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A B S T R A C T

Interferons (IFN) are key cytokines with multifaceted antiviral and cell-modulatory properties. Three

distinct types of IFN are recognized (I–III) based on structural features, receptor usage, cellular source

and biological activities. The action of IFNs is mediated by a complex, partially overlapping,

transcriptional program initiated by the interaction with specific receptors. Genetic diversity, with

polymorphisms and mutations, can modulate the extent of IFN responses and the susceptibility to

infections. Almost all viruses developed mechanisms to subvert the IFN response, involving both IFN

induction and effector mechanisms. Interactions between IFN types may occur, for both antiviral and

cell-modulatory effects, in a complex interplay, involving both synergistic and antagonistic effects.

Interferon-associated diseases, not related to virus infections may occur, some of them frequently

observed in IFN-treated patients. On the whole, IFNs are pleiotropic biologic response modifiers, that,

upon activation of thousands genes, induce a broad spectrum of activities, regulating cell cycle,

differentiation, plasma membrane molecules, release of mediators, etc., that can be relevant for cell

proliferation, innate and adaptive immunity, hematopoiesis, angiogenesis and other body functions.
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1. Introduction

Interferon (IFN) was first discovered as an antiviral agent during
studies on virus interference [1,2]. Isaacs and Lindenmann
reported in 1957 that influenza virus-infected chick cells produced
a secreted factor that mediated the transfer of a virus-resistant
state active against both homologous and heterologous viruses
[1]. This seminal observation, along with similar findings described
by Nagano and Kojima in 1958 [2], set the stage for subsequent
studies that led to the elucidation of the IFN system in exquisite
detail [3].
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Almost 60 years after the discovery of Isaacs and Lindenmann,
considerable progress has been made toward answering multiple
questions about IFN family members and their effects on the virus–
host interaction. Advances made while elucidating the IFN system
contributed significantly to our understanding in multiple areas of
mammalian cell biology and biochemistry, ranging from the
pathways of signal transduction to the biochemical mechanisms of
transcriptional and translational control to the molecular basis of
viral pathogenesis [3], and led to the development of the first
‘‘cytokine-based’’ therapy in the 70s, now licensed worldwide for
viral disease, malignant and even immune disorders [4].
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2. Unraveling the complexity of the interferon system

After the first discovery of Type I IFN during 1950s [1] and Type
II IFN in 1965 [5], in 2003 two groups independently reported
the discovery of a trio of novel interferon-like cytokines that are
referred to as either IFNl1, l2, and l3 or interleukin-29 (IL-29), IL-
28A, and IL-28B, respectively [6,7], and constitute type III IFN. Both
groups also identified and characterized the novel receptor,
IFNlR1 (also known as IL-28RA), through which these cytokines
mediate their biological activities [8].

2.1. Interferon genes and proteins

IFNs are key cytokines in the establishment of a multifaceted
antiviral response. Three distinct types of IFNs are now recognized
(types I, II, and III) based on their structural features, receptor usage
and biological activities [8]. A synopsis of the major features of IFN
family member components is reported in Table 1. Type I IFN
family in humans consists of 14 IFNa species [9] and a single
species of IFNb, IFNk, IFNv, and IFNe, while there is only one type
II IFN known as IFNg. All the type I IFN components lack introns
and are clustered on the short arm of chromosome 9 in human and
chromosome 4 in mouse genome. The single IFNg gene possesses
three introns and maps to the long arm of chromosome 12 in
human, and chromosome 10 in mouse genome. Although some
IFNs are modified post-translationally by N- and O-glycosylation,
the major human IFNa subspecies are not glycosylated [3]. IFNa
and IFNb gene products appear to function as monomers, whereas
IFNg appear to function as homodimers [10]. On the other hand,
IFNl genes are clustered together on human 19 or murine
7 chromosome. The IFNl3 gene (IL28B) is transcribed in the
opposite direction of the IFN-l1 (IL29) and IFNl2 (IL28A) genes
[8].

Although all IFNs are important mediators of antiviral protec-
tion, their roles in antiviral defense vary. Type I IFNs have four
major functions. First, they induce cell-intrinsic antimicrobial
states in infected and neighboring cells that limit the spread of
infectious agents, particularly viral pathogens. Second, they
modulate innate immune responses in a balanced manner that
promotes antigen presentation and natural killer cell functions
while restraining pro-inflammatory pathways and cytokine
production. Third, they activate the adaptive immune system,
thus promoting the development of high-affinity antigen-specific T
and B cell responses and immunological memory [9]. Fourth, they
present an antiproliferative activity: in fact, several recent studies
showed type I IFN-induced autophagy in multiple cancer cell lines
highlighting a new function of type I IFN as an inducer of
autophagy. This new function of type I IFN may play an important
role in viral clearance, antigen presentation, inhibition of
proliferation, as well as a positive feedback loop for the production
of type I IFN [11]. Type I IFNs are protective in acute viral infections
but can have either protective or deleterious roles in bacterial
infections and autoimmune diseases. Most cell types produce
Table 1
Major features of IFN family components.

IFN type Name (no. of genes) Location in hum

chromosomes

Type I IFNa (14)

IFNb (1)

IFNk (1)

IFNv (1)

IFNe (1)

Chromosome 9 

Type II IFNg (1) Chromosome 12

Type III IFNl (3) Chromosome 19
IFNb, whereas haematopoietic cells, particularly plasmacytoid
dendritic cells, are the predominant producers of IFNa. Type I IFN
production is induced after the sensing of microbial products by
pattern-recognition receptors (PRRs)4–6 and by cytokines [9]. IFNg
is mainly secreted by T lymphocytes, natural killer cells and
antigen presenting cells (APCs) such as monocytes, macrophages
and dendritic cells. IFNg secretion by natural killer (NK) cells and
professional antigen presenting cells is likely to be important in
early host defense against infection, whereas T lymphocytes
become the major source of IFNg in the adaptive immune
response. IFNg production is controlled by cytokines secreted by
antigen presenting cells, most notably IL12 and IL18. Macrophage
recognition of many pathogens induces the secretion of IL-12 and
several chemokines. These chemokines attract natural killer cells
to the site of inflammation, and IL-12 promotes IFNg synthesis in
these cells [12]. IFNg also plays a central role in the development of
antitumor immune responses, and it can amplify the induction of
antiviral activity by IFNa or IFNb. Therefore, type I and type II IFN
often work together to activate a variety of innate and adaptive
immune responses that result in the induction of effective
antitumor immunity and the elimination of viral infections
[10,13]. On the other hand, the IFNl signal transduction cascade
is very similar to that induced by type I IFNs (IFNa or IFNb).
Therefore, it is not surprising that type I and type III IFNs exert
similar biological activities. Both types of IFN possess the intrinsic
ability to induce antiviral activity in cells [8]. In fact, the IFNls are
usually coexpressed together with type I IFNs by virus infected
cells [6,7].

2.2. IFN receptors

IFNs are part of the larger family of class II cytokines that also
includes 6 IL-10-related cytokines: IL-10, IL-19, IL-20, IL-22, IL-24,
and IL-26 [14–16] as well as several viral IL-10-related cytokines
[17]. Class II cytokines all signal via receptors that share common
motifs in their extracellular domains, and are indicated as class II
cytokine receptor family (CRF2). Consequently, IFNs and the IL-10-
related cytokines are sometimes referred to as ‘‘CRF2 cytokines’’
[8]. However, although the tertiary structure of IFNg resembles
that of IL-10, its primary structure significantly diverges from all of
the CRF2 ligands. The most recent addition to the CRF2 family
members, type III IFN or IFNl, demonstrates structural features of
the IL-10-related cytokines but also induces antiviral activity in a
variety of target cells, which supports their functional classifica-
tion as a new IFN type [6,7]. Phylogenetically, the IFNl genes reside
somewhere between the type I IFN and IL-10 gene families. Amino
acid sequence comparison shows that the type III IFN members
exhibit about 5–18% identity with either type I IFN members or the
IL-10-related cytokines. The IFNl proteins bind and signal through
a receptor complex composed of the unique IFNlR1 chain (also
known as IL-28RA) and the shared IL-10R2 chain which is also a
part of the receptor complexes for IL-10, IL-22, and IL-26. In
contrast, all type I IFN members exert their biological activities
an Receptors

IFNaR1 and IFNaR2 (also known as IFNAR1 and IFNAR2)

 IFNgR1 and IFNgR2 (also known as IFNGR1 and IFNGR2)

 IFNlR1 (also known as IL-28RA) and IL-10R2
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through a heterodimeric receptor complex composed of the
IFNaR1 (IFNAR1) and IFNaR2 (IFNAR2) chains, and type II IFN
(IFNg) engages the IFNgR1 (IFNGR1) and IFNgR2 (IFNGR2) chains
to assemble its functional receptor complex [8].

In the canonical type I IFN-induced signaling pathway
described over 25 years ago, IFNAR engagement was shown to
activate the receptor-associated protein tyrosine kinases Janus
kinase 1 (JAK1) and tyrosine kinase 2 (TYK2), which phosphorylate
the latent cytoplasmic transcription factors Signal Transducer and
Activator of Transcription 1 (STAT1) and STAT2. Tyrosine-
phosphorylated STAT1 and STAT2 dimerize and translocate to
the nucleus, where they assemble with IFN-regulatory factor 9
(IRF9) to form a trimolecular complex called IFN-stimulated gene
factor 3 (ISGF3). ISGF3 binds to its cognate DNA sequences, which
are known as IFN-stimulated response elements (ISREs), thereby
directly activating the transcription of ISGs, many of which
establish a cellular antiviral state. ISG-encoded proteins restrain
pathogens by several mechanisms, including the inhibition of viral
transcription, translation and replication, the degradation of viral
nucleic acids and the alteration of cellular lipid metabolism.
Cellular responses to IFNAR ligation are cell type- and context-
dependent and vary during the course of an immune response
[9]. Therefore, as said above, although the IFNl members do not
use the IFNa receptor complex for signaling, signaling through
either IFNl or IFNa receptor complexes results in the activation of
the same Jak-STAT signal transduction cascade [8].

2.3. Genetic variations affecting IFN response

The relevance of genetic and epigenetic variations in determin-
ing the range of susceptibility and of clinical severity of several
diseases, including those caused by infectious agents, in the human
population is well known. Therefore, considering the importance
of IFN system in antiviral defense mechanisms and, more broadly,
in immune response, it is not surprising that genetic and epigenetic
variations within the IFN genes and in those associated with
sensing/signaling/response are associated with a range of diseases.
In recent years, inborn errors affecting the production of IFN family
members have been reported in human patients. Insights into the
specific role of human IFNa/b and IFN-l-induction pathways in
anti-viral immunity have been provided by the study of herpes
simplex encephalitis (HSE), the most common sporadic viral
encephalitis in Western countries caused by the almost ubiquitous
and almost innocuous herpes simplex virus-1 (HSV-1). HSE has
been shown to result from a new group of primary immunode-
ficiencies; the first two genetic etiologies of this disease have been
identified as UNC-93B and Toll-like receptor 3 (TLR3) deficiencies.
These discoveries demonstrated the critical role of the UNC-93B-
dependent, TLR3-IFNa, IFNb, and IFNl pathway in immunity to
HSV-1 in children. The wide redundancy of other TLR-mediated
IFN induction pathways is probably responsible for the lack of
increased susceptibility to common viral infection and HSE that is
reported for IL-1 receptor-associated kinase 4 (IRAK-4)-deficient
patients, who display impaired production of IFNa, IFNb, and IFNl
following the activation of TLR7, TLR8, and TLR9 [18]. Increased
susceptibility to multiple viruses, including HSV-1, has been
reported also for inborn errors affecting the response to IFN family
members, such as STAT1 or TYK2 deficiency [19]. In addition, IFNg
deficiencies confer Mendelian susceptibility to mycobacterial
disease (MSMD) that is a rare congenital syndrome characterized
by the occurrence of severe, often disseminated, clinical disease,
caused by weakly virulent mycobacterial species, such as bacille
Calmette–Guérin (BCG) vaccines and non-tuberculous environ-
mental mycobacteria (EM), in otherwise healthy individuals
[18]. IFNg production is controlled by cytokines secreted by
myeloid cells, including IL-12 and IL23. Disorders of six genes of
the IL-12/23–IFNg circuit were discovered since 1996, demon-
strating the critical role of this circuit in protective immunity to
mycobacteria [20,21]. The role of IL-12-dependent IFNg produc-
tion has been confirmed by recent studies, showing that defects in
IL-12p40 or IL-12Rb1 and specific mutations in NEMO [nuclear
factor (NF)-kB essential modulator] are specifically associated with
impaired IFNg-mediated immunity and clinical MSMD [18]. Fur-
thermore, over 347 IFNg gene variants and several single
nucleotide polymorphisms (SNPs) in either IFNg promoter region
or in NFkB binding regions, have been described in multiple ethnic
populations, often affecting IFNg gene expression. Many of these
variants appear to modulate susceptibility not only to infectious
diseases, especially tuberculosis and viral hepatitis, but also to
some non-infectious conditions such as aplastic anemia and
psoriasis; susceptibility to cervical cancer, that is in a position to
bridge viral and non viral mechanisms, is also influenced by host
genetic factors targeting IFNg reviewed in [22]. Besides genetic
variants, several epigenetic modifications are also described,
increasing IFNg expression in Th1 lymphocytes and reducing
IFNg expression in Th2 lymphocytes Increased methylation of
IFNg promoter and consequent decreased expression of this gene
is associated with asthma; on the contrary, decreased methylation
is associated with increased diastolic blood pressure, biliary
atresia, dental pulp inflammation and chronic periodontitis
[22]. Overall, human inborn errors affecting IFN system have
provided conclusive evidence that the members of IFN family are
crucial for protective immunity and innate defense against viral,
bacterial and non-infectious diseases. However non-redundant
role of these members seems to arise, with a certain polarization of
protection, as IFNg seems to be essential for anti-mycobacterial
immunity, whereas IFNa/b and IFNl are essential for anti-viral
immunity [18].

3. Viral strategies to counteract the IFN system

Virus survival and spread into the host depend on the ability to
avoid recognition and control by the host defense. Therefore
viruses use immunoevasion strategies to counteract the host
defenses, particularly against effectors of the innate immunity, as
the interferon system and the interferon-induced molecules
(Fig. 1). Virtually all viruses of mammals have developed multiple
mechanisms of immune evasion. Viruses with wide genomes
and well adapted to the host (Poxviruses, Herpesviruses) have
multiple tools to interfere with the IFN system. In general,
differences in the strategies lie on the host cell machinery, rather
than on the IFN type. Viruses can evade host defenses through
inhibition of IFN induction and/or by inhibition of their signaling
pathways, through activation of the IFN regulatory factors (IRFs),
the Signal Transducer and Activator of Transcription (STAT)
factors, or the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) [23–25]. Viruses developed multiple
escape strategies. The IFN-induced Mx pathway is active against a
wide range of viruses by blocking primary transcription of the
incoming viral genome, by its virionic polymerase, but so far there
is no evidence for a virus-coded inhibitor of Mx. Since in the
presence of Mx, the virus cannot replicate, the generation of Mx
escape mutants/strategies is virtually impossible. Nevertheless,
viruses subvert the Mx system, simply by suppressing IFN
production in the host (see below), thereby avoiding Mx
expression in potential target cells [26].

3.1. Virus inhibition of upstream mediators of IFN production

The cell can detect an ongoing viral invasion, through sensors
located in the cytoplasm or on the membrane of endosomes. These
molecules include the cytosolic retinoic-acid-inducible gene 1



Fig. 1. A simplified overview of the IFN signaling pathways counteracted by viruses. (a) After the viral entry and uncoating, the detection of viral genome by cytoplasmic or

endosomal sensors is prevented by many viral strategies which, on the whole, target the nuclear translocation of transcription factors (NF-kB, IRF-3, AP-1); other strategies

include the block of upstream mediators such as MDA-5 or TLRs. (b) Mechanisms that target the IFN cellular response through the block of JAK-STAT signaling pathway:

degradation or cytoplasmic sequestration of STAT proteins by reduction of phosphorylation. See text for details. Abbreviations: ADAR1, adenosine deaminase acting on RNA 1;

AP-1, activator protein 1; E6 early protein 6 (HPV); GAS, interferong-activated sequence; ISRE, interferon stimulated response element; IRF, interferon regulatory factor; JAK,

janus kinase; MDA-5, melanoma differentiation-associated protein 5; NF-kB, NF-kB, nuclear factor k-light-chain-enhancer of activated B cells; NS-1, non structural protein 1

(Influenza types A, B, C); PKR, protein kinase R; RIG-1, retinoic acid inducible gene 1; RSV, respiratory syncytial virus; SOCS, suppressor of cytokine signaling; STAT, signal

transducers and activators of transcription; TYK-2, tyrosine kinase 2, TLR, toll-like receptors.
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(RIG-1) and the melanoma differentiation-associated gene 5 (MDA5)
dsRNA helicases, through downstream interaction with the
interferon promoter-stimulating factor 1 (IPS-1) adaptor protein,
and some Toll-like receptors (TLR), as TLR3, 7, 8, and 9 [23,24,27]. The
vast majority of human infections is due to RNA viruses; those with a
dsRNA genome (as rotaviruses and other reoviruses) are detected by
TLR3 or by MDA5. During replication of positive-sense ssRNA viruses
(picornaviruses like hepatitis A virus and poliovirus, flaviviruses like
hepatitis C virus and West Nile virus, coronaviruses like severe acute
respiratory syndrome (SARS) virus), a dsRNA intermediate form is
produced in the cytoplasm, which is recognized by MDA5. The latter
two families may also be sensed by RIG-I. The viruses with a
negative-sense ssRNA genome (orthomyxoviruses as influenza A
virus, paramyxoviruses like measle virus, mumps virus, respiratory
syncytial virus, parainfluenza virus, and Newcastle disease virus,
rhabdoviruses like rabies virus and vesicular stomatitis virus,
filoviruses like Ebola virus, hantaviruses, Borna disease virus, etc.)
activate RIG-I with their ssRNA genome. Double-stranded DNA
viruses (such as a, b and g herpesviruses, adenoviruses, poxviruses)
are sensed by TLR9; by convergent transcription they can also
produce dsRNA and thus activate TLR3, IFN-inducible dsRNA-
dependent protein kinase (PKR), and also MDA5 and/or RIG-I.
Retroviruses (such as HIV-1 and human T-lymphotropic virus I and
II) have a diploid positive-sense ssRNA genome in the virion, that is
reverse transcribed into dsDNA provirus, which is then integrated
into the host genome. Retroviral ssRNA is sensed by TLR7 and TLR8.
The reverse transcription intermediates are recognized by the
cytosolic IFI16 and cGAS DNA sensors, and this leads to the initiation
of the type I IFN antiviral response, pyroptosis and apoptosis, under
the regulation by host restriction factors such as SAMHD1 and
TREX1.

3.2. Viral escape of signaling leading to IFN production

After virus sensing, a series of transcription factors are
activated within the cell, leading to IFN production, i.e. IRF-3,
NF-kB, the activator protein 1 (AP-1), and the chromatin
remodeling associated p300/CREB-binding protein (p300/CBP).
These activated molecules translocate to the nucleus and interact
with the IFN promoter sequences, to upregulate the expression
of interferon genes. IRF-3 activity is hampered by human
papillomavirus (HPV) through the E6 protein, by the Influenza
A virus through the NS1 protein, that is thought to bind and
sequester viral dsRNA, to protect it from cell intrinsic viral RNA



Table 2
Overview of synergistic and antagonistic interactions among IFN family members.

See text for details and references.

IFNs combination Type of

interaction

Outcome

IFNa or b + IFNg Synergy Inhibition of HSV-1 replication

IFNa or b + IFNg Synergy Inhibition of HCV replication

IFNa + IFNg Synergy Inhibition of LASV replication

IFNb + IFNg Synergy Inhibition of VZV replication

IFNa or b + IFNg Synergy Inhibition of hCMV replication

IFNa + IFNg Synergy Inhibition of SARS-Cov replication

IFNa or b + IFNg Synergy Inhibition of SARS-Cov replication

IFNb + IFNg Synergy Inhibition of HSV-1 replication

IFNa + IFNl Synergy Inhibition of HCV replication

IFNa + IFNl Synergy Inhibition of HCV replication

IFNa or b + IFNl Antagonism Inhibition of EMCV and HSV-2 replication

IFNa + IFNl Antagonism Inhibition of EMCV, WNV, CHIKV and

HSV-1 replication

M.R. Capobianchi et al. / Cytokine & Growth Factor Reviews 26 (2015) 103–111 107
detection, and in Filoviruses there is an inverse correlation
between the magnitude of IFNa/IFNb responses and virulence in
humans [23,25,28,29].

3.3. Viral inhibition of the JAK-STAT signaling pathway

This signaling pathway (that acts through the JAK and TYK2
kinases, IRF-9, and STAT proteins) varies with the IFN type, since
the IFNa/b receptor on the plasma membrane activates the JAK1
and TYK2 molecules, while the IFNg receptor activates JAK1 and
JAK2; by protein phosphorylation the signal is transmitted to the
nucleus [30,31]. Many viruses counteract the JAK-STAT pathway
by their V and C proteins, as Paramyxoviruses, rubiviruses, etc.,
whose V and C proteins block the induction of IFNb and can
degrade the STAT proteins or prevent their phosphorylation or
limit their nuclear translocation [23]. This can make the cells
unresponsive to both type I and type II interferons, as for the Sendai
virus, or the cells do not respond to IFNa but still remain
responsive to IFNg, as it occurs for measles virus [32]. The VP24
protein of the lethal Ebola virus binds the karyopherin alpha
nuclear transporter, to inhibit STAT1 nuclear transport and render
cells refractory to IFNs [33].

3.4. Inhibition of IFN-induced antiviral effectors

Viruses (influenza virus, HCV, herpes simplex virus) can also
induce the suppressor of cytokine signaling (SOCS) proteins,
negative regulators of the JAK-STAT signaling [23,34]. The already
mentioned virus-coded C and V proteins can interfere with the IFN-
induced PKR (protein kinase R) and ADAR1 (adenosine deaminase
acting on RNA 1) enzymes, thus preventing the inhibition of
translation and the induction of apoptosis, thus helping virus
presence and replication within the cell [35,36]. Complex viruses
have multiple mechanisms to interfere with the IFN system; the
various poxviruses are active against type I and type III interferons
through a secreted protein, antagonize NF-kB and have a specific
interferon-gamma-binding protein that interfere with the binding
to the cell receptor [37–40]. Almost every step of the IFN response
can be interfered by the vaccinia poxvirus: induction of IFNs,
activation of the NF-kB and IRF-3 and of the JAK-STAT pathways, as
well as the activity of the effectors of the antiviral state, such as
those involving PKR- and the 20-50-Oligoadenylate synthetase
[37,41]. Recent studies have shown that the Acanthamoeba
polyphaga mimivirus (APMV) may be pathogen for humans,
causing pneumonia. In human PBMCs APMV replicates, inducing
type I IFNs, but inhibiting IFN stimulated genes (ISG) induction by
viroceptor and STAT-1 and STAT-2 dephosphorylation independent
mechanisms; it is resistant to IFNa2, but sensitive to IFNb [42].

4. Synergistic and antagonistic interactions

The ability of IFN family members to protect against various
viral infections descends from the complex transcriptional
programs they initiate. Each type of IFN can induce the expression
of hundreds of genes to mediate various biological responses.
Although IFNs are effective inhibitors of viruses such as vesicular
stomatitis virus (VSV) and encephalomyocarditis virus (EMCV),
almost all RNA and DNA viruses have evolved mechanisms to
subvert the host IFN response, and are able to resist, at least in part,
to the IFN-mediate inhibition. However, several studies have
shown that viruses normally resistant to the effects of type I or type
II IFN separately, are susceptible to IFNs when used in combination.
The reciprocal potentiation of type I or type II IFN is a well known
phenomenon described since 1979 [43], and has been observed for
both antiviral and antitumor effects [44]. Synergistic antiviral
activity resulting from the contemporary presence of both IFN
types has also been described in HIV-infected patients and in some
autoimmune diseases [45]. It has been demonstrated that IFNa/b
and IFNg synergistically inhibit the replication of HSV-1 both in
vitro and in vivo [46,47]. In addition, several reports have indicated
that IFN family members used in combination have a synergistic
antiviral activity against other viruses, such as hepatitis C virus
(HCV) [48], Lassa virus (LASV) [49], Varicella-Zoster virus (VZV)
[50], human Cytomegalovirus (hCMV) [47] and severe acute
respiratory syndrome-associated coronavirus (SARS-CoV) [51,52].

Peng and collaborators tried to better understand the mecha-
nisms underlying the synergism between type I and type II IFN in
the inhibition of HSV-1 replication. They showed that IFNb1 and
IFNg interaction is exploited through either an independent, i.e.
inducing distinct gene categories, or a cooperative mechanism, i.e.
inducting a common subset of genes at a level that is much higher
than with either IFN alone. The genes cooperatively induced by
IFNb1 and IFNg included those involved in apoptosis, RNA
degradation and inflammatory response. As result, the combina-
tion of IFNb1 and IFNg induced more apoptosis and inhibited HSV-
1 gene expression and DNA replication significantly more than
treatment with either IFN alone [53].

While synergism between type I and type II IFN is well
established, little is known about the effect of type I and type III
IFNs combination, as available studies report contrasting infor-
mation, with synergism reported for some viruses (i.e. HCV)
[54,55], but not for other viruses (i.e. EMCV and HSV-2) [56]. In
addition, antagonism for the intracellular pathways involved in
antiviral activity has been reported [57]. In a recent study [58]
possible synergism/antagonism between IFNa and/or IFNl in the
inhibition of virus replication (EMCV, WNV lineage 1 and 2, CHIKV
and HSV-1) has been investigated in different cell lines. The
results showed that IFNl is less effective than IFNa for both
the inhibition of virus replication, and that IFNl antagonized the
IFNa-driven inhibition of virus replication. The findings on
antiviral activity are paralleled by analogous trends in the
induction of the molecular mediators of antiviral activity (MxA
and 20-50OAS). An overview of the interactions between IFN family
members is reported in Table 2.

5. Activities not related to viruses

Studies of the late Sixties revealed that the antiviral agent IFN
was able also to suppress the growth of tumors [59]. Since then,
IFNs were shown to be pleiotropic biologic response modifiers,
that, upon activation of thousands genes [60] induce a broad
spectrum of activities, regulating cell cycle, differentiation,
expression of pivotal molecules on the plasma membrane, release
of mediators, etc., that can be relevant for cell proliferation, innate



Table 3
Spectrum of biological activities of the interferons. See text for details and

references.

Activity Type I IFN Type II IFN Type III IFN

IFN-responsive genesa 2169 2339 159

Inducibility by virus

infections

++++ +++ ++

Induction of antiviral

effectors

++++ ++ ++

Cell growth inhibition ++ ++++ +

Induction of autophagy ++ ++ nsb

Stimulation/inhibition of

cell differentiation

++ ++++ ns

Stimulation of MHC class I

antigens

++ ++++ ++

Stimulation of MHC class

II antigens

++ ++++ ns

Stimulation/inhibition of

phagocytosis

++ ++++ ns

Stimulation/inhibition of

antibody production

++ ++++ ns

Inhibition of intracellular

parasites

+, indirect ++, direct ns

Induction of IFN,

cytokines and

chemokines

+ ++ +

Induction of neurologic

symptoms

++ ++ �

Specific receptor

distribution in the body

Ubiquitous Ubiquitous Tissue-restricted

a Cellular genes with p-value <0.05 and fold change �2, according to http://

www.interferome.org [60].
b ns: not studied, so far.
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and adaptive immunity, hematopoiesis, angiogenesis, and with
important outcomes also for cancer, autoimmunity, and therapy
[61,62]. A survey of the spectrum of biological activities of the
interferons is reported in Table 3. Importantly, because of the
multitude of IFN-induced genes, opposite effects can be deter-
mined by the same IFN, depending on timing and dosages, both in
vitro and in vivo, as shown since the Seventies in the mouse Friend
erythroleukemia cells [63,64]; IFN effects on patients were defined
‘‘Janus-like’’, as IFNs may have both beneficial and detrimental
effects, depending on the disease context [65].

5.1. Anti-proliferative activity

This property of all IFNs can help the host by depletion of
infected cells, restrain excess cell-mediated immunity and inhibit
angiogenesis, with consequent reduction of tumor growth; it may
occur both in cancer and normal cells, in vitro and in vivo. Type II
IFN is more effective than type I IFN (being IFNb more potent than
IFNa), while type III IFN is restrained by the low or limited
presence of the specific receptor on the membrane of the target
cells [66–68]. IFNb has a greater receptor-binding affinity than
IFNa, and this finding may account for the more potent and
different antiproliferative and perhaps immunoregulatory actions
of IFNb [69]. The anti-growth activity of IFNs is mediated by arrest
of the cell cycle and induction of caspases and apoptosis; it occurs
in all the somatic cells tested, with differences depending on the
IFN type and dosage [66,70]. The anti-proliferative activity of
type III IFNs does not occur in all the receptor-positive cells but
depends on the cell type, at variance with the antiviral activity and
up-regulation of MHC class I molecules [66]. Because of possible
therapy of melanoma, type I IFNs were extensively studied in
keratinocytes and melanocytes [67]; of note, the IFNb expression
in vitro by undifferentiated, growth-arrested murine keratinocytes
suggested that its production by terminally differentiated cells was
associated with arrest of proliferation. Recently it was reported the
induction of autophagy by type I and type II IFNs in cancer cells, a
mechanism that may counteract the pro-apoptotic functions of
IFNs [11,71,72], through the p38 MAPK pathway and ATF6
phosphorylation [72].

5.2. Cell differentiation

It can be modulated by IFNs, as shown by an endless list of
reports. Type I and type II IFNs were shown to affect the
erythropoiesis pathways [63,64,73]. Chronic IFNg production may
cause anemia and bone marrow failure, hence it may be involved in
malignant hematopoietic malignancies [73]. Another IFN-regulated
process is adypogenesis, that is inhibited by type I and II IFNs
[74,75]. In normal thyrocytes both IFNa and IFNg regulate the
expression of integrins (target for infiltrating lymphocytes) and the
signaling induced by cell adhesion to fibronectin [76]. Moreover,
IFNg induces CXCR3-binding chemokines, which in turn recruit
Th1 lymphocytes, with an important role in the initiation of
autoimmune thyroiditis.

5.3. Immunomodulation

IFNs are potent immunomodulators, especially IFNg; among
the IFNa subtypes, each has its own immunomodulatory pattern
[77]. In general, IFNs stimulate already differentiated cells in the
short term, while, by growth inhibition, in the long term or with
higher IFN concentrations, they may reduce the replacement of
exhausted cells with their precursors. Immunomodulatory effects
include enhancement of surface molecules such as MHC (major
histocompatibility complex) antigens, several receptors, and
modulation of the activation and differentiation of effector cells,
as monocyte/macrophages, dendritic cells (DC), B, T and NK cells.
Type I and III IFNs and, with higher efficiency, type II IFN
upregulate the expression of class I MHC and co-stimulatory
molecules by tissue cells and immune cells, as the DCs, that
differentiate into efficient antigen- and self-antigen-presenting
cells, leading to activation of quiescent reactive T helper cells
[66,78–80]. The expression of class II MHC molecules is
upregulated by all three IFN types, being the type II the most
active [81,82]. The effect of the latter IFN can be interfered by type I
IFNs [83]. The activation of DR and of chemokine receptors may
modify the phenotype (and recognition of progeny virions), and
virus binding on the membrane [84,85]. Type I IFNs thus function
to elevate both innate and adaptive immune responses, with
induction of cytokines and chemokines, activation and differenti-
ation of CD4+ T cells and CTLs, the activation and differentiation of
B cells, the production of antibodies and the switching of
immunoglobulin (Ig)isotypes [61,66,77]. Type III IFNs were not
demonstrated to increase antibody formation, and were shown to
modulate Th1/Th2 cells balance through a different mechanism
from type I IFNs [66]. IFNg, but not IFNa or IFNb can induce
neutrophils to suppress lymphocyte proliferation through the
expression of programmed death ligand 1 (PD-L1) [86]. Type II IFN
is essential also in immunity intracellular non-viral parasites such
as Toxoplasma gondii, Cryptosporidium parvum, Leishmania major,
Trypanosoma cruzi, etc., and elicits strong cell-autonomous killing
of intracellular parasites; also type I IFN, however is induced
during these infections: it does not exert an intrinsic control of
parasites, but its signaling recruits NK cells, which then mediate
parasite killing by producing type II IFN [87].

5.4. Interferon-induced diseases

Dysregulation in production/signaling of all IFN types are
associated to a variety of pathologies. Activation of IFNa pathways
were related to several autoimmune diseases, such as systemic
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lupus erythematosus, Addison’s disease, etc. [88]. Miscarriage of
humans and animals has been associated with higher levels of
IFNg, that, on the other hand, is involved in maintaining the
decidual layer and vascular remodeling in the uterus [89]. Abnor-
mality in IFN-stimulated gene patterns, causing failures in
immunotolerance in early childhood were proposed to be
contribute to the development of type 1 diabetes and cases of
type 1 diabetes were also related to treatments with pegylated IFN
and ribavirin for chronic hepatitis C [90]. Cardiovascular complica-
tions can be observed in IFN-treated subjects (arrhythmia,
myocarditis, reversible hypertension, ischemic heart disease,
pericarditis and pericardial effusion, cardiomyopathy) and are
generally reversible [88]. Sarcoidosis, a systemic chronic granulo-
matous disease of unknown cause, is a rare adverse effect from the
use of type I IFNa and IFNb, that reflects an exaggerated cell-
mediated immune response to an unknown persistent antigen,
with higher levels of circulating IFNg [91]. Thyroid dysfunctions in
IFN-treated patients were observed since 1985 [92], and are still a
significant problem for patients receiving either IFNa or IFNb; in
vitro and animal studies showed that thyroid inflammation and
autoimmunity involve direct effects (increased expression of
thyroid differentiation) as well as activation of destructive
bystander immune responses [93]. Significant exacerbations were
caused by treatment of multiple sclerosis patients with IFNg, while
IFNb is currently given as therapy, and seems to be more potent
than IFNa [94,95]. In the EAE animal model of multiple sclerosis, a
regulatory role of Type III IFN-producing CD4+ T cells conferring
protection against EAE was proposed [96]. Depression and other
cognitive and psychiatric disturbances are reported by approxi-
mately half of the patients treated with IFNa for chronic hepatitis C
and B, Behçet’s syndrome, melanoma and lymphoma [97]. IFNa
determines abnormalities of the hypothalamo-pituitary-adrenal
axis and disturbances of brain metabolism, and interferes with
neurotrophic signaling, thus hindering neurite outgrowth, synap-
tic plasticity, endogenous neurogenesis and neuronal survival
[97]. Comparing patients receiving pegylated IFNa plus ribavirin
with those receiving IFNb plus ribavirin, it was found that
depressive symptoms were more prevalent following IFNa than
IFNb treatment [98]. In mice, IFNa was reported either to promote
antidepressant-like effect associated with an increase in brain
serotonin turn over, or to promote a depression-like phenotype,
mediated by suppression of hippocampal neurogenesis and
induction of depression [99], while the lack of IFNg increased
anxiety-like and depressive-like behaviors of IFNg-knocked out
animals, suggesting that IFNg is involved in hippocampal
neurogenesis and CNS plasticity [100].

6. Concluding remarks

Interferons have extraordinary antiviral efficacy; therefore
viruses have developed multiple strategies of immune evasion to
counteract IFN induction and signaling and the interferon-induced
effector molecules. During the last decades, IFNs were shown to
display a multifaceted, Janus-like congeries of activities, with
synergisms and antagonisms between IFN types. Because of the
multitude of IFN-induced genes, also opposite effects can be
determined by the same IFN, depending on timing and dosages,
and IFNs may have both beneficial and detrimental effects,
depending on the disease context. Genetic diversity, with
polymorphisms and mutations, can modulate the extent of IFN
responses and the susceptibility to infections, and genetic and
epigenetic variations within the IFN genes and in those associated
with sensing/signaling/response can be linked to diseases. On the
whole, IFNs are pleiotropic biologic response modifiers, that, upon
activation of thousands genes, induce a broad spectrum of
activities, regulating cell cycle, differentiation, plasma membrane
molecules, release of mediators, etc., that can be relevant for cell
proliferation, innate and adaptive immunity, hematopoiesis,
angiogenesis and other body functions.
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