021) due to bypass activation

(Talati and Pinilla-Ibarz 2018). Second- and third-generation

TKIs, such as dasatinib, nilotinib, bosutinib, and ponatinib,

provide effective control of drug resistance caused by point

mutations in the BCR::ABL1 kinase region (Liu et al., 2021),

but these TKIs cannot control drug resistance caused by all site

mutations. Compared with imatinib, the second-generation TKI

can achieve a faster and deeper molecular response but does not

prolong the survival of patients (Morita and Sasaki 2021).

Moreover, some serious adverse events, such as cardiovascular

toxicity of ponatinib (Singh et al., 2019) and pulmonary

hypertension of dasatinib (Guignabert et al., 2016), have

limited the application of these agents; meanwhile, the

emergence of compound mutations in the BCR::ABL1 kinase

region is resistant to all approved TKIs targeting BCR::ABL1

(Khorashad et al., 2013). ABL001, an allosteric inhibitor targeting

ABL1, induces the formation of the inactive kinase conformation

(Wylie et al., 2017) by binding to the myristoyl pocket of ABL1

(Breccia et al., 2021). ABL001 is effective for most single

mutations in the BCR::ABL1 kinase region, but not for

compound mutations, mutations in the myristoyl pocket, and

the F359V mutation that affects its binding (Eide et al., 2019).

Proteolysis targeting chimera (PROTAC) has been a novel

drug development technology since 2000 (Mukhamejanova et al.,

2021), and it consists of three parts: ligand binding to the protein

of interest, E3 ubiquitination ligase ligand (including Von

Hippel–Lindau and cereblon) (Ishida and Ciulli 2021), and

linker connecting the two parts (Coll-Martínez et al., 2020;

Ghidini et al., 2021). PPOTAC, binding to the target protein

and recruiting E3 ubiquitination ligase, ubiquitinates the target

protein and then degrades it by the proteasome, which achieves

an antitumor effect (Qi et al., 2021). Being widely applied as a

biological tool and drug molecule, PROTAC has a potential

clinical application value (Zeng et al., 2021) and is considered

a novel strategy for the treatment of various diseases

(Mukhamejanova et al., 2021). At present, many PROTAC

molecules with high degradation efficiency have been

reported, including those targeting the androgen receptor (Lee

et al., 2021), estrogen receptor (Jiang et al., 2018; Hu et al., 2019;

Li et al., 2019), ALK (Yan et al., 2021), BTK (Buhimschi et al.,

2018; Sun et al., 2018; Zhao et al., 2021), and many others. The

first batch of oral PROTACs has been included in clinical trials

achieving exciting results (Protein Degradation, 2020; Qin et al.,

2021). Unlike traditional small molecule inhibitors needing

stable binding with the target protein, as long as PROTAC

binds to the target protein briefly, it would degrade it in a

catalytic manner (Martín-Acosta and Xiao 2021). GMB-475

(Burslem et al., 2019), targeting the myristoyl pocket of

ABL1 via an allosteric way, degrades the BCR::ABL1 fusion

protein through the ubiquitin–proteasome pathway; however,

it inhibited proliferation and promoted apoptosis in CML cell

lines only at high concentrations. Thus, we combined GMB-475

with orthosteric TKIs targeting ABL1 to reduce the effective

concentration of the two drugs. Therefore, this study investigated

the combination of GMB-475 and TKIs to overcome drug

resistance in CML caused by BCR::ABL1 mutations.

Materials and methods

The sources of the main experimental reagents are shown in

Supplementary Table S1.

Cell lines

Using the MSCV-IRES-GFP-p210 (MIG-p210) wild-type

plasmid as a template, we constructed MIG-p210 plasmids

with BCR::ABL1 single mutations (including E255K, T315I,

L387M, F359V, and F486S) by PCR, overlapping PCR, enzyme

digestion and enzyme connection, gel purification, and

recovery. Then, using MIG-p210 plasmids with BCR::

ABL1 single mutations as a template and repeating the

above process, we constructed MIG-p210 plasmids with

BCR::ABL1 compound mutations (including T315I +

E255K, T315I + L387M, and T315I + F486S). After

sequencing the MIG-p210 plasmids with BCR:

ABL1 mutations, we confirmed that the mutations were

successfully introduced at the expected design sites. We

obtained MIG-p210 retrovirus that was used to infect Ba/

F3 cells via calcium phosphate and then screened Ba/F3 cells

stably expressing BCR-ABL1 mutants (Ba/F3-MIG-p210). The

cell lines used in this study are shown in Table 1.
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Cell viability analysis

We inoculated Ba/F3-MIG-p210 cells into 96-well plates

with 8000 or 3000 cells per well and added different

concentrations of TKIs (0–2 µM) (to better distinguish the

different effects of ABL1 inhibitors against BCR::ABL1

compound mutations, single-point mutation, and WT, we

used drug concentrations less than 2 µM), ABL001

(0–5 µM), or GMB-475 (0–5 µM) (to observe the

therapeutic effect of GMB-475 on mutant cells, the

maximum concentration was increased to 5 µM); the total

volume of each well was 100 µl, and the cells were placed in an

incubator at 37 °C and 5% CO2 for 24/48 h. There were two

ways to detect cell viability afterward: 1) After adding 20 µl of

5 mg/ml thiazolyl blue tetrazolium bromide (MTT) per well

and waiting for 4–6 h, we added 100 µl of MTT-dissolved

solution per well and dissolved it in an incubator at 37°C

overnight and measured the absorbance value of each well at

570 nm with a spectrometer the next day; 2) after adding 10 µl

of Cell Counting Kit-8 (CCK8) per well and waiting for 3 h, we

detected the absorbance value of each well at 450 nm with a

spectrometer. The curve of cell viability was drawn with

GraphPad Prism 8.0, and CompuSyn software was used to

calculate the drug combination index (CI) of GMB-475 with

dasatinib or ponatinib. A CI value less than 1 indicates a

synergistic effect (a smaller CI indicates a better synergistic

effect), while a CI value equal to 1 indicates an additive effect,

and a CI value greater than 1 indicates an antagonistic effect.

Cell apoptosis

We inoculated Ba/F3-MIG-p210 cells into six-well plates

with 1×105 cells per well and added different concentrations

of TKIs (0–2 µM), ABL001 (0–5 µM), or GMB-475 (0–5 µM); the

total volume of each well was 2 ml, and the cells were placed in an

incubator at 37 °C and 5% CO2 for 24–48 h. Cell apoptosis was

detected by annexin V-647 and 7-aminoactinomycin D (7-AAD)

double staining. The results were statistically analyzed by

GraphPad Prism 8.0 software.

CML mouse model study

Ba/F3-MIG-p210 cells were transfected with HBLV-

luciferase-blasticidin virus to construct a cell line expressing

luciferase (Ba/F3-MIG-p210-Luc cell line). Four to

6 hours after 3.8 Gy X-ray irradiation, each 8-week-

old Balb/c mouse was injected with 3 × 105 Ba/F3-MIG-

p210-Luc cells via the tail vein. The mice were administered

intraperitoneally with the drug after 72 h. The

experimental group was treated with 5 mg/kg GMB-475

once every 2 days (from days 4 to 14), and the control

group was injected with the corresponding volume of

drug solvent (4% DMSO + 30% PEG300 + 5% Tween 80 +

ddH2O). There were 12 mice in the experimental group and

the control group, with 6 mice in each group. The tumor

burden of the mice was observed by luminescence imaging,

and the survival of the mice was recorded throughout the

process.

Cell cycle

We inoculated Ba/F3-MIG-p210 cells into six-well plates

with 2×105 cells per well and added different concentrations of

dasatinib (1 µM or 2 µM) or GMB-475 (1 µM or 2 µM) (to

avoid too many dead cells during the experiment, we used the

TABLE 1 The source of cell lines and the required culture medium.

Cell lines Sources Culture medium

Ba/F3 Institute of Hematology, West China Hospital RPMI 1640 (1 ng/ml IL3)

K562 Institute of Hematology, West China Hospital RPMI 1640

Ba/F3-MIG-p210WT This study RPMI 1640

Ba/F3-MIG-p210E255K This study RPMI 1640

Ba/F3-MIG-p210T315I This study RPMI 1640

Ba/F3-MIG-p210F359V This study RPMI 1640

Ba/F3-MIG-p210L387M This study RPMI 1640

Ba/F3-MIG-p210F486S This study RPMI 1640

Ba/F3-MIG-p210T315I+E255K This study RPMI 1640

Ba/F3-MIG-p210T315I+L387M This study RPMI 1640

Ba/F3-MIG-p210T315I+F486S This study RPMI 1640

Ba/F3-MIG- p210-Luc This study RPMI 1640

Ba/F3-MIG-p210 cells: Ba/F3 cells were transfected with MSCV-IRES-GFP-P210 (MIG-P210) retrovirus to make them express BCR::ABL1 fusion protein with the molecular weight of

210 kDa.
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drug concentration lower than or equal to 2 µM); the

total volume of each well was 2 ml, and the cells

were placed in an incubator at 37°C and 5% CO2 for

48 h. The cells were collected and fixed with 70%

ethanol solution overnight, digested with RNase, and

stained with propidium iodide (PI). The cell cycle was

detected using flow cytometry and analyzed with Modfit

software.

Real-time fluorescence quantitative PCR

The changes of mRNA levels induced by the

corresponding drugs were detected by real-time

fluorescence quantitative PCR (qPCR), and the primer

sequences of the genes used for qPCR are shown in

Supplementary Table S2.

Western blot

We inoculated Ba/F3-MIG-p210 cells into 6-cm Petri

dishes and added different concentrations of drugs; the

total volume of each dish was 5 ml, and the cells were

placed in an incubator at 37°C and 5% CO2 for 24/48 h.

Then, the proteins of cells were extracted, and the levels of

BCR::ABL1 protein and related signal pathway proteins were

detected by Western blot.

Statistical analysis

We adopted Kaplan–Meier analysis and the log-rank test

to compare the survival of the CML mouse model

between the experimental group and the control group. In

the Cell Experiments section, the results represent the mean ±

standard error of two or three independent experiments. The

unpaired t-test was used to compare the differences between the

two groups, and p values less than 0.05 showed significant

differences.

Results

The effects of inhibitors targeting ABL1 on
the growth inhibition of Ba/F3-MIG-
p210 cells with BCR::ABL1 compound
mutations were significantly weakened

The viability of Ba/F3-MIG-p210 cells treated with different

concentrations of ABL1 inhibitor for 48 h was detected via the

MTT assay. The results showed that Ba/F3-MIG-p210 cells with

different BCR::ABL1 mutations were generally resistant to

imatinib, especially compound mutations, and imatinib did

not inhibit cell growth when the concentration reached

2000 nM (Figure 1A). In contrast, dasatinib significantly

inhibited the growth of Ba/F3-MIG-p210 cells with the BCR::

ABL1 single-point mutation but weakly inhibited the growth of

those with compound mutations (Figure 1C). Ponatinib and

ABL001 also performed more effectively on Ba/F3-MIG-

p210 cells with BCR::ABL1 single-point mutations than those

with compound mutations in terms of growth inhibition

(Figures 1B,D).

The effects of ABL1 inhibitors on
promoting apoptosis of Ba/F3-MIG-
p210 cells with BCR::ABL1 mutants were
weakened

The apoptosis of Ba/F3-MIG-p210 cells treated with different

ABL1 inhibitors for 48 h was detected via annexin V-647 and 7-

AAD double staining. The results showed that compared with

BCR::ABL1 wild-type, the effects of imatinib, dasatinib, and

ABL001 on promoting apoptosis in Ba/F3-MIG-p210 cells

with T315I or T315I-including compound mutations, were

significantly reduced under the same concentrations and

treatment times of agents (Figure 2A). Compared with BCR::

ABL1 wild-type or T315I single-point mutation, the effects of

promoting apoptosis of ponatinib on cells with BCR::

ABL1 compound mutations were also significantly weakened

(Figure 2B).

TABLE 2 The IC50 of GMB-475 in Ba/F3 cells with BCR::ABL1 mutants.

IC50 of GMB-475 (µM) IC50 of GMB-475δ combined
with dasatinib (µM)

Ba/F3-MIG-p210T315I 3.69 0.44

Ba/F3-MIG-p210T315I+E255K 8.29 2.57

Ba/F3-MIG-p210T315I+L387M 3.70 0.31

Ba/F3-MIG-p210T315I+F486S 4.49 0.77

δThe IC50 of GMB-475 against Ba/F3-MIG-p210 cells when GMB-475 combined with dasatinib.
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GMB-475 exhibited a growth inhibition
effect on Ba/F3-MIG-p210 cells with BCR::
ABL1T315I+F486S mutations but no significant
improvement of prognosis in chronic
myeloid leukemia mouse models
constructed by this cell line

Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+F486S

mutations were treated with different concentrations of GMB-

475 for 48 h, and cell viability was detected using the CCK8 assay.

The results showed that GMB-475 exhibited a growth inhibition

effect on Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+F486S

mutations, and the half inhibitory concentration (IC50) was

4.49 µM (Figure 3A). Twelve 8-week-old Balb/c mice were

randomly divided into two groups with six mice in each

group: the control group and the GMB-475 administration

group. Four to 6 hours after 3.8 Gy X-ray irradiation, each

mouse was injected with 3 × 105 Ba/F3-MIG-p210-Luc cells

carrying BCR::ABL1T315I+F486S mutations via the tail vein. The

mice were administered drugs intraperitoneally after 72 h. The

experimental group was treated with 5 mg/kg GMB-475 once

every 2 days (from days 4 to 14), and the control group was

injected with the corresponding volume of drug solvent. The

tumor burden of mice was observed by luminescence imaging at

day 9, and the survival of mice was recorded throughout the

process. The results showed that although GMB-475 showed a

trend of reducing the tumor burden (Figure 3C,D) and

prolonging the survival of the CML mouse model (Figure 3B),

its effect was limited and not statistically significant. In view of

the results, we considered the combination of GMB-475 and

TKIs to improve the antitumor effect.

GMB-475 combined with tyrosine kinase
inhibitors showed synergistic effects of
growth inhibition on Ba/F3-MIG-
p210 cells with BCR::ABL1 mutants

The distinct effects of growth inhibition between GMB-475

combined with TKIs and single agents on Ba/F3-MIG-p210 cells

were detected using the CCK8 assay. We found that the overall

combination index (CI) of GMB-475 and dasatinib in Ba/F3-

FIGURE 1
Effects of inhibitors targeting ABL1 on the growth inhibition of Ba/F3-MIG-p210 cells with BCR::ABL1 compound mutations were significantly
weakened. The viability of Ba/F3-MIG-p210 cells treated with different concentrations of ABL1 inhibitor for 48 h was detected via the MTT assay: (A)
imatinib, (B) ponatinib, (C) dasatinib, and (D) ABL001.
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MIG-p210 cells with BCR::ABL1WT was 6.96, and the two drugs

showed no synergistic effect of growth inhibition on cells

(Figures 4A,B). In Ba/F3-MIG-p210 cells with BCR::ABL1T315I

or BCR::ABL1T315I+E255K mutations, the overall CIs of GMB-475

and dasatinib were 0.25 and 0.29, respectively, and the two drugs

exhibited significant synergistic effects of growth inhibition on

cells (Figures 4C–F). When the concentration of dasatinib was

fixed at 2 µM and GMB-475 was set at different concentrations,

the combination of the two drugs also showed significant

synergistic effects of growth inhibition on Ba/F3-MIG-

p210 cells with BCR::ABL1T315I+L387M or BCR::ABL1T315I+F486S

mutations (the CIs of each concentration were less than 0.54,

Figures 4G–J). Meanwhile, dasatinib significantly reduced the

IC50 of GMB-475 in Ba/F3-MIG-p210 cells with BCR::ABL1T315I,

BCR::ABL1T315I+E255K, BCR::ABL1T315I+L387M, and BCR::

ABL1T315I+F486S mutations (Table 2). Moreover, we also found

that GMB-475 combined with ponatinib also showed synergistic

effects of growth inhibition on Ba/F3-MIG-p210 with BCR::

ABL1T315I+E255K or BCR::ABL1T315I+F486S mutations; the overall

CIs were 0.67 and 0.61, and the highest CIs at different

concentrations were 0.98 and 1.02, respectively

(Supplementary Figures S1A–D). The synergistic effect of

GMB-475 combined with ponatinib was weaker than that

with dasatinib.

GMB-475 combined with tyrosine kinase
inhibitors synergistically promoted the
apoptosis of Ba/F3-MIG-p210 cells

The apoptosis of Ba/F3-MIG-p210 cells with BCR::

ABL1 wild-type or mutants induced by GMB-475 combined

FIGURE 2
Effects of ABL1 inhibitors on promoting apoptosis of Ba/F3-MIG-p210 cells with BCR::ABL1 mutants were weakened. The apoptosis of Ba/F3-
MIG-p210 cells treated with different ABL1 inhibitors for 48 h was detected via annexin V-647 and 7-AAD double staining: (A) Imatinib, dasatinib, and
ABL001; the abscissa marks the names and concentrations of agents, and the ordinate is the apoptosis rate; the colors of the bar graph represent the
BCR::ABL1wild type (WT) or different mutants carried by Ba/F3-MIG-p210 cells, including BCR::ABL1T315I, BCR::ABL1T315I+E255K, BCR::ABL1T315I+L387M,
and BCR::ABL1T315I+F486S. (B) Ponatinib; the abscissamarks the BCR::ABL1WT, or differentmutants carried by Ba/F3-MIG-p210 cells, and the ordinate is
the apoptosis rate; the colors of the bar graph represent different concentrations of ponatinib.
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with TKIs was detected by flow cytometry. The results showed

that GMB-475 combined with dasatinib synergistically

promoted the apoptosis of Ba/F3-MIG-p210 cells

(Figure 5). Meanwhile, GMB-475 combined with ponatinib

synergistically promoted the apoptosis of Ba/F3-MIG-

p210 cells with BCR::ABL1T315I+E255K and BCR::

ABL1T315I+F486S mutations (Supplementary Figure S2).

GMB-475 combined with dasatinib
exhibited a better synergistic effect on Ba/
F3-MIG-p210 cells carrying BCR::
ABL1T315I+F486S mutations compared with
ABL001

Ba/F3-MIG-p210 cells were treated with different

concentrations of ABL001 for 48 h, and cell viability was

detected using the CCK8 assay. The IC50 of ABL001 was

9.487 µM (Figure 6A); in contrast, the IC50 of GMB-475 was

4.49 µM. The viability of Ba/F3-MIG-p210 cells treated with

different agents for 24 h was detected using the CCK8 assay.

The results showed that GMB-475 alone or in combination

with dasatinib showed more significant growth inhibition on

Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+F486S

mutations than ABL001 alone or in combination with

dasatinib, respectively (Figure 6B). The apoptosis of Ba/F3-

MIG-p210 cells treated with different agents for 24 h was

detected by annexin V and 7-AAD double staining. The

results showed that there was no difference between GMB-

475 and ABL001 in promoting apoptosis of cells; however, the

apoptosis rate of cells treated with GMB-475 combined with

dasatinib was significantly higher than that treated with

ABL001 combined with dasatinib (Figure 6C). Ba/F3-MIG-

p210 cells were treated with different agents for 24 h and

continued to be cultured in a complete medium without

drugs for 18 h; then the apoptosis of those cells was

detected. The results showed that there was no

difference between GMB-475 and ABL001 in promoting

apoptosis of cells, and the apoptosis rate of cells treated

with GMB-475 combined with dasatinib was higher than

that treated with ABL001 combined with dasatinib

(Figure 6D). GMB-475 combined with dasatinib exhibited a

better synergistic effect compared with ABL001 combined

with dasatinib.

FIGURE 3
GMB-475 exhibited a growth inhibition effect on Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+F486S mutations but no significant improvement
of prognosis in the CML mouse model constructed by this cell line. (A) Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+F486S mutations were treated
with different concentrations of GMB-475 for 48 h, and cell viability was detected using the CCK8 assay. (B) Survival curve of the CMLmouse model
for the control group and the GMB-475 administration group. (C) Fluorescence imaging of CML mouse model was implemented at day 9. (D)
Quantitative analysis of the fluorescence signal was performed tomeasure the tumor burden in the CMLmousemodel. Abbreviations: CTR, control.
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FIGURE 4
GMB-475 combined with dasatinib (DAS) had synergistic effects on the growth inhibition of Ba/F3-MIG-p210 cells with BCR::ABL1 mutants but
no synergistic effect on that with BCR::ABL1WT. (A,C,E,G,I) The viability of Ba/F3-MIG-p210 cells carrying BCR::ABL1WT, BCR::ABL1T315I, BCR::
ABL1T315I+E255K, BCR::ABL1T315I+L387M, or BCR::ABL1 T315I+F486S mutations treated with different concentrations of GMB-475, dasatinib, or GMB-475 plus
dasatinib for 48 h was detected using the CCK8 assay. The abscissa represents the concentrations of GMB-475, and the corresponding
concentrations of dasatinib aremarked below the abscissa; the ordinate is the cell survival rate. (B,D,F,H,G) The curve figures of combination indexes
(CIs); the CIs of GMB-475 combined with dasatinib at ED50, ED75, ED90, and ED95, or the CIs for different concentrations of GMB-475 combined
with 2-µM dasatinib are shown below the figures; the CI at ED50 was the overall CI.
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FIGURE 5
GMB-475 combined with dasatinib synergistically promoted the apoptosis of Ba/F3-MIG-p210 cells. The apoptosis of Ba/F3-MIG-p210 cells
treated with control medium (CTR), GMB-475, dasatinib, or GMB-475 plus dasatinib for 48 h was detected via annexin V and 7-AAD double staining:
(A) Ba/F3-MIG-p210 cells with BCR::ABL1WT were treated with CTR, dasatinib 5nM, GMB-475 1 µM, and GMB-475 1 µM plus dasatinib 5 nM. (B) Ba/
F3-MIG-p210 cells carrying BCR::ABL1T315I were treated with CTR, dasatinib 2 µM, GMB-475 2 µM, and GMB-475 2 µM plus dasatinib 2 µM. (C)
Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+E255K, BCR::ABL1T315I+L387M, or BCR::ABL1 T315I+F486S compound mutations were treated with CTR,
dasatinib 2 µM, GMB-475 5 µM, and GMB-475 5 µM plus dasatinib 2 µM, respectively. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6
GMB-475 combined with dasatinib exhibited a better synergistic effect on Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+F486S mutations
compared with ABL001. (A) Ba/F3-MIG-p210 cells were treated with different concentrations of ABL001 for 48 h, and cell viability was detected
using the CCK8 assay. (B) The viability of Ba/F3-MIG-p210 cells treated with dasatinib 2 µM, ABL001 5 µM, GMB-475 5 µM, ABL001 5 µM plus
dasatinib 2 µM, and GMB-475 5 µM plus dasatinib 2 µM for 24 hwas detected using the CCK8 assay. (C) The apoptosis of Ba/F3-MIG-p210 cells

(Continued )
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FIGURE 6 (Continued)
treated with control medium (CTR), dasatinib 2 µM, ABL001 5 µM, GMB-475 5 µM, ABL001 5 µM plus dasatinib 2 µM, and GMB-475 5 µM plus
dasatinib 2 µM for 24 h was detected via annexin V and 7-AAD double staining. (D) Ba/F3-MIG-p210 cells were treated with CTR, dasatinib 2 µM,
ABL001 5 µM, GMB-475 5 µM, ABL001 5 µM plus dasatinib 2 µM, and GMB-475 5 µM plus dasatinib 2 µM for 24 h and continued to be cultured in
complete medium without drugs for 18 h; then the apoptosis of those cells was detected. nsp ≥ 0.05, *p < 0.05, **p < 0.01, ****p < 0.0001.

FIGURE 7
GMB-475 combined with dasatinib synergistically blocked the cell cycle of Ba/F3-MIG-p210 cells with BCR::ABL1mutants. The cell cycle of Ba/
F3-MIG-p210 cells treated with the control medium (CTR), GMB-475, dasatinib (DAS), or GMB-475 plus dasatinib for 48 h was detected by PI
staining: (A–C) Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+F486S, BCR::ABL1T315I+E255K, or BCR::ABL1T315I+L387M compound mutations were treated
with CTR, dasatinib 2 µM, GMB-475 2 µM, and GMB-475 2 µM plus dasatinib 2 µM, respectively. (D) Ba/F3-MIG-p210 cells carrying BCR::
ABL1T315I were treated with CTR, dasatinib 1 µM, GMB-475 1 µM, and GMB-475 1 µM plus dasatinib 1 µM. (E–H) Statistical analysis results of the cell
cycle. nsp ≥ 0.05, *p < 0.05, **p < 0.01.
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FIGURE 8
GMB-475 combined with dasatinib synergistically downregulated the mRNA levels of the JAK-STAT axis, AKT, and mTOR in Ba/F3-MIG-
p210 cells with BCR::ABL1 mutants. The mRNA levels of genes in Ba/F3-MIG-p210 cells treated with control medium (CTR), GMB-475, dasatinib
(DAS), or GMB-475 plus dasatinib for 48 h were detected by qPCR: (A) Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I mutation were treated with
CTR, dasatinib 1 µM, GMB-475 2 µM, and GMB-475 2 µM plus dasatinib 1 µM. (B–D) Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+F486S, BCR::
ABL1T315I+L387M, or BCR::ABL1T315I+E255K compound mutations were treated with CTR, dasatinib 2µM, GMB-475 3 µM, and GMB-475 3 µM plus
dasatinib 2 µM, respectively. The types of BCR::ABL1 mutants carried by Ba/F3-MIG-p210 cells are marked at the top of the figures. nsp ≥ 0.05, *p <
0.05, **p < 0.01, ***p < 0.001.
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GMB-475 combined with dasatinib
synergistically blocked the cell cycle of Ba/
F3-MIG-p210 cells with BCR::
ABL1 mutants

The effects of blocking the cell cycle for GMB-475

combined with dasatinib on Ba/F3-MIG-p210 cells with

BCR::ABL1 mutants were detected by PI staining. The

results showed that compared with single agents, the

proportion of cells in the G0/G1 phase increased but that

in the S phase (DNA synthesis phase) decreased under

combination therapy; in other words, the effect of blocking

the cell cycle of combination therapy was more obvious than

that of single agents (Figure 7).

FIGURE 9
GMB-475 combined with dasatinib synergistically downregulated the protein levels of the JAK-STAT axis or AKT in Ba/F3-MIG-p210 cells with
BCR::ABL1mutants. The protein levels of genes in Ba/F3-MIG-p210 cells treated with the control medium (CTR), GMB-475, dasatinib (DAS), or GMB-
475 plus dasatinib were detected bywestern blot: (A) Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I were treatedwith CTR, GMB-475 2 µM, dasatinib
2 µM, and GMB-475 2 µM plus dasatinib 2 µM for 48 h. (B,C) Ba/F3-MIG-p210 cells carrying BCR::ABL1 T315I+F486S and BCR::ABL1T315I+L387M

compound mutations were treated with CTR, GMB-475 2.5 µM, dasatinib 2 µM, and GMB-475 2.5 µM plus dasatinib 2 µM for 48 h, respectively (Ba/
F3-MIG-p210 cells with BCR::ABL1T315I+F486S were treated for 24 and 48 h). (D) Ba/F3-MIG-p210 cells carrying BCR::ABL1T315I+E255K were treated with
CTR, GMB-475 5 µM, dasatinib 2 µM, and GMB-475 5 µM plus dasatinib 2 µM for 48 h. The types of BCR::ABL1 mutants carried by Ba/F3-MIG-
p210 cells are marked at the top of the figures.
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GMB-475 combined with dasatinib
synergistically downregulated the mRNA
levels of the JAK-STAT axis, AKT, and
mTOR in Ba/F3-MIG-p210 cells with BCR::
ABL1 mutants

The distinct mRNA levels of genes induced by GMB-475

combined with dasatinib and single agents were detected by

qPCR. Compared with the BCR::ABL1T315I single-point

mutation, Ba/F3-MIG-p210 cells carrying compound

mutations are more resistant to the agents. To observe the

change in mRNA levels, the concentrations of the agents were

increased when we treated Ba/F3-MIG-p210 cells carrying

compound mutations. The results showed that combination

therapy downregulated the expression of the JAK-STAT

pathway in cells compared with the single drugs. In Ba/F3-

MIG-p210 cells with the BCR::ABL1T315I mutation, the mRNA

levels of JAK2, STAT5a, STAT3, MYC, and BCL2 of the JAK-

STAT pathway, and AKT and mTOR that are downstream genes

of JAK, were downregulated (Figure 8A). The mRNA levels of

MYC andMYC plus BCL2 were also significantly downregulated

in the two Ba/F3-MIG-p210 cell lines with BCR::ABL1T315I+F486S

and BCR::ABL1T315I+L387M mutations, respectively. The changes

in the mRNA levels of other genes were not statistically

significant under the induction of combination therapy,

including JAK2, STAT5a, STAT3, AKT, and mTOR (Figures

8B,C). However, in Ba/F3-MIG-p210 cells with BCR::

ABL1T315I+E255K compound mutations, there was no significant

distinction in the mRNA levels of genes induced by combination

therapy and single drugs (Figure 8D).

GMB-475 combined with dasatinib
synergistically downregulated the levels of
some proteins in the JAK-STAT axis or AKT
in Ba/F3-MIG-p210 cells with BCR::
ABL1 mutants

The levels of protein expression of genes in cells induced by

agents were detected by WB. The results showed that GMB-475

combined with dasatinib downregulated the protein levels of the

JAK-STAT pathway in cells compared with single agents. In Ba/

F3-MIG-p210 cells with the BCR::ABL1T315I mutation, the levels

of JAK2, p-JAK2, STAT5a, STAT3, and MYC decreased

significantly under combination therapy compared with single

agents (Figure 9A). In Ba/F3-MIG-p210 cells with BCR::

ABL1T315I+F486S compound mutations, the levels of BCR::ABL1,

p-STAT5a, STAT3, MYC, and Bcl2 decreased significantly, but

JAK2 increased at 24 h under combination therapy compared

with single agents (Figure 9B). Similarly, the levels of BCR::ABL1,

JAK1, p-JAK2, p-STAT5a, STAT3, MYC, and Bcl2 decreased in

Ba/F3-MIG-p210 cells with BCR::ABL1T315I+L387M compound

mutations under combination therapy compared with single

agents (Figure 9C). However, in Ba/F3-MIG-p210 cells with

BCR::ABL1T315I+E255K compound mutations, the levels of BCR::

ABL1, STAT3, STAT5, and p-STAT5a were upregulated, MYC

and Bcl2 remained unchanged, but p-JAK2, pan AKT, and

p-AKT decreased under combination therapy compared with

single agents (Figure 9D).

Discussion

CML is characterized by the BCR::ABL1 fusion gene, which is

formed by a genetic translocation between chromosome 9 and

chromosome 22 (Rinke et al., 2020). ABL1 is a proto oncogene

encoding tyrosine kinase protein that is involved in a variety of

cellular processes in humans, including cell division, adhesion,

differentiation, and stress response. Normally, the tyrosine kinase

protein encoded by ABL1 is negatively regulated by its

N-terminal myristoyl peptide (Radi et al., 2013), the sequence

encoding which is deleted due to the fusion of BCR and

ABL1 genes, resulting in the breaking of this self-inhibition

balance and the continuous activation of tyrosine kinase.

ATP-competitive inhibitors targeting ABL1 have greatly

improved the prognosis of CML patients, but drug resistance

(Devos et al., 2021), disease progression (Kakiuchi et al., 2021), or

some serious adverse events occurring during treatment bring

challenges to clinical practices (Castagnetti et al., 2021; Clapper

et al., 2021), especially drug resistance caused by BCR::

ABL1 mutations (Mian et al., 2021). In the construction of

cell lines carrying BCR::ABL1 mutants, we selected

1–2 common mutant sites in four regions including the ATP-

binding loop (248–256 amino acids), TKI-binding site, catalytic

domain (350–363 amino acids), and activation loop, which are

the E255, T315, F359, L387, F486, and including T315 compound

mutations. Imatinib, dasatinib, and ponatinib showed the

weakened effect of growth inhibition and promoted apoptosis

in cells with BCR::ABL1 compound mutations, which further

verified the limitations of existing ATP-competitive TKIs

targeting ABL1 for the treatment of CML patients with BCR::

ABL1 compound mutations. ABL001, also named asciminib,

targets the myristoyl pocket of ABL1 in an allosteric manner

and simulates the natural N-terminal myristoyl peptide of ABL1,

which restores the self-inhibitory conformation of tyrosine

kinase and realizes the treatment effect of CML (Jones et al.,

2020). ABL001 is effective for the treatment of CML patients with

BCR::ABL1 single mutations but has a limited effect on those

with BCR::ABL1 compound mutations (Eide et al., 2019), which

has been further verified at the cellular level in this study.

GMB-475 is composed of an ABL1-binding element, a ligand

targeting the E3 ligase Von Hippel–Lindau (VHL), and an

intermediate linker. The BCR::ABL1-binding element binds to

the target protein BCR::ABL1; the ligand targeting VHL recruits

the E3 ubiquitin ligase VHL, and the intermediate linker “pulls

the BCR::ABL1 protein closer to the E3 ubiquitin ligase,”
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resulting in the degradation of the BCR::ABL1 protein realized by

the ubiquitin–proteasome system (Burslem et al., 2019). GMB-

475 has unique advantages even if its binding mode is similar to

ABL001. ATP-competitive TKIs and ABL001 inhibit the target

protein by occupying the key site of ABL1, that is, the occupancy-

driven pharmacological mode of traditional small molecule

inhibitors, while PROTAC molecules including GMB-475,

adopt the event-driven mode that is relatively less stringent

for drug-binding sites, have the opportunity to realize

degradation as long as they can bind to the target protein

briefly, so that they have better compatibility with the target

protein carrying mutations (Pettersson and Crews 2019; Xia

et al., 2019; Kastl et al., 2021). We found that the IC50 value

of ABL001 to Ba/F3-MIG-p210 cells carrying BCR::

ABL1T315I+F486S mutations was more than double that of GMB-

475. GMB-475 can be recycled in theory after degrading BCR::

ABL1, so its action time is longer than that of ABL1 inhibitors.

However, GMB-475 showed significant effects of growth

inhibition and promoted apoptosis in CML cell lines carrying

BCR::ABL1 mutants only at high drug concentrations and

performed a poor treatment effect on the CML mouse model.

Combination therapy is an effective strategy for drug resistance.

Afterward, we found that GMB-475 combined with dasatinib

synergistically inhibited growth, promoted apoptosis, and

blocked the cell cycle of Ba/F3 cells carrying BCR::

ABL1 mutants, which reduced the effective concentration of

the two drugs. For patients treated with dasatinib, the plasma

concentration of dasatinib is relevant to efficacy and tolerability

outcomes (García-Ferrer et al., 2019). It was recommended that

the maximum plasma concentration of dasatinib was greater

than 50 ng/ml to achieve clinical efficiency and that the plasma

trough concentration was lower than 2.5 ng/ml to avoid adverse

events such as pleural effusion (Miura 2015). The combination of

GMB-475 and dasatinib can improve the therapeutic effect of

dasatinib and may reduce its adverse effects. Due to the similar

effects of ABL001 and GMB-475 on the ABL1 kinase and

combination therapies of ABL001 with different TKIs being

studied in the clinical setting already, we compared the

synergistic effects between GMB-475 and ABL001 when in

combination with dasatinib. The results indicated that GMB-

475 combined with dasatinib showed more significant growth

inhibition on Ba/F3-MIG-p210 cells than ABL001 combined

with dasatinib, and the apoptosis rate of Ba/F3-MIG-

p210 cells treated with GMB-475 plus dasatinib was higher

than that treated with ABL001 plus dasatinib whether the

drugs continued to act or were removed. GMB-475 combined

with dasatinib exhibited a better synergistic effect compared with

ABL001 combined with dasatinib. In addition to our study, there

have been many studies concerning combination therapy to

overcome TKI resistance, such as imatinib combined with

farnesyl transferase inhibitors (Radujkovic et al., 2006) or

mTOR inhibitors (Alves et al., 2019), dasatinib combined with

decitabine (Abaza et al., 2020) or interferon-α2b (Hjorth-Hansen

et al., 2016), and ABL001 combined with ponatinib (Gleixner

et al., 2021), which is probably the one we are most interested in

but did not provide a specific combination index, resulting in

losing the opportunity to compare the synergistic effect with this

study.

We detected the changes in intracellular signaling pathways

induced by GMB-475, dasatinib, and GMB-475 plus dasatinib to

explore the synergistic mechanism. Due to the inconsistent

sensitivity of different BCR::ABL1 mutations to GMB-475 (the

IC50 values of GMB-475 to Ba/F3-MIG-p210 cells with BCR::

ABL1T315I, BCR::ABL1T315I+E255K, BCR::ABL1 T315I+L387M, and

BCR::ABL1T315I+F486S at 48 h were 3.69, 8.29, 3.70, and

4.49 µM, respectively), we used distinct treatment

concentrations for different mutations in order to avoid the

influence of too many dead cells on the experimental results.

GMB-475 and dasatinib synergistically downregulated the

expression of BCR::ABL1 and some proteins of the JAK-STAT

axis in Ba/F3 cells carrying BCR::ABL1 mutants, such as p-JAK2,

p-STAT5a, STAT3, MYC, and Bcl2. The JAK-STAT pathway is

widely involved in important biological processes, such as cell

proliferation, differentiation, apoptosis, and immune regulation

(Xin et al., 2020), and GMB-475 combined with dasatinib

synergistically regulated the expression levels of some genes in

this pathway, which may be the significant mechanism for the

synergistic antitumor effect of the two drugs.

In conclusion, the combination of PROTAC molecules

targeting ABL1 in an allosteric manner and ATP-competitive

TKIs provides a novel idea for the treatment of CML patients

with highly resistant BCR::ABL1 mutations in clinical practice.

GMB-475 as a single therapy may have great limitations;

however, combination therapy based on that has a potential

treatment value for CML patients, but further clinical studies are

needed for verification.
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