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Abstract: Metabolic footprinting represents a holistic approach to gathering large-scale metabolomic
information of a given biological system and is, therefore, a driving force for systems biology and
bioprocess development. The ongoing development of automated cultivation platforms increases
the need for a comprehensive and rapid profiling tool to cope with the cultivation throughput.
In this study, we implemented a workflow to provide and select relevant metabolite information
from a genome-scale model to automatically build an organism-specific comprehensive metabolome
analysis method. Based on in-house literature and predicted metabolite information, the deduced
metabolite set was distributed in stackable methods for a chromatography-free dilute and shoot
flow-injection analysis multiple-reaction monitoring profiling approach. The workflow was used to
create a method specific for Saccharomyces cerevisiae, covering 252 metabolites with 7 min/sample. The
method was validated with a commercially available yeast metabolome standard, identifying up to
74.2% of the listed metabolites. As a first case study, three commercially available yeast extracts were
screened with 118 metabolites passing quality control thresholds for statistical analysis, allowing to
identify discriminating metabolites. The presented methodology provides metabolite screening in a
time-optimised way by scaling analysis time to metabolite coverage and is open to other microbial
systems simply starting from genome-scale model information.

Keywords: metabolomics; dilute and shoot; flow-injection analysis; mass spectrometry; prediction;
bioprocess development; method development; automation; digitalisation; yeast extract

1. Introduction

The metabolism of microorganisms is a complex and dynamically regulated system
of biochemical reactions. These enzyme-catalysed reactions provide the necessary inter-
mediates for cell growth, energy conversion, product formation, and the possibility for
adaptation to environmental changes. The interactions of genome, transcriptome, pro-
teome, and metabolome result in certain metabolic sets and lead to the fluxome as part of
this multilayer system [1,2]. As a metabolic image of the cell state, the metabolome allows
the investigation of environmental changes in the organism based on a given genetic set [3].
This allowed metabolomics to emerge as a valuable tool in life science applications, such as
systems biology [4–6], synthetic biology [7,8], and clinical research [9–11].

In microbial research, metabolomics can be utilised as a tool for a wide range of ques-
tions, e.g., enzyme function analysis or discovery [12], gene function relationship [13,14],
pathway identification [15], and metabolic flux analysis [16,17]. The findings of these
areas can be transferred to industrial biotechnology [18–20], where metabolomics addi-
tionally supports, e.g., microbial strain engineering [21–24], strain characterization [25–27],
bioprocess monitoring [28–30], and optimization [17,31,32].
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With the ongoing development of molecular biology and metabolic engineering tools,
large microbial producer strain libraries can be generated in a short amount of time [33–35].
Subsequently, these libraries are characterised in miniaturised or small-scale cultivation
systems [36] with high throughput, which is often supported by laboratory automation
technology [37]. While these systems accelerate the cultivation throughput and could
allow for time-resolved sampling [38], they usually lack the option for a comprehensive
individual phenotypic characterization in terms of the full spectrum of metabolic (by-
)products, providing biological insight for strain and bioprocess engineering. Thus, the
need for comprehensive high-throughput metabolomics is an obvious consequence to
generate hypotheses on molecular mechanisms and metabolic regulation to support further
metabolic and bioprocess engineering [39].

Mass spectrometry (MS) is widely established as the detector of choice for metabolomic
studies [40,41]. Based on the selected mass analyzer technology and benefits of the analyz-
ing modes, MS allows the identification or quantification of small molecules in untargeted
or targeted metabolomic studies [42,43]. A quadrupole-time-of-flight (QqToF) analyzer
merges the capabilities of quadrupole precursor selection and fragmentation with ToF high
mass resolution and accuracy, making it a valuable tool for metabolite identification and
allowing the quantification of metabolites in product ion scan (PI) mode. Still, if oper-
ated with the same dwell and cycle time, a triple-quadrupole (QqQ) in multiple-reaction
monitoring (MRM) generally shows a higher quantitative precision and sensitivity. In
addition, a low mass resolution QqQ is especially suited for high-throughput applications
because of its robustness and waiver of in-between batch mass calibration with a calibrant
delivery system.

Nevertheless, the bottleneck of a targeted tool such as MRM for large-scale metabolomic
studies is the limitation in metabolite coverage. The metabolite-specific information for
fragmentation pattern, ionization mode, and other information needs to be known or
derived from physical properties to create a targeted MS/MS assay. The gold standard to
gather such information is the manual parameter optimization with metabolite standards
to acquire not only the MS/MS pattern but also information about ionization mode and
optimal mass analyzer settings. However, only a small part of the microbial metabolome
is available as reference standards with substantial costs. Literature can also be a fruitful
source of MS/MS data information [44–47], barring some uncertainties with respect to
method transfer from different MS devices and vendors.

The application of a QqQ and the utilization of its MRM mode for global scale
metabolomic studies was already demonstrated by applying incremental methods to
determine a set of optimization parameters of relevant metabolites prior to actual analy-
sis [48–50]. While such approaches can cope with the challenge of instrumental parameter
selection, they are often limited by the acquirable throughput. Independent of the method
used, the metabolite or parameter information is acquired during or in between the mea-
surements, resulting in necessary additional analysis runs. In addition, such incremental
methods are tailored for the respective samples measured and need to be repeated for every
new sample type.

In silico obtained MS/MS spectra might allow closing the gap between metabo-
lite standards availability and the vast range of naturally occurring metabolites [51,52].
Collision-induced fragmentation modelling allows the prediction of metabolite fragment
spectra based on known datasets in a machine learning approach [53–55]. While generally
used for metabolite identification [56,57], in silico spectra might be promising sources for
mass transitions of metabolites in a targeted approach [44].

MS methods are frequently used in conjunction with liquid-chromatography (LC)
methods, separating analytes from buffer molecules, salts, and other analytes, thereby
minimizing matrix effects and charge competition leading to improved overall signal
intensity [58,59]. In a large-scale targeted approach, the limiting cycle time of a quadrupole
could be overcome by scheduled MRM modes [60]. However, with increasing sample
numbers, the run time for LC becomes a critical step limiting the overall throughput, which
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represents a clear disadvantage. This holds especially true in a setting with a high number
of metabolites and high throughput.

In this study, we present a global LC-free dilute and shoot (DS) flow-injection analysis
(FIA) QqQ method for semitargeted metabolomics. Based on a compound-specific set of
manually optimised in-house and literature MS data, in silico-predicted product ion spectra
and pKa values were validated and subsequently used to assemble metabolite-specific
MS/MS mass transitions, collision energies, and the ionization mode.

By applying the information of the KEGG, PubChem, and ChEMBL database, an ion
library of 19,948 mass transitions for 5110 metabolites was created. Mass transition selection
of individual metabolites was based on selecting the corresponding genome model of the
organisms, considering isobaric and amphoteric molecules, as well as evaluating signal
intensity. To provide sufficient dwell time and analytical precision, the mass transitions
were distributed in packages with up to 40 transitions for positive or negative ionization
modes. In the LC-free FIA approach, we reduced the analysis time of a single injection to 1
min/package. To encounter matrix effects and charge competition, we applied high dilution
factors in a DS approach and improved ionization by an organic modifier. The method
was validated with a commercially available Pichia pastoris (PPA) cell extract. Subsequently,
it was applied to different types of commercially available yeast extract products (YE) as
a model system for a complex microbial sample material consisting of several hundred
metabolic compounds. Utilizing a QqQ for detection allowed the precise determination
of metabolite peak areas for multivariate discrimination analysis and identification of
the most discriminating metabolites in the YE products. The approach is not limited to
yeast metabolites and can be transferred to any microbial system simply starting with the
corresponding genome-scale model.

2. Results

The extension of a targeted QqQ method to a broader scope of metabolites requires
detailed metabolite information in the form of molecular weight, fragmentation pattern for
given collision energy, and possible ionization states for every compound. Such information
was obtained from manually optimised MS parameter studies for 146 metabolites by direct
injection (DI) of standard solutions with a QqToF in PI mode. Moreover, detailed MS/MS-
specific information in the form of MRM parameters for additional 272 metabolites could
be obtained from the literature [44,61–68], expanding the experimental parameter database
to 418 metabolites (provided in the repository). Nevertheless, a substantial part of the
metabolome was not covered, demanding the application of in silico approaches to close
this gap.

2.1. Prediction and Validation of pKa Values to Select Ionization Mode

Selecting the appropriate ionization mode for a given metabolite is crucial for soft ion-
ization techniques such as electrospray ionization (ESI). Amine groups may be protonated
for ionization in positive mode, while carboxyl groups can be deprotonated to allow for
ionization in negative mode. Thus, the pKa value of the entire molecule could be used to
select the appropriate ionization mode in the method development. Unfortunately, the
availability of experimentally determined pKa values is limited, mainly because of the same
reasons as for the MS/MS spectra. The key to success for pKa prediction is the information
about pKa values for the acidic and basic groups in the molecule.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) [69–71] was used as a source
of biological pathway and metabolite information. The unique compound identifier (ID)
of the KEGG small molecule category was selected as an unambiguous metabolite com-
pound identifier during database creation and subsequently filtered by additional queries
(Figure 1a). The benefit of using KEGG as the starting point for database creation is its
versatile connectivity to genome-scale models. However, KEGG does contain only sparse
information on the chemical compound structure or relevant parameters for MS analysis,
demanding further connection to other databases using the KEGG ID for compound trac-
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ing. Therefore, a four-step procedure was conducted to (i) get the structural metabolite or
substance information; (ii) get the neutrally charged metabolite or compound identifier
(ID); (iii) link the neutrally charged metabolite to a pKa database; (iv) obtain pKa values for
the metabolite.
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Figure 1. Database creation: (a) Filtering steps to acquire valid metabolite information for method
development based on KEGG, PubChem and ChEMBL; (b) Histogram of pKa values with ChEMBL
classifier for molecular species.

(i) The small molecule class of KEGG provided 18,749 compound identifiers with
18,598 corresponding PubChem substance identifiers (SIDs). (ii) PubChem [72] and the
PubChem SIDs were used to acquire the standardised notation of the molecule structures
and the linked compound identifier (CID) to avoid charged molecule forms or tautomers.
(iii) Of the 16,482 neutrally charged metabolites with a CID, 7619 metabolites were linked
with a ChEMBL ID. ChEMBL [73,74] was the key to acquiring predicted pKa values of
functional groups for further decision making on ionization mode selection. (iv) Overall,
for 5676 metabolites, the predicted pKa values for acidic or basic functional groups could
be provided (available in the repository). The ChEMBL classification and distribution of
predicted pKa values over the pH range are shown in Figure 1b.

The pKa values of the corresponding category represent the predicted logarithmic
acid constant of the acidic or basic groups individually in the case of multiple functional
groups in the molecule and not their overall pKa values. Based on ChEMBL, the remaining
KEGG molecules are classified in 2004 acids, 1029 bases, 686 zwitterions (referred to as
amphoterics), and 3520 neutral molecules. A graphical representation of the ChEMBL
classification for acids, bases, amphoteric, and neutral molecules is given in Chart 1 in
ESM1. Acids consist of molecules with strong and weak proton donors, e.g., phosphate and
carboxylic groups with either acidic pKa values < 6.5 (only acidic side groups, e.g., uridine
triphosphate) or acidic pKa values < 6.5 and basic pKa values < 8.5 (acidic and basic side
groups with overall strong acidic behaviour, e.g., adenosine triphosphate). Classified bases
consist mostly of organic amines with basic pKa values> 8.5 (only basic side groups, e.g.,
ammonia) or basic pKa values > 8.5 and acidic pKa values > 6.5 (strong basic behaviour,
e.g., kanamycin A). Amphoteric molecules contain acidic pKa values < 6.5 and basic pKa
values > 8.5 (acidic and basic side groups, e.g., amino acids). Neutrally labelled molecules
contain either acidic pKa values > 6.5 (weak acidic behaviour, e.g., tricine), basic pKa
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values < 8.5 (weak basic behaviour, e.g., proflavine), or acidic pKa values > 6.5 and basic
pKa values < 8.5 (molecules not covered by classification so far, e.g., pyridoxine).

The validation of predicted ChEMBL pKa values was conducted with experimental
pKa values from the DataWarrior pKa value set [75] in a quantitative structure–activity
relationship (QSAR)-ready form or QSAR-SMILES strings provided in [76] for 374 matched
metabolites. Based on the predicted pKa values for acidic and basic groups in the molecules,
metabolites were categorised in acids (only acidic pKa), bases (only basic pKa), and am-
photeric species (acidic and basic pKa). Evaluation of prediction was performed based
on linearity by linear regression and absolute deviation for each individual compound
(Figure 2a,b).
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The correlation analysis (Figure 2a) between 374 predicted and experimental pKa
values of metabolic compounds displays an overall linear relationship which is close to the
bisecting angle with a coefficient of determination r2 = 0.9301. The absolute pKa deviation
(Figure 2b) of acids and bases is similar and in between approximately ±3 pKa units, while
the amphoteric species show deviations up to ±4 pKa units, which might be sufficient for
simple ionization mode selection.

Overall, the predicted pKa values for the functional groups of the metabolite molecules
showed sufficient accuracy for simple ionization mode selection and additionally provided
chemical ionization permission by providing pKa values of acidic and basic functional
groups in the molecule. This allows allocating, for example, molecules with an acidic pKa
and without a pKa of basic groups to the negative ionization mode. For molecules classified
as amphoteric (pKa,acidic < 6 and pKa,basic > 8.5) or neutrally labeled metabolites with weak
acidic and basic properties (pKa,acidic > 6 and pKa,basic < 8.5), ionization mode selection
will be combined with mass transition selection to avoid isobaric convolution patterns if
possible. Isobaric molecules show identical precursor and product ion m z−1.

2.2. Prediction and Validation of Metabolite Fragmentation Pattern

For a given metabolite, the selection of the ionization mode is generally followed by
the selection of a suitable mass transition to provide high MS sensitivity and selectivity in a
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targeted and semitargeted approach with a priori information. Since metabolite reference
standards are often not available, metabolite fragmentation patterns can be predicted. The
PubChem data were not only a valuable source of information for pKa value estimation and
selection of ionization mode but also provided the simplified molecular input line entry
specification (SMILES) strings for the compounds. SMILES strings were obtained from
PubChem data and subsequently used for fragment spectra prediction with the competitive
fragmentation modelling (CFM) tool [53,54] for three collision energies (CE) of ±10 V,
±20 V, and ±40 V.

The use of predicted MS/MS spectra might bear a risk due to the modelling error of
the CFM-ID fragment prediction model itself, the training set sizes, and the origin used. To
minimize misconceptions about the model, the MS/MS prediction was revalidated with
experimental in-house spectra of available reference standards. Experimental metabolite
fragmentation spectra were acquired by DI of metabolite standard solutions on a QqToF
with rolling collision energy ramps in PI mode. Collision energy ramps ranged from −130
to 0 V in negative mode and 0 to 130 V in positive mode. PI spectra at ±10 V, ±20 V,
and ±40 V of 61 metabolites were used to evaluate Recall (R), Weighted Recall (WR),
Precision (P), Weighted Precision (WP), and Jaccard scores (J), described in [53], with their
corresponding prediction (Figure 3b–g). An example is displayed for tyrosine (KEGG
ID C00082) in positive ionization mode with +20 V collision energy (Figure 3a). Further
examples are provided in Charts 4–8 in ESM1. The results are averaged over all predictions
(Figure 3b), per ionization mode (Figure 3c,d), as well as collision energy (Figure 3e–g).

Weighted as well as unweighted metrics were used for evaluation [53]. R and P as
unweighted metrics favour matched high and low-intensity signals equally. This allows to
generally evaluate the accuracy of prediction in both directions, including low-intensity
signals to avoid overemphasizing single signals. For the example given in Figure 3a, in total,
8 MS/MS fragment signals were measured, while the CFM-ID tool predicted 18 potential
fragments. Thus, six out of eight signals in the measured spectrum can be found in the
prediction resulting in recall (R) = 75%. Vice versa, 6 out of 18 signals in the prediction
can be found in the measured spectrum resulting in precision (P) = 33.3%. Since R and
P might be misleading in the case of low-intensity signals such as noise, weighted recall
(WR) and weighted precision (WP) were also evaluated. WR and WP represent weighted
R and P, which additionally take the signal intensity into account. This favorus high-
intensity signals, which might provide a better indication of how much a spectrum has
been matched. Therefore, a relatively high-intensity signal in the measurement (indicated
in Figure 3a, blue spectrum) with a match in the predicted spectrum (red spectrum) has a
high impact on WR. The Jaccard score (J) is an unweighted indicator for overall compliance
between measurement and prediction, including low-intensity signals such as noise. The
conjunction (six matching signals) divided by the disjunction (20 signals) of measured and
predicted signals results in a Jaccard score (J) of 30%.

The percentage of the total peak intensity in the measured spectrum with a matched
peak in the predicted spectrum (WR) shows a maximum of 91% for 10 V (Figure 3e) and
a minimum of 78% for 40 V (Figure 3g), indicating that the measured fragment response
is most probably present in the predicted fragment spectra. The decrease in WR by the
increase in collision energy (Figure 3e–g) might be due to subsequent fragmentation, which
leads to an increase in fragment variability and a decrease in high response signals.

On the contrary, the percentage of the total peak intensity in the predicted spectrum
with a matching peak in the measured spectrum (WP) between 63–66% (Figure 3b–g) is
slightly lower than the corresponding WR. This indicates additional relevant fragment
responses in the prediction which are not present in the measured fragment spectra. This
may lead to a false positive mass transition selection if the predicted response or mass
transition might be the most dominant and therefore selected. Subsequently, this would
result in false negative metabolite identification.
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The percentage of peaks in the measured spectrum that have a matching peak in the
predicted spectrum (R) is 80% for 10 V (Figure 3e) and 60% for 40 V (Figure 3g), showing a
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similar ranking to the corresponding WR. With the inclusion of small responses, the drop
from WR to R describes additional predicted fragments with lower intensity. Similar to
R, the percentage of peaks in the predicted spectrum that have a matching peak in the
measured spectrum (P) 27% for 10 V (Figure 3e) and 38% for 40 V (Figure 3g) decreases
accordingly by considering low abundant fragments. The conjunction divided by the
disjunction of measured and predicted fragments (J) of 24–29% (Figure 3b–g) stresses the
challenge of low abundant fragment prediction even further.

The missing coverage or false prediction of small, abundant fragments by MS/MS
prediction displays a systematic limitation of prediction and, in comparison, to manual
parameter optimization. While the low abundant predicted fragments might actually
occur in the experimental fragmentation process, they could be below detector limit or
suppressed by charge competition. On the contrary, the prediction might be inaccurate for
the corresponding metabolites. Nevertheless, small, abundant fragments either in predicted
or measured MS/MS spectra might be negligible for mass transition selection to avoid low
ion intensities. Since the WR and WP range from 65–85% for all predictions (Figure 3b),
sufficient prediction capabilities for relatively high-intensity fragments for mass transition
selection are clearly demonstrated. R, P, and J were included to provide a comprehensive
evaluation of the prediction and to allow a comparison to the original study. Overall, the
results confirm the predictive capabilities of the model stated in [53] to a great extent with
an independent in-house MS/MS dataset.

2.3. Automated MS/MS Method Assembly

The predictions for valid metabolite MS/MS fragment spectra and pKa values allows
us to identify suitable mass transitions, collision energies, and ionization modes for every
metabolite. Based on a Saccharomyces cerevisiae genome model (SCE) of KEGG, metabolites
with predicted fragment spectra and pKa values were selected from the database and
subsequently used to create an organism-specific MS/MS method for 252 metabolites.
Although the KEGG metabolome of SCE lists up to 724 metabolites, only 252 of those
metabolites were linked to a pKa value of at least one ionizable group. The difference
of 472 metabolites consists of molecules lacking available pKa data either by a missing
ionizable group (e.g., carboxyl, phosphate, amine) or a cross-referenced pKa value for the
groups in ChEMBL (e.g., urea). While the soft ionization of metabolites without at least
one acidic or basic group is not applicable, no allocation to positive or negative ionization
mode is performed for such compounds. Thus, the 252 fully described metabolites were
selected for ionization mode allocation and mass transition selection.

Further, metabolites were classified based on mass transition origin, selected ionization
mode based on pKa values, and isobaric convolution pattern (Figure 4).

The evaluation of mass transition origin shows 81 in-house, 76 literature, and 95 pre-
dicted mass transitions (Figure 4a) clearly demonstrates the importance of in silico predic-
tions. While 62% of the mass transition are based on experimentally determined values
from either in-house or literature, 38% were predicted data, demonstrating the current
lack of detailed metabolite information by experimentation and underlines the demand
for alternative information sources such as in silico predictions. When looking at the
distribution of in-house, literature, and predicted mass transitions over the m z−1 axis, they
were nearly evenly distributed over the whole range (Figure 4a).

Concerning the distribution of the metabolites to the ionization modes, 96 metabolites
are in positive and 156 metabolites in negative mode (Figure 4b), which could indicate a
bias to functional groups such as phosphate of carboxyl groups in the metabolite set. The
metabolites for positive and negative ionization are broadly distributed across the m z−1

axis, with most metabolites being within approximately 150 and 250 (Figure 4e).
With regard to the uniqueness of mass transitions, 218 metabolites showed this impor-

tant feature, while 34 signals were convoluted, i.e., nonunique mass transitions (Figure 4c).
Unlike unique mass transitions, convoluted mass transitions were especially present in the
region of 100–250 m z−1 (Figure 4f), which could be a consequence of the overall higher



Metabolites 2022, 12, 257 9 of 23

count of metabolites with similar structure and size in this region. Although convoluted
mass transitions are labelled, the accuracy of such allocation depends on the predicted part
of the mass transitions and the accuracy of the utilised prediction model.
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Overall, the distribution of precursor m z−1 is skewed, showing more metabolites
in the range up to 400 m z−1, with approximately 50% of all metabolites being below
200 m z−1 representing the dominating set of small molecules in SCE.

2.4. Validation

The automatically generated method covering the 252 yeast metabolites was evaluated
by analyzing a commercially available Pichia pastoris (PPA) yeast extract metabolome
standard with 94 routinely identified metabolites listed in the certificate of analysis. The
metabolome standard was diluted at 1:103 with 50% MeOH (v/v) and analysed with DS-FIA-
MS/MS in six technical replicates. The selection of the mobile phase was conducted based
on an earlier study, including absolute quantification of amino acids in highly salt-loaded
and additionally buffered cultivation media with DS-FIA-MS/MS [77]. Based on this
targeted LC-MS/MS method, the mobile phase for positive ionization mode (5% MeOH
and 5% acetic acid in H2O) was optimised utilizing an organic modifier in the eluent. The
mobile phase selection for negative ionization mode was based on initial experiments
(data not shown). Different modifiers encountered in LC-MS/MS, such as NH3OH and
MeOH, were used as mobile phase additives in analysing a yeast metabolome standard. A
fully organic MeOH phase showed the broadest metabolite coverage and lowest analytical
error in the DS-FIA-MS/MS approach. The 252 mass transitions were distributed in three
methods with positive ionization mode and four methods with negative ionisation mode,
resulting in a total analysis time of 7 min/sample with an average of 36 MS/MS transitions
per package. The method evaluation by metabolite verification is displayed in Figure 5.
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For consistent nomenclature of metabolic compounds, all metabolite names listed
in the certificate of analysis were translated to KEGG annotation (see Sheet 1 in ESM2).
Surprisingly, only 89 of 94 metabolites are annotated in the PPA extract, based on the
KEGG metabolome as a result of the entire list of genes, expressed enzymes, and their
reactants, while taking enantiomers into account. The five missing metabolites listed in the
commercial extract, but not present in the KEGG metabolome data of P. pastoris comprise
guanidine acetic acid (C00581), sarcosine (C00213), betaine (C00719), galactose variants
(C00124, C00962, C00984, C01113, C01582, C01825), and erythritol (C00503). Therefore, the
89 validated metabolites represent 100% of the target set size in the current analysis.

DS-FIA-MS/MS analysis allowed us to verify 66 of 89 metabolites, covering up to
74.2%. The missing 23 metabolites contain 13 metabolites that were not identified and
10 metabolites that were not present in the method because of the missing metabolite
information in the form of pKa or MS/MS fragmentation data. While the certificate of
analysis lists routinely identified metabolites, there was no precise information about the
concentration and no guarantee of detectable amounts given. Hence, it is unclear if the
13 nonidentified metabolites (Figure 5a) are actually present in a detectable abundance in
this specific extract preparation. Still, a potential explanation could be the applied dilution
factor of 1:103 and the potential low intracellular metabolite pools of certain analytes,
e.g., sugars and redox cofactors. While a certain dilution is necessary to avoid nonlinear
responses due to ion suppression effects [77], it may promote dilution of biological relevant
below the compound-specific detection limit. This is supported by the list provided in the
CoA showing varying example concentrations ranging from 0.001–5 µmol L−1.

The identified 66 of 89 metabolites were classified to specific KEGG metabolite classes
(Figure 5a), with 39.4% amino acids, followed by 24.2% nucleic acids, 15.2% sugars and
sugar phosphates, 9.1% organic acids, and 6.1% nonclassified metabolites as well as vita-
mins and cofactors (Figure 5b).

Interestingly, the majority of metabolites (83,3%) were identified by unique mass
transitions, resulting in a low number of signals (16.7%) with potentially convoluted signals
(Figure 5c). Please note, that convoluted signals mainly consisted of hexose and pentose
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sugars and their corresponding sugar phosphates. For such metabolites, unique precursor
and product ion selection in the m z−1 domain is unlikely to be expected, as is a general
limitation of LC-free applications.

With respect to the source of MS/MS fragment spectra, the classification of the 66 iden-
tified metabolites resulted in 69.7% in-house, 22.7% literature, and 7.58% predicted mass
transitions used for verification (Figure 5d). Although it seems that for most of the bio-
logically relevant metabolites, experimental MS/MS data were available, the predictions
were necessary to complete the metabolite range beyond the manually optimised parame-
ter database.

2.5. Case Study

The applicability of the method was evaluated by screening three commercially avail-
able yeast extracts (YE1, YE2, YE3) of unknown composition for the 252 S. cerevisiae metabo-
lites in a DS-FIA-MS/MS approach. Besides typical acceptance criteria for LC-MS such as
the occurrence of metabolites (>70%) and precision of metabolite determination (<20%)
in QC samples, the DS-FIA-MS/MS was first evaluated based on an additional signal
quality threshold in the form of the signal-noise ratio (SN) > 5 to guarantee sufficient signal
intensity for data processing and peak area integration. Of the 252 screened metabolites,
131 (YE1), 135 (YE2) and 129 (YE3) metabolites with unique mass transitions were identified
in the yeast extracts (see Chart 2 in ESM1). Metabolites for further analysis were selected
based on precision in quality control samples and precision in the single YE samples,
resulting in 118 metabolites for subsequent analysis.

The filtered data, i.e., the metabolite data present in all three YEs, were evaluated
by principal component analysis (PCA) for quality control evaluation and partial least
squares discriminant analysis (PLSDA) for variable selection and class discrimination. The
QC samples were removed from the dataset for supervised, covariance-based PLSDA
modelling. A stratified double fivefold cross validation was used to calculate model
performance indicators for calibration and validation. Training and test datasets were
range scaled to compare metabolites relative to the biological range. The optimal number
of principal components (PC) and latent variables (LV) were identified by the goodness of
prediction (Q2X and Q2Y) indicator (see Chart 3 in ESM1). PLSDA parameters in the form
of regression coefficients and VIP scores and their corresponding confidence intervals were
acquired by bootstrapping (n = 1000).

PCA scores of the first two PCs (Figure 6a) show a tight clustering of QC samples
(mixture of all three YEs) in the centre, indicating low intrabatch variability. Most of the
variance in the predictor matrix can be explained by the PCA model with three PCs (see
Chart 3 in ESM1), displayed by the goodness of fit R2X = 0.789. PLSDA scores of the first
two LVs (Figure 6b) show similar model and component-specific goodness of fit indicators
R2X and R2Xcomp to the PCA model. The reliable class discrimination power of the model
is indicated by a goodness of fit R2Y = 0.992 and the small difference of R2Y = 0.992 to
Q2Y = 0.971.

To decipher the metabolic differences between the YEs, discriminating metabolites
were acquired by variable selection in the form of nonparametric Kruskal–Wallis tests [78],
class-specific PLSDA regression coefficients (βi,class 6= 0), and class-specific variable in
projection (VIP) scores (VIPi,class > 1) [79]. The VIP score for a given metabolite allows
to evaluate predictor variables or metabolite features that best explain response or class
variance. By applying the threshold, variables that contribute the most to the underlying
variance in the predictor matrix are selected. This includes the variance in the predictor
matrix itself as well as orthogonal variation [80]. Class discriminating metabolites were
classified based on KEGG BRITEs, providing hierarchical classification for biological objects,
such as metabolites.

The variable selection resulted in 40 relevant compounds with biological roles, 18 non-
classified metabolites, and 4 phytochemicals (Figure 7a). For further analysis, compounds
with biological roles were selected because of their relevance in the biochemical pathways.
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This resulted in 16 metabolites of the peptide class, 12 of nucleic acid class, 4 hormones,
4 vitamins and cofactors, 3 organic acids, and 1 carbohydrate (Figure 7b). While amino
acids and nucleic acid class indeed represent important metabolites, the high number
of discriminating metabolites for each group was surprising. At this point, this clearly
indicates differences in either cultivation or processing methods used for the three yeast
extracts.
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Figure 6. PCA and PLSDA score plots of the first and second PC or LV with Hotelling’s T2 ellipse for
the 95% confidence interval (CI). Model performance indicators were determined by stratified double
fivefold cross validation. R2X or R2Xcomp describes the goodness of fit or explained variance of the
predictor matrix by the model or corresponding PC/LV. (a) PCA scores plot for three yeast products
(YE1, YE2, YE3) and pooled quality control samples. Q2X describes the goodness of prediction. (b)
PLSDA scores plot for three yeast extract products. R2Y or R2Ycomp describes the goodness of fit or
explained variance of the response by the model or corresponding LV. Q2Y describes the goodness of
prediction for the response.

The analysis of the heatmap visualization (Figure 7c) shows a similar vitamin profile
for YE1 and YE3, clearly discriminated by pantothenate as displayed by the class-specific
VIP score (Figure 7d). Please note, YE2 displays the strongest difference for five of the six
vitamins. Interestingly, based on manufacturer information, YE2 contains added vitamins,
but only for Nicotinate, a discriminating higher vitamin content was found compared with
YE1 and YE3. It can only be speculated if the addition of vitamins in YE2 were not sufficient
to overcome biological variance compared with the nonspiked YE1 and YE3.

With regard to the peptide group of metabolites, YE2 shows a completely different
metabolite profile with lower abundances for almost all amino acids. As indicated by the
corresponding VIP scores and the group size, the amino acid group is the dominating
discriminating metabolite set for YE2. The amino acid profile of YE2 looks complementary
to YE1 and YE3. The high abundance of proteinogenic amino acids for YE3 could be a
consequence of the yeast biomass processing since YE3 is an autolysate, which might
indicate high proteolytic digestion during autolysis.
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Figure 7. Case study evaluation by variable selection for three yeast extract products (YE1, YE2, YE3):
(a) Top-level Categorization of discriminating metabolites based on KEGG BRITEs; (b) Classification
of discriminating compounds with biological roles; (c) Heatmap by hierarchical clustering for the
classes of vitamins and cofactors, peptides, and nucleic acids. The heatmap colours represent the
mean relative area for each metabolite in bins; (d) Class-specific VIP scores for the discriminating
metabolites in the vitamins and cofactors, peptides, and nucleic acids groups. VIP scores > 1 are
coloured in product colours.

Similar to the peptide group metabolites, the nucleic acid group displays an opposite
metabolite profile for YE2 compared with YE1 and YE3. While YE2 shows a high abundance
of pyrimidine nucleotides CMP and UMP, which could indicate an efficient ribonucleic
acid (RNA) restriction digest, YE3 discriminates because of a high abundance of the
nucleosides adenosine and cytidine, which are follow-up products if the nucleotides are
digested by a nucleotidase. Interestingly, YE2 discriminates again by displaying a high
abundance of the purine nucleobases adenine and guanine obtained by follow-up digestion
of nucleosides by nucleosidases. Finally, YE3 shows a high discriminating abundance of
the desoxyribonucleic acid (DNA) restriction product dCMP, which might be a result of
accelerated DNA restriction digest promoted by autolysis.

The overall discriminating and mostly mirrored metabolite profile of YE2 is obvious
and indicates a different feedstock, cultivation, or downstream processing procedure for
this YE. Strikingly, the use of cysteine as a feedstock additive for glutathione production
in yeast [81,82] is clearly indicated by the discriminating abundances of these metabolites
in YE2.
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3. Discussion

Targeted tools for large-scale metabolomic studies making use of MRM with QqQ
devices are limited by the need for compound-specific MS instrument parameters, e.g.,
MS/MS mass transitions. Unavailable or expensive single analyte standards limit manual
parameter optimization, and adequate mass transition selection for the instrument used.
Previous studies regarding this topic utilised sample-dependent and incremental methods
for parameter determination, with a long sample run time, if typical LC is used. To cope
with such throughput challenges, the overall run time needs to be decreased, going hand
in hand with an increase in the number of metabolites measured, even if no analytical
standard is available.

Overall, the automated collection of metabolite information in the form of string
representations such as SMILES, mass transitions, and predicted pKa values obtained
from established databases is obligatory for the assembly of tailor-made comprehensive
metabolite sets, e.g., for a specific biological system. The use of KEGG ID and the genome-
scale model of the biological system of interest (e.g., SCE = S. cerevisiae) is a clear benefit
to the classification and identification of metabolites with unique identifiers to avoid
challenges originating from trivial names of compounds. Additionally, simple updates
of the databases can be achieved without additional operator time for manual curation.
While the benefits of automation are obvious, database coverage is of high importance and
needs to be discussed. For 5676 metabolites with pKa value information or the presence of
acidic and basic functional groups, the ionization mode allocation is possible. Overall, the
validation of predicted pKa values from ChEMBL was conducted with experimental data
in the form of 374 acidic and basic pKa values of acids, bases, and amphoteric molecules.
Sufficient alignment for robust and reliable selection of the ionization mode was provided
by a general absolute pKa deviation of ±1 with few outliers up to ±4 units.

Although molecule identifiers, string representations, and MS/MS predictions can be
acquired for most metabolites, the gap of missing pKa values or the absence of acidic and
basic groups in the metabolites represents an ongoing challenge. Without the knowledge of
protonation or deprotonation capabilities of a given molecule in a soft ionization process,
the random assignment to the corresponding ionization mode might lead to false positive
or false negative identifications. Such random allocation was not applied in this study to
keep a clear focus on metabolites with a clear description and classification, but it could be
an approach to circumvent the issues arising from missing pKa information. Future work
needs to concentrate on increasing the pKa information and metabolite spectra for those
metabolites, which miss a clear ionization mode identifier at the moment.

In this study, the data for mass transitions of metabolites were collected from manual
in-house optimization, literature, and predicted mass spectra. The latter were validated
with in-house measurements and showed good agreement with the original validation
study [53], which used data from MS/MS databases. Weighted metrics WR and WP of 85%
and 65% demonstrated sufficient prediction capabilities for high-intensity signals, which
might be suitable for mass transition selection. Although the prediction might be prone
to error to a certain extent, it seems especially evident for small response fragments, as
demonstrated by the unweighted R and P of 68% and 32% as well as J of 27%. While this
might be crucial for spectra matching and library search in an untargeted approach, it is
not as relevant if the strongest fragment signals yield valid mass transitions for a targeted
approach. Nevertheless, goodness of predictions should be evaluated or validated with data
obtained from the individual mass spectrometric hardware device used in the laboratory.

The validation with a PPA extract demonstrated the applicability of the method
development workflow itself. DS-FIA-MS/MS identified 74.2% of routinely identified
metabolites listed in the certificate of analysis within 7 min/sample and a single dilution
step of 1:103. In addition, 7.6% of common metabolites had to be predicted because of the
missing standard availability. As expected, nonunique mass transitions occurred mainly
for sugars and sugar phosphates due to missing LC separation.
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The analysis of commercially available SCE yeast extracts for technical applications
was conducted with an SCE-specific method set. MRM sensitivity allowed identifying
129–135 metabolites in a column-free DS-FIA-MS/MS approach with an analysis time of
7 min/sample. Typical QC procedures were transferred to a DS-FIA-MS/MS method to
guarantee the corresponding data quality. Even though the yeast extracts for technical appli-
cation may intrinsically bear higher salt loadings, we were able to show the discrimination
power of the method due to MRM precision, resulting in 118 intersecting metabolites with
low variability for subsequent data analysis. The PLSDA model allowed us to identify the
discriminating metabolites of the yeast extracts and to generate basic hypotheses about culti-
vation and processing procedures. This highlights the actual applicability of the large-scale
DS-FIA-MS/MS method as a valuable screening tool for high-throughput applications.

The biggest advantage of the presented method over common LCMS methods is not
only the much-reduced analysis time itself but its flexibility. While the analysis time of an
LCMS method is limited by the LC method time, the analysis time of the DS-FIA-MS/MS
method scales with the numbers of metabolites or metabolite packages to be screened. This
allows time-optimised screenings for certain metabolite sets, e.g., organism(s), pathways,
or molecular classes. For SCE, the automated method development resulted, in total, in
7 mass transition packages, with 3 for the positive ionization mode and 4 for the negative
ionization mode, screening 252 metabolites in 7 min per sample. Timesaving has become
especially evident if the selective DS-FIA-MS/MS is compared with a 22 min per sample
reverse-phase UPLC-MS/MS method [83]. Nevertheless, the potential metabolite coverage
with a variable analysis time displays beneficial and relevant properties for typically time
and cost-intensive applications in systems biotechnology and bioprocess development.

As based on a targeted approach, the presented method requires metabolite informa-
tion prior to analysis. If the analytes and their corresponding information are known a
priori, the automation of method development allows the creation of metabolite set-specific
methods on demand. The metabolite coverage is based on the genome models of the
organisms and the availability of metabolite information such as pKa values. The current
capabilities potentially allow the incorporation of multiple organism genome models and
the selection of certain pathways by the operator. For fully described metabolites, coverage
could be reduced to screen for operator-selected metabolites, which would result in a
shorter analysis time. Nevertheless, large-scale metabolite screening, automated feature
detection, and subsequent method development for shorter analysis times in an automated
setup are other options. While this is certainly a time-optimising procedure, it will be a
trade-off between information gain and analysis time in future activities.

Using the presented semitargeted DS-FIA-MS/MS method for targeted analysis may
allow for absolute quantification of the metabolites, as demonstrated previously for amino
acids. However, the availability of calibration reference substances is a major issue in this
regard. Furthermore, a targeted analysis should be conducted with isotope dilution mass
spectrometry for normalization. While additional screening of labelled mass transitions is
simple, obtaining fully labelled metabolome standards at a low cost for a high-throughput
application may be difficult. In general, the method could be applicable for different sample
types such as urine and plasma samples. However, this would require a revalidation study.

Overall, the presented methodology is an alternative to column-based time-intensive
semitargeted MS/MS analysis. The constantly increasing throughput of automated culti-
vation platforms requires a dynamical screening method for relevant targets or biological
patterns. With regard to automation, the scalable DS-FIA-MS/MS avoids the problem of
column or mobile phase selection and allows the creation of flexible metabolite screening
methods based on operator choices or maybe even interesting features in a feedback loop.
The presented methodology provides metabolite screening in a time-optimised way by
scaling analysis time to metabolite coverage and is open to other microbial systems simply
by starting using genome-scale model information.
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4. Materials and Methods
4.1. Materials

Single metabolite standards were purchased from Sigma-Aldrich (Schnelldorf, Ger-
many). The metabolite yeast extract standard (Pichia pastoris, PPA, ISO1-UNL) was pur-
chased from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA). All other yeast
extracts, namely Yeast extract for microbiology (YE1, 92144, Batch Number BCCC6082),
Yeast extract (Vitamin enriched) for microbiology (YE2, 07533, Batch Number BCCC4059),
and Yeast autolysate for microbiology (YE3, 73145, Batch Number BCCB4473) were ac-
quired from Sigma-Aldrich (Schnelldorf, Germany). UPLC/MS-grade MeOH was obtained
from Biosolve BV (Valkenswaard, Netherlands). Acetic acid (Ph. Eur.) was purchased
from Roth (Karlsruhe, Germany). LC-MS grade water was obtained from a Milli-Q water
purification system (Merck Millipore, Burlington, MA, USA).

4.2. Automated Database Creation

The source code and jupyter notebook for database creation can be found in the
repository. The database creation workflow is displayed in Figure 8. KEGG identifier
of microorganisms and metabolite-specific PubChem SID, as well as ChEMBL identifier,
were acquired with the wrapped KEGG Rest API provided in the biopython 1.76 package.
SIDs were used with pubchempy 1.0.4 to access the PubChem compound identifier (CID),
representing the neutrally charged form of the molecule with the corresponding string
representation (SMILES). The ChEMBL identifier was used with the chembl-webresource-
client 0.10.1 to access the pKa values of ChEMBL. Organism-specific pathway information
was gathered with the KEGG Rest API by providing the organism-specific KEGG identifier,
resulting in relevant pathways, genes, enzymes, and the metabolites involved. Metabolite
fragment prediction was carried out with the CFM-ID prediction tool described in [54].
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Figure 8. Automated database creation workflow: The workflow consists of the main modules
Organisms, Pathways, Metabolites and Prediction. Organism identifiers from KEGG are used to
gather organism and pathway-specific information in the form of metabolites, enzymes, genes. The
Metabolites package is used to collect metabolite classification from KEGG, structure identifier from
PubChem, and pKa values from ChEMBL. Based on the structure identifier (SMILES), prediction of
MS/MS spectra are conducted with CFM-ID.



Metabolites 2022, 12, 257 17 of 23

4.3. Automated Method Development

The source code and jupyter notebook for automated method development can be
found in the repository. The method development workflow is displayed in Figure 9. For
automated method creation, the necessary information in the form of the organism-specific
pathways, the metabolite information file, and mass transition files were parsed.
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Figure 9. Automated method development workflow: The workflow consists of the main modules
Metabolites, Enantiomers, Libraries, Select transitions, Convolution, Format output, and Batch
creation. The Metabolites module is used for organism-specific selection of database information. A
simple enantiomer selection is applied prior to ion library creation. Mass transitions are evaluated
based on possible isobaric fragmentation patterns per ionization mode and subsequently selected in
the Select transitions module. Unavoidable convolutions are considered for method creation to avoid
false positives. Selected mass transitions are formatted for instrument use. Measurement lists can be
generated automatically using the batch creation function.

The total number of metabolites in the KEGG database were filtered based on their
occurrence in the genome model of S. cerevisiae (SCE). This was enabled by selecting the
genes of the organism, the corresponding enzymes and metabolites involved, as well
as the molecular weight (MW, 30 g mol−1 < precursor < 1500 g mol−1) of the relevant
compounds. Enantiomers were filtered based on molecular weight, molecular formula,
and stereochemistry descriptors. The allocation of ionization mode was conducted by
pKa values of acidic and basic functional groups. Amphoteric molecules were allocated to
both ionization modes to provide an additional degree of freedom for later mass transition
selection. With regard to parsing mass transitions, the in-house and literature data were
prioritised over predicted values whenever available, and parameters were read from the
corresponding xlsx file provided in the repository. Predicted mass spectra were directly
read from the prediction algorithm output files. The potential mass transitions from CFM-
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ID prediction were acquired for three collision energies (±10 V, ±20 V, ±40 V) and a
minimal relative signal threshold of 5%. Missing entrance potentials were set to 10 V, and
missing cell exit potentials to 4 V. Missing declustering potentials were interpolated based
on linear regression of inhouse and literature declustering potentials over precursor mass.
Dwell time for all metabolites was set to 50 ms. Isobaric identification was conducted with
regard to ionization modes, as well as a precursor and product ion mass to charge ratios.
The selection of mass transitions was based on the ionization mode, fragment intensity
ranking, and isobaric convolution pattern. If a potential isobaric convolution pattern might
be present for a given metabolite in the corresponding ionization mode, an alternative mass
transition avoiding a convoluted signal is selected. If the potential convolution cannot be
avoided, it will be selected and labelled as a convolution accordingly. The selected mass
transitions were formatted to the instrument MRM mode format and equally distributed
into several methods for the corresponding ionization mode. The maximum number of
mass transitions per method allowed was set to 40.

4.4. Standard and Sample Preparation

Single unlabeled metabolite standards were prepared as 5 mM stocks in H2O and
stored at −80 ◦C. The dried metabolite yeast extract standard was stored at −80 ◦C until
processing, reconstituted in 600 µL 50% MeOH (v/v), and vigorously vortexed for 2 min.
SCE yeast extract stocks were prepared by dissolving 10 g L−1 of the corresponding
product in H2O. Quality control samples were prepared by pooling yeast extract samples.
Metabolite standard and technical extracts were diluted 1:103 in 6 or 12 technical replicates
with 50% MeOH (v/v). Replicates and quality control samples were identically allocated to
two V-bottom microtiter plates and subsequently sealed with self-adhesive pierceable clear
zone foil for automation (391-1264, VWR International GmbH, Darmstadt, Germany).

4.5. Dilute and Shoot Flow-Injection Analysis Tandem Mass Spectrometry

Acquisition of accurate mass spectra was carried out with an ESI-QqToF MS (TripleTOF6600,
AB Sciex, Darmstadt, Germany). For the acquisition of accurate mass spectra, unlabeled metabolite
standards were directly injected into the QqToF ion source with a flow rate of 20µL min−1. Product
ion spectra were acquired in product ion scan mode with a collision energy ramp ranging from
±5 V to±130 V for the positive and negative ionization mode. For direct injection, ion source
voltage was set to 5.5 kV, source temperature to 0 ◦C, curtain gas to 30 psi, collision gas to 5 psi,
and the support gases GS1/GS2 to 50 psi/20 psi.

For DS-FIA-MS/MS analysis, an Agilent 1100 system with an Agilent 1260 Infinity
II Multisampler (Agilent Technologies, Waldbronn, Germany), coupled to an ESI-QqQ
(API4000, AB Sciex, Darmstadt, Germany) was used. A 1 m polyetheretherketone capillary
was used to connect the autosampler directly to the Turbo V ion source. Eluents for isocratic
elution mode consisted of 5% acetic acid (v/v) and 5% MeOH (v/v) (Solvent A) for positive
ionization mode and MeOH (Solvent B) for negative ionization mode. The first of the
prepared two microtiter plates was used to perform the screening in positive ionization
mode. Switching from positive to negative ionization mode was performed using a 30 min
dummy method. The second of the prepared two microplates was then used to conduct the
screening in negative ionization mode. The injection sequence for both modes was led by
single blanks, followed by alternating QC samples and randomised sample packages with
a QC every 6 samples. The injection volume was 5 µL. For the used instrument and vendor
software, automated batch creation is provided in the corresponding jupyter notebook.

For DS-FIA-MS/MS in positive ionization mode, ion source voltage was set to 5.5 kV,
source temperature to 650 ◦C, curtain gas to 25 psi, collision gas to 6 psi, and the support
gases GS1/GS2 to 50 psi/80 psi. For DS-FIA-MS/MS in negative ionization mode, ion
source voltage was set to −4.5 kV, source temperature to 650 ◦C, curtain gas to 30 psi,
collision gas to 5 psi, and the support gases GS1/GS2 to 70 psi/70 psi. All gases were
nitrogen. The dwell time for every mass transition in every method package with up to
40 mass transitions was 50 ms.
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4.6. Data Processing
4.6.1. Software

Instrument control and data acquisition were carried out with Analyst 1.6.3 for the
QqQ and Analyst 1.7 TF for the QqToF (AB Sciex, Darmstadt, Germany). Collision energy
ramps and the corresponding PI spectra were manually evaluated with PeakView 2.2 (AB
Sciex, Darmstadt, Germany). Processing of extracted ion chromatograms of the MRM
mode data and noise detection were automatically conducted with the MQ4 algorithm of
MultiQuant 3.0.3 (AB Sciex, Darmstadt, Germany). Data processing was conducted with
Python 3.7 [84] and the packages pathlib 1.0.1, pandas 1.0.3 [85], numpy 1.18.1 [86], adjust-
text 0.7.3.1 [87], biopython 1.76 [88], jupyter 1.0.0 [89], matplotlib 3.3.1 [90], pubchempy
1.0.4 [72], chembl-webresource-client 0.10.1 [91], pychemometrics 0.13.6 [92], scikit-learn
0.24.1 [93], scipy 1.4.1 [94], seaborn 0.11.1 [95], and statsmodels 0.11.0 [96].

4.6.2. Statistical Analysis

The source code and jupyter notebook for data evaluation can be found in the reposi-
tory. For the preliminary data processing, signals were filtered by a signal/noise > 5. For
intrabatch variation, a low-order nonlinear locally estimated smoothing function (LOESS)
with leave-one-out cross validation for smoothing parameter determination was used [97].
Metabolites were included for statistical analysis if they had a relative standard deviation
(RSD) < 20% and < 30% missing data in the QC [98].

Univariate analysis was performed with nonparametric Kruskal–Wallis omnibus
test [99] with a probability of error α = 0.05. For multivariate analysis, missing sample
data were mean imputed for values missing at random (MAR) and half-of-the-minimum
imputed for values missing-not-at-random (MNAR) [100]. Multivariate modelling based
on principal component analysis (PCA) and multiclass partial least squares discriminant
analysis (PLSDA) was conducted. Model evaluation and validation were based on stratified
double fivefold cross validation in a pipeline with range scaling of the test and training
predictor sets to avoid data leakage.

For hyperparameter determination, goodness of fit (R2X or R2Y) and goodness of
prediction (Q2X or Q2Y) model performance indicators were used. The optimal number
of hyperparameters in the form of principal components (PCs) or latent variables (LVs)
was selected if the goodness of prediction indicator did not increase by 5% if another
PC/LC was added. Additionally, the PLSDA model was retrained with the optimal set
of parameters and evaluated by bootstrap resampling (n = 1000) with a replacement for
percentile-based confidence intervals [101,102] of class-specific variables in projection (VIP)
scores [79].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo12030257/s1; Electronic supporting material 1: ESM1; Electronic supporting material 2:
ESM2; Supporting code and corresponding data files are available at https://github.com/JuBiotech/
Supplement-to-Reiter-et-al.-2022a (accessed on 20 February 2022) and DOI: 10.5281/zenodo.6275893.
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