
FEBS Letters 587 (2013) 542–548
journal homepage: www.FEBSLetters .org
Review
Negative regulation of TBK1-mediated antiviral immunity
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TANK-binding kinase 1 (TBK1) plays pivotal roles in antiviral innate immunity. TBK1 mediates the
activation of interferon regulatory factor (IRF) 3, leading to the induction of type I IFNs (IFN-a/b) fol-
lowing viral infections. TBK1 must be tightly regulated to effectively control viral infections and
maintain immune homeostasis. TBK1 activity can be regulated in a variety of ways, such as phos-
phorylation, ubiquitination, kinase activity modulation and prevention of functional TBK1-contain-
ing complexes formation. Furthermore, multiple viruses have evolved elaborate strategies to
circumvent IFN responses by targeting TBK1. Here we provide an overview of TBK1 in antiviral
immunity and recent developments on the regulation of TBK1 activity.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. Open access under 
1. Introduction

TRAF family member-associated NF-jB activator (TANK)-bind-
ing kinase 1 (TBK1), also known as NF-jB-activating kinase
(NAK) or T2K, is one of two non-canonical IjB kinases (IKKs) impli-
cated in regulating the activation of IFN regulatory factor 3 (IRF3)
and NF-jB signaling pathways. TBK1 was originally identified as
a kinase that mediated TANK’s ability to activate NF-jB [1]. TBK1
is an 84 kDa, 729-amino acid protein containing an N-terminal ki-
nase domain, an ubiquitin like domain and two C-terminal coiled-
coil domains [1]. As a non-canonical IKK, TBK1 is structurally sim-
ilar to IKKe (another IKK-related kinase) and the canonical IKKs,
IKKa and IKKb [1–4]. The canonical IKKs and the IKK-related ki-
nases could regulate each other by an intricate network involving
phosphorylation of their catalytic and regulatory subunits to bal-
ance their activities during innate immunity [5]. Once activated,
TBK1 and IKKe phosphorylate IKKa/b, decreasing the activity of
the canonical IKK complex [5]. On the other hand, IKKa/b phos-
phorylate and directly activate TBK1 and IKKe [5].

TBK1 could induce IjB degradation and NF-jB activity through
IKKb [1,2]. However, studies with TBK1 and IKKe single-null and
double-null mice did not observe a deficiency in NF-jB activation
[6,7]. Therefore, the function of TBK1 in NF-jB activation remains
controversial and needs to be further investigated. Although the
role of TBK1 in the NF-jB pathway is controversial, its role in
IRF3 activation and antiviral immunity is convincing. TBK1
coordinates with IKKe to phosphorylate transcript factors IRF3
and IRF7, leading to the induction of type I IFN (IFN-a/b) [6–10].
Although TBK1 and IKKe have indistinguishable activities in induc-
ing type I IFN expression and subsequential antiviral responses,
they do not seem to be redundant and exhibit differential expres-
sion patterns and substrates specificity [8,11]. TBK1 is ubiquitously
expressed, whereas IKKe expression is restricted to particular tis-
sue compartments and expressed at low basal levels in immune
cells [2,11,87].

In this review, we will summarize the fundamental role of TBK1
in antiviral immunity and recent developments on the regulation
of TBK1 activity.

2. TBK1 in antiviral immunity

The production of type I IFN is a fundamental cellular response
to combating viral invasion [12,13]. Various virus structural com-
ponents, including viral DNA, double stranded RNA (dsRNA), sin-
gle-stranded RNA (ssRNA), and surface glycoproteins, are
recognized as pathogen-associated molecular patterns (PAMPs)
by pattern recognition receptors (PRRs) expressed in multiple im-
mune cells. Among these PRR members, TLR3 [14], retinoic acid-
inducible gene-I (RIG-I; also known as DDX58) [15–17], melanoma
differentiation-associated gene 5 (MDA5; also known as IFIH1) [18],
nucleotide-binding oligomerization domain protein 2 (NOD2) [19],
RNA polymerase III (RNA pol III) [20,21], DNA-dependent activator
of IFN-regulatory factors (DAI; also known as ZBP1) [22], IFNc-
inducible protein 16 (IFI16) [23,24], DNA-dependent protein kinase
(DNA-PK) [25] and several DExD/H-box helicase superfamily
members (DDX41 [26], DDX1–DDX21–DHX36 complex [27],)
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utilize TBK1 to activates downstream signaling transduction. These
PRRs recruit different adaptors including TLR/IL-1R domain-con-
taining adaptor protein inducing IFN-b (TRIF), mitochondrial antivi-
ral signaling protein (MAVS, also called IPS-1, Cardif, or VISA) and
stimulator of IFN genes (STING; also known as MITA, MPYS and
ERIS) to activate TBK1 (Fig. 1). Activated TBK1 then phosphorylates
IRF3 and IRF7, triggers their dimerization and nuclear translocation,
where they form active transcriptional complexes that bind to IFN
stimulation response elements (ISRE) and activate type I IFN genes
expression [28]. Secreted type I IFN binds to IFN a/b receptor (IF-
NAR) and triggers the production of numerous anti-viral genes
through the JAK/STAT pathway [29].

Besides its function in TBK1–IRF3 signaling pathways, TBK1
participates in the regulating of autophagy [30–32]. Autophagy is
an evolutionarily conserved process of the eukaryotic cell and in-
volved in diverse cellular and physiological functions including
cell-autonomous defense against pathogens [31–37]. Autophagy
and its machinery can be utilized as one of the earliest eukaryotic
defense mechanisms against viral pathogens [36]. In the context of
bacterial invasion, TBK1 was found to be a crucial regulator of
Fig. 1. Modulation of TBK1-mediated antiviral innate immunity. Following engagemen
STING) to activate TBK1. Activated TBK1 then phosphorylates IRF3 and triggers its dimeriz
TBK1 activity can be regulated by multiple molecules. GSK3b, SHIP1, PPM1B and glucoco
A20-TAX1BP1-ABIN1 complex and RNF11-TAX1BP1 complex modulate K63-linked ubqu
of TBK1. SHP-2, resveratrol isoliquiritigenin and glucocorticoid inhibit TBK1 kinase ac
competitive inhibition. Green arrow, stimulators; Red ground line, negative regulators.
immunological autophagy. In response to bacterial products such
as lipopolysaccharide (LPS), TLR4 activates TBK1 and NDP52 (an
autophagic adaptor) recruits TBK1 into a complex with optineurin
(OPTN, a key component of pathogen-induced autophagy), leading
to the phosphorylation of OPTN and promoting the elimination of
bacterial by OPTN-mediated xenophagy [32,38,39]. Furthermore,
TBK1 also controls autophagic maturation [31]. Although both
TBK1 and autophagy play crucial role in antiviral immunity, the
roles of TBK1 in linking innate antiviral immunity with autophagy
remains to be determined.
3. Negative regulation of TBK1

As a critical kinase involved in antiviral immunity, the activity
of TBK1 must be tightly regulated to maintain immune homeosta-
sis. TBK1 activity can be regulated in a variety of ways, such as
phosphorylation, ubiquitination, kinase activity modulation and
prevention of functional TBK1-containing complexes formation
(Fig. 1).
t by their cognate ligands, PRRs recruit different adaptor proteins (TRIF, MAVS or
ation and nuclear translocation, leading to activation of type I IFN genes expression.
rticoids modulate TBK1 activity targeting its phosphorlation. MIB1/2, Nrdp1, CYLD,
itination of TBK1. TRIP and NLRP4-DTX complex suppress K48-linked ubquitination
tivity. SIKE, MIP-T3 and ISG56 suppress TBK1-containing complex formation by
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3.1. Phosphorylation

Self-association and autophosphorylation at Ser172 of TBK1 is
essential for its activation [40]. Recruiting of multiple TBK1 dimers
to signaling complexes enables activation-loop swapping of locally
clustered TBK1 and results in Ser172 phosphorylation [40,41].
Additional transautoactivation events occur due to high local con-
centration [40]. Furthermore, GSK3b binds with TBK1, facilitates
TBK1 auto-phosphorylation at Ser172 within its kinase activation
loop and promotes TBK1 activation upon viral infection [42]. Sev-
eral phosphatases have been identified as regulators of phosphor-
ylation of TBK1 to attenuated IFN-b production. For example, the
inositol 50 phosphatase SHIP-1, previously known as an important
negative regulator of TLR4 signaling [43,44], targets TBK1 to inhibit
TLR3-induced IFN-b production [45]. The absence of SHIP-1 re-
sulted in constitutive association between TRAF3, TRIF, and TBK1,
altered localization of the protein following TLR3 stimulation,
and increased levels of phosphorylated TBK1 [45]. Protein phos-
phatase Mg2+/Mn2+ dependent 1B (PPM1B; also called PP2Cb)
physiologically binds to TBK1 followed virus infection and dephos-
phorylates TBK1 at serine 172, leading to termination of TBK1-
mediated IRF3 activation [46]. Furthermore, it has been reported
that glucocorticoid hormones could inhibit TBK1 phosphorylation
on Ser-172 [47].

3.2. Ubiquitination

In addition to phosphorylation/dephosphorylation, ubiquitina-
tion/deubiquitination is another essential posttranslational modifi-
cation for the modulation of TBK1 activity. E3 ubiquitin ligase
TRAF3 mediates lysine 63 (K63)-linked polyubiquitination of
TBK1 and facilitates its activation [48]. E3 ubiquitin ligases mind
bomb 1 and 2 (MIB1 and MIB2) [33] and Nrdp1 [49] activate
TBK1 by promoting its K63-linked polyubiquitination. On the other
hand, several deubiquitinases disrupt K63-linked polyubiquitina-
tion to terminate TBK1-mediated signaling transduction. For
example, deubiquitinating enzyme cylindromatosis (CYLD) re-
moves K63-linked polyubiquitin from TBK1 [50,51]. Harhaj and
co-workers [52,53] identified A20 regulatory complex including
ubiquitin-editing enzyme A20 (also known as TNFAIP3), Tax1-
binding protein 1 (TAX1BP1, also known as T6BP or TXBP151)
and A20 binding inhibitor of NF-jB 1 (ABIN1) antagonizes K63-
linked polyubiquitination of TBK1. In this model, ABIN1 is recruited
to ubiquitinated forms of TBK1/IKKe via its UBD and also recruits
TAX1BP1 and A20 to form an A20 regulatory complex. The A20
complex disrupts interactions between TBK1/IKKe and TRAF3 to
attenuate antiviral signaling. Recently, Charoenthongtrakul et al.
reported that RING Finger Protein 11 (RNF11) cooperated with
TAX1BP1 and attenuated K63-linked polyubiquitination of TBK1
to block IFN-b production [54].

K63-linked ubiquitination of TBK1 occurred early after viral
infection, whereas K48-linked ubiquitination of TBK1 was ob-
served at later times [38]. E3 ligases specifically target K48-linked
ubiquitination of TBK1 could promote the degradation of TBK1
through proteasome and thus terminate downstream signaling
transduction. NLR protein NLRP4 recruits the E3 ligase DTX4 to
TBK1 for K48-linked polyubiquitination, which led to degradation
of TBK1 [55]. Recently, we report that TRAF-interacting protein
(TRIP), a virus-induced E3-ligase, negatively regulates antiviral re-
sponse by promoting proteasomal degradation of TBK1 [56]. How-
ever, whether any deubiquitinating enzymes exist to specifically
remove K48-linked ubiquitination of TBK1 and stabilizes its
expression needs to be further investigated. The answer to this
question may help to elucidate the complexities of modulation of
TBK1 activity through ubiquitination/deubiquitination.
3.3. Kinase activity modulation

As a key kinase in antiviral immune responses, TBK1 directly
mediates phosphorylation of IRF3 [8,9,57]. TBK1-mediated antivi-
ral immunity could be regulated through modulation of its kinase
activity. Interestingly, phosphatase Src homology 2 domain-con-
taining protein tyrosine phosphatase 2 (SHP-2) could inhibit
TBK1 activity through a phosphatase activity-independent mecha-
nism [58]. C-terminal domain of SHP-2 directly binds with the ki-
nase domain of TBK1 and thus inhibits its kinase activity and
subsequent IFN-b production [58]. Several chemical compounds
could suppress the kinase activity of TBK1, such as resveratrol
(30,40,50-trihydroxy-trans-stilbene, a polyphenol found in grapes
and other plants) [59], isoliquiritigenin (ILG; a flavonoid with a
chalcone structure) [60] and auranofin [an Au(I) compound with
sulfur-linked organic ligands [61]. Additionally, glucocorticoid
dexamethasone could attenuate TBK1 activity through suppress
its kinase activity, in addition to inhibiting its phosphorylation
[47].

3.4. Prevention of functional TBK1-containing complexes formation

The formation of functional TBK1-containing complexes includ-
ing TBK1, IKKe, TRAF3, IRF3 and other adaptors (TRIF, MAVS or
Sting) is critical for TBK1 activity in antiviral immune responses.
Thus, preventing the formation of functional TBK1-containing
complexes is a major mechanism for negative regulation. For
example, MIP-T3, which specifically interacts with TRAF3 but not
other TRAF proteins, could impede the formation of functional
TRAF3–TBK1 complexes to terminate IFN-b activation [62]. SIKE
(Suppressor of IKKe) functions as a physiological suppressor of
IKKe/TBK1 by sequesterin g IKKe/TBK1 in inactive complexes
[63]. SIKE associated with TBK1 under physiological conditions
and dissociated with TBK1 upon TLR3 engagement or viral infec-
tion. SIKE disrupts the interactions of IKKe or TBK1 with TRIF and
IRF-3 and blocks the interaction of IKKe and TBK1 with RIG-I
[63]. IFN-stimulated gene 56 (ISG56, also known as IFIT1) sup-
presses cellular antiviral responses through specific disruption of
the MAVS–STING–TBK1 complex by steric hindrance [64].

OPTN, as a TBK1 binding partner, was reported to be involved in
the regulation of TBK1 activity [65–67]. However, the effects of
OPTN on TBK1 regulation are controversial. Mankouri et al. re-
ported that OPTN was a negative regulator in the induction of
IFN-b in response to RNA virus infection [66]. OPTN targets TBK1
to specific sites in the cell [66], and that this may prevent the
TBK1-containing complexes formation. On the contrary, Gleason
et al. demonstrated OPTN as an enhancer of TBK1 activity [67].
OPTN binds to polyubiquitylated species formed in response to
LPS and poly(I:C), enhancing the activation of TBK1 that is required
for optimal phosphorylation of IRF3 and production of IFN-b [67].
The discrepancy of OPTN in the regulation of TBK1 activity might
be due to the fact that different cells used in these studies. Thus,
the potential role and exact mechanism of OPTN in TBK1 activation
require further investigation.

4. Viral evasion strategies targeting TBK1

Optimal activation of TBK1 and production of type I IFNs pro-
vide potent means of controlling viral infections. However, viruses
have evolved elaborate strategies to disable the innate immune
system [68]. It has been reported that several viruses could modu-
late TBK1 activity to circumvent IFN responses and facilitate viral
replication, leading to the spread of viral infections (Fig. 2).

The leader proteinase (Lpro) of foot-and-mouth disease virus
(FMDV) is a papain-like proteinase and plays an important role
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in FMDV pathogenesis. Lbpro, a shorter form of Lpro, has deubiquiti-
nating activity and inhibited ubiquitination of TBK1 [69]. Papain-
like protease domain 2 (PLP2), a catalytic domain of the non-struc-
tural protein 3 (nsp3) of mouse hepatitis virus A59 (MHV-A59)
which is conserved for the Class II coronaviruses also mediates
deubiquitination of TBK1 and inactivates its kinase activity to
phosphorylate IRF3 [70]. In addition, PLP2 also delays the dissoci-
ation of IRF3 from TBK1, thereby effectively attenuates IFN induc-
tion [71]. The c134.5 protein of herpes simplex viruses (HSV) and
hepatitis C virus (HCV) NS3 protein could interact directly with
TBK1, and that this binding disrupts the interaction of TBK1 and
IRF3 [72–74]. NAP1 (NAK-associated protein 1), TANK and SINT-
BAD (similar to NAP1 TBK1 adaptor) are three adaptor proteins
that specifically bind TBK1/IKKe and participate in TLR/RLR-in-
duced IFN production [75–77]. Modulation of these adaptor pro-
teins could regulate IFN production [78]. Vaccinia virus (VACV)
protein C6 is expressed early during infection and interacts with
NAP1, TANK and SINTBAD [79]. Although C6 interact with all three
scaffold proteins and inhibit IFN-b production, it does not affect
their interaction with TBK1. Thus, the exact mechanism whereby
C6 disrupts IRF3 activation remains not well determined [79]. K7,
another VACV protein, also targets TBK1-containing protein com-
plex [80]. Severe acute respiratory syndrome (SARS) coronavirus
M protein and NY-1 hantavirus (NY1V) Gn cytoplasmic tail could
suppress TRAF3–TBK1 complex formation [81–83]. The Tula virus
(TULV), another hantavirus, regulates TBK1 activity through its
Gn cytoplasmic tail [84]. However, the TULV Gn protein, unlike
its pathogenic NY1V Gn cytoplasmic tail counterpart, is unable to
bind TRAF3 [83,84]. The mechanism by which TULV and NY-1V
Gn proteins regulate TBK1 complex remains to be further investi-
gated. Borna disease virus (BDV) P protein physically associates
with TBK1 and inhibits its kinase activity [85]. Open reading frame
45 (ORF45) of Kaposi’s sarcoma-associated herpesvirus (KSHV)
suppresses activation of IRF7 by competing with the associated
IRF7 and inhibits its phosphorylation by TBK1 [86,87]. Poxvirus
protein N1L [88] and HCV protease NS2 [89] could interact directly
Fig. 2. Multiple viruses circumvent IFN responses by modulating TBK1 activity. A
shorter form of leader proteinase (Lbpro) of foot-and-mouth disease virus (FMDV)
and papain-like protease domain 2 (PLP2) from mouse hepatitis virus A59 (MHV-
A59) inhibit ubiquitination of TBK1. PLP2 also delays the dissociation of IRF3 from
TBK1. The c134.5 protein of herpes simplex viruses (HSV), hepatitis C virus (HCV)
NS3 protein, vaccinia virus (VACV) protein C6 and K7, severe acute respiratory
syndrome (SARS) coronavirus M protein and NY-1 hantavirus Gn cytoplasmic tail
suppress TBK1-containing complex formation. Borna disease virus (BDV) P protein
inhibits TBK1 kinase activity. Open reading frame 45 (ORF45) of Kaposi’s sarcoma-
associated herpesvirus (KSHV) inhibits phosphorylation of IRF7 by TBK1. Poxvirus
protein N1L and HCV protease NS2 interact directly with TBK1 and inhibit its
activity.
with TBK1 and reduce IRF3 activation and subsequent IFN-b
expression. However, whether NIL and NS2 exert their inhibitory
effects through steric hindrance of TBK-containing complex forma-
tion or suppression of TBK1 kinase activity remains unclear.

5. Small molecule inhibitors of TBK1

Several small molecule inhibitors specific for TBK1 have been
discovered. These compounds can be used simply and rapidly and
provide a complementary approach to the use of mouse knockouts
or RNA interference technology. BX795 [originally developed as a 3-
phosphoinositidedependent protein kinase 1 (PDK1)] [90] and a
series of azabenzimidazole derivatives [91] inhibit both IKKe and
TBK1 at low nanomolar concentrations [92]. But, these compounds
lack selectivity as other kinases were also inhibited at low concen-
trations. Using a positional scanning peptide library (PSPL) technol-
ogy, Hutti et al. [93] identified 227 compounds inhibit TBK1 activity
at a concentration of 10 mM. However, none of these compounds
were suitable inhibitors of TBK1 due to lacking specificity. Recently,
McIver et al. developed a novel series of 2,4-diamino-5-cyclopro-
pylpyrimidines as potent inhibitors of TBK1, with improved kinase
selectivity. However, these compounds encountered unexpected
toxicity at higher doses [94]. As TBK1 is a kinase of convergence
for multiple pivotal signaling pathways, the further refinement of
novel and specific TBK1 inhibitors may provide powerful new ther-
apeutic drugs for many diseases, such as inflammatory disorders,
autoimmune diseases and cancers. For example, the anticancer
drug SU6668 (an indolinone compound), which was originally de-
signed as a selective inhibitor of receptor tyrosine kinases involved
in tumor vascularization [95], was further identified as a TBK1
inhibitor and modulated the proangiogenic role of the TBK1/IRF3
signaling axis in cancer development [96,97].

6. Conclusion

As summarized above, TBK1 is a critical integrator involved in
the induction of type I IFNs in response to stimulation via PAMPs
produced during replication of viruses. Besides its antiviral activity,
TBK1 was also found to be involved in other signaling pathways,
such as autophagy, apoptosis and oncogenesis. TBK1 controls auto-
phagic maturation and plays crucial roles in antibacterial re-
sponses [31,32,98,99]. TBK1 was also involved in cellular
transformation and oncogenesis [100–105]. Recently, Jin et al. re-
ports that TBK1 controls IgA class switching by negatively regulat-
ing non-canonical NF-jB signaling [106]. Furthermore, the
emerging role of TBK1 in a couple of diseases, including cancer
and rheumatoid arthritis, was also elucidated [97,107,108]. There-
fore, TBK1 will be potential promising targets for the development
of therapeutic drugs for these diseases [97,109].

In the setting of antiviral immunity, multiple molecules were
identified as TBK1 modulators and played crucial roles in main-
taining immune homeostasis and effectively eliminating viral inva-
sion. Furthermore, several compounds inhibitors specific for TBK1
were developed. As growing evidence implicates aberrant TBK1
activity in a variety of diseases, these identified regulators and
small molecular compounds inhibitors of TBK1 provide strategies
to modulate TBK1-mediated signaling pathway and may have ther-
apeutic potential for the intervention of variety of diseases.
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