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Obesity has been reported to be a risk factor for breast cancer, but how obesity affects breast
cancer (BC) remains unclear. Although body mass index (BMI) is the most commonly used
reference for obesity, it is insufficient to evaluate the obesity-related pathophysiological
changes in breast tissue. The purpose of this study is to establish a DNA-methylation-
based biomarker for BMI (DM-BMI) and explore the connection between obesity and BC.
Using DNA methylation data from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO), we developed DM-BMI to evaluate the degree of obesity in breast tissues. In
tissues from non-BC and BC population, the DM-BMI model exhibited high accuracy in BMI
prediction. In BC tissues, DM-BMI correlated with increased adipose tissue content and BC
tissues with increased DM-BMI exhibited higher expression of pro-inflammatory adipokines.
Next, we identified the gene expression profile relating to DM-BMI. Using Gene Ontology (GO)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we observed that the
DM-BMil-related genes were mostly involved in the process of cancer immunity. DM-BMI is
positively correlated with T cell infiltration in BC tissues. Furthermore, we observed that DM-
BMI was positively correlated with immune checkpoint inhibitors (ICl) response markers in BC.
Collectively, we developed a new biomarker for obesity and discovered that BC tissues from
obese individuals exhibit an increased degree of immune cell infiltration, indicating that obese
BC patients might be the potential beneficiaries for ICI treatment.

Keywords: obesity, breast cancer, immune checkpoint inhibitor, DNA methylation, biomarker

Abbreviations: BC, Breast Cancer; HR, Hormone Receptor; BMI, Body Mass Index; DM-BMI, DNA Methylation-Based BMI
Index; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ICI,
Immune Checkpoint Inhibitor; GEO, Gene Expression Omnibus; knn, k-nearest neighbors; SNPs, Single Nucleotide Poly-
morphisms; TMB, Tumour Mutation Burden; Treg, Regulatory T Cells; IFNG, IFN-y Signature; IFNG.GS, IFNG Hallmark
Gene Set; TIDE, Tumour Immune Dysfunction and Exclusion; MDSCs, Myeloid-Derived Suppressor Cells; CAFs, Cancer-
Associated Fibroblasts; TAM-M2, M2 Subtype of Tumour-Associated Macrophages; Chr, Chromosome; DMP, Differentially
Methylated Probes; GSEA, Gene Set Enrichment Analysis.
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INTRODUCTION

Breast cancer (BC) is the most commonly diagnosed cancer and
the second leading cause of cancer death for women in the world
(Bray etal., 2018). It was reported in previous studies that obesity,
characterized by excess adipose tissues, is a risk factor for BC
(Pierobon and Frankenfeld, 2013; Sung et al, 2019). For
premenopausal women, obesity is connected with increased
risk of hormone receptor (HR) negative BC, while for
postmenopausal women, it is connected with increased risk of
HR positive BC (Suzuki et al., 2009; Picon-Ruiz et al., 2017).
Moreover, several studies showed that obese patients exhibited
more aggressive tumor features (such as larger tumor size, lymph
node metastasis, shorter disease-free survival, and greater risk of
mortality) compared with non-obese patients in BC (Copson
et al., 2015; Jiralerspong and Goodwin, 2016). Although it has
been observed in previous studies that the adipose tissue in obese
individuals increasingly secrets adipokines (including hormones,
growth factors, and cytokines) and contributes to an environment
promoting cancer proliferation and metastasis (Khandekar et al.,
2011; Maguire et al., 2021), how obesity impacts BC requires
further studies.

Body mass index (BMI), defined as a person’s weight in
kilograms divided by the square of height in meters, is the
most commonly used method for obesity evaluation. However,
it is more like a surrogate measure for body fatness for obesity
should be calculated using the excess accumulation of adipose
tissues rather than body mass (Prentice and Jebb, 2001). As there
is heterogeneity in the body distribution, function, and tissue
composition of adipose tissue among BC patients, a total body
mass index is insufficient to evaluate the degree of obesity in local
tissue. Moreover, BMI is only able to reflect the gaining of weight,
with no indication in pathophysiological changes during the
process of obesity (Bosello et al., 2016). Thus, developing new
biomarkers to evaluate the obesity status of BC tissues is helpful to
assess the impact of obesity on BC.

It is well known that obesity is affected by multiple factors
(including environmental factors, genetic predisposition, and the
individual lifestyle) (Conway and Rene, 2004; Bray et al., 2016).
Recently, increased evidences showed that DNA methylation is
also involved in the process of obesity (Ling and Ronn, 2019;
Samblas et al, 2019). DNA methylation is an epigenetic

mechanism which regulates gene expression through
chromatin  structure changes. Equally influenced by
environmental factors, genetic predisposition and the
individual lifestyle, the level of gene methylation is

dynamically changing in setting up stable gene expression
profiles to adapt to the process of obesity (Samblas et al.,
2019; Cabre et al, 2021). A previous study analyzing the
whole genome methylation and gene expression in non-
diseased breast showed that obesity is connected with the
genome-wide methylation changes in human tissue (Hair
et al,, 2015a). In addition, Hair et al. observed that obesity is
significantly correlated with genome-wide hyper-methylation in
ER-positive BCs (Hair et al., 2015b). Thus, changes of genome-
wide DNA methylation could be a reflection of the biological
changes in breast tissue during the process of obesity. The goal of
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TABLE 1 | Clinicopathological features for TCGA-BRCA cases

Matched
BC cases (n = 76)

Unmatched
BC cases (n = 775)

ER status (%)

+ 155 (20%) 12 (15.8%)
- 512 (66.1%) 53 (69.7%)
Unknown 108 (13.9%) 11 (14.5%)
PR status (%)
+ 216 (27.9%) 19 (25%)
- 449 (57.9%) 45 (59.2%)
Unknown 110 (14.2%) 12 (15.8%)
HER2 status (%)
+ 469 (60.5%) 41 (53.9%)
- 93 (12%) 12 (15.8%)
Unknown 213 (27.5%) 23 (30.3%)
T stage (%)
™ 199 (25.7%) 17 (22.4%)
T2 442 (57%) 46 (60.5%)
T3 108 (13.9%) 8 (10.5%)
T4 283 (3%) 5 (6.6%)
Unknown 3 (0.4%) 0 (0%)
N stage (%)
N1 346 (44.6%) 26 (34.3%)
N2 268 (34.6%) 34 (44.7%)
N3 95 (12.3%) 9 (11.8%)
N4 55 (7.1%) 4 (5.3%)
Unknown 11 (11.4%) 3 (3.9%)
M stage (%)
MO 610 (78.7%) 70 (92.1%)
M1 13 (1.7%) 1 (1.3%)
MX 152 (19.6%) 5 (6.6%)
Molecular subtype (%)
Normal-like 33 (4.3%) 1(1.3%)
Luminal A 370 (47.7%) 41 (53.9%)
Luminal B 120 (15.5%) 20 (26.4%)
Her-2 39 (5%) 6 (7.9%)
TNBC 125 (16.1%) 8 (10.5%)
Unknown 88 (11.4%) 0 (0%)
Vital status (%)
Alive 672 (86.7%) 45 (59.2%)
Death 103 (13.3%) 31 (40.8%)

Abbreviation: ER = Estrogen receptor; PR = Progesterone receptor

our study is to capture the obesity-related genomic changes and
explore the impact of obesity on BC tissues. We developed DNA
methylation-based BMI index (DM-BMI) to evaluate the degree
of obesity in breast tissues and validated the accuracy of DM-
BMI in breast tissues from non-BC and BC population.
Furthermore, we assessed the correlation among DM-BMI,
obesity adipose tissue content, and the expression of
adipokines in BC tissues. Next, we identified the DM-BMI-
related gene expression profile. Using Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) database,
we observed that the DM-BMI-related genes are significantly
involved in the process of cancer immunity. Using Estimate and
Cibersort algorithm, we observed a positive correlation between
DM-BMI and immune cell infiltration. Finally, we assessed the
correlation between DM-BMI and biomarkers of response to
immune checkpoint inhibitors (ICI) (Shah et al, 2012) and
observed that DM-BMI positively correlated with ICI response
in BC.
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MATERIALS AND METHODS

Data collection and processing

The training set includes genome-wide methylation data of 221
normal breast tissues in GEO (GSE88883 and GSE101961) while
the validation sets includes data of 44 normal breast tissues
(Validation Set 1). Data of 70 tumor-adjacent breast tissues
(Validation Set 2) in GEO (GSE67919 and GSE74214) were
used to develop the DM-BMI score. BMI data of the above
cases are listed in Supplementary Materials S1, S2. The DNA
methylation and expression data of 76 cases with matched tumor
and tumor-adjacent breast tissues and the data of 775 cases with
unmatched tumor tissues were collected from The Cancer
Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/
). Clinical features of BC patients in TCGA-BRCA are listed in
Table 1.

Genome-wide methylation data was profiled using Illumina
Infinjum HumanMethylation450 BeadChips Assay. For DNA
methylation data, S value ranging from 0 (no DNA
methylation) to 1 (complete DNA methylation) was used to
define the methylation level of each probe. Probes with
missing value in over 50% samples were removed while the
probes with missing value in less than 50% of samples were
imputed with the k-nearest neighbors (knn) imputation method.
Probes located on the sex chromosome and probes containing
known single nucleotide polymorphisms (SNPs) were removed.
Eventually, 301,998 probes were included in this study. BMIQ
normalization for type I and II probe correction was performed.
Data from multiple studies was integrated and the Combat
algorithm was performed to remove the batch effects. The
above processes were carried out using the R package ChAMP
(Tian et al., 2017).

For gene expression data, background correction and
normalization were carried out using the R package limma
(Ritchie et al., 2015).

Calculation of DNA-methylation based body

mass index
To improve the predictive accuracy of the model, the BMI value
was transformed to F(BMI) before further analysis, which is
shown as follows:

F(BMI) = log(BMI + 1) — log (healthy.BMI + 1) if BMI <
= healthy.BMI (1)

F(BMI) = (BMI — healthy.BMI)/ (healthy.BMI + 1) if BMI > healthy.BMI
@

The parameter healthy. BMI was set to 25, referring to the
upper limit of BMI in healthy population.

A lasso regression was used to regress the DM-BMI in the
form of F(BMI) based on the BMI data and DNA methylation
data with 301,998 probes; 42 probes were selected in the lasso
regression model as BMI predictors according to the lambda.min
value (Supplementary Figure S1A). The coefficient values of
each probe are shown in Supplementary Figure S1B. The lasso
regression analysis was carried out using R package glmnet (alpha

Obesity biomarker in breast cancer

was set to 1, and the lambda value was identified by performing a
10-fold cross validation to the training data).

Analysis of intra-sample adipose tissue

content

Adipose tissue accounts for a large proportion of breast tissue
composition. Based on DNA methylation, we used a
deconvolution algorithm to calculate the proportion of adipose
tissue in breast and BC tissues. Teschendorff et al. (2016)
provided a deconvolution algorithm to model cell
subpopulations in breast tissues based on DNA methylation
data. Illumina 450k DNA methylation data of human
mammary epithelial cells (GSE40699) and adipose tissue
(GSE48472) were used as reference profiles. Data were
processed as previously described. Probes with an absolute
difference in beta-value between the human mammary
epithelial cells and the averaged adipose tissue >0.7 were
selected for the evaluation of intra-sample adipose tissue
content. Data for adipose tissue content are listed in
Supplementary Material S3.

Characteristics analyses of body mass

index predictors

Forty-two probes were selected in the lasso regression model as
BMI predictors. The distribution of 42 probes on chromosome,
CpG island, and TSS regions was assessed using the R package
ChAMP. BMI predictors, differentially methylated between BC
tissues and tumor-adjacent breast tissues in the TCGA database,
were identified using the R package Champ. The survival
correlation of BMI predictors was assessed using TCGA BRCA
data. Correlation between the methylation level of BMI predictors
and DM-BMI was assessed.

Functional and clinical characteristics

analysis of DM-BMI-related gene profile
DM-BMI of TCGA-BC tissues were calculated using
DNA methylation data. Spearman correlation coefficient
was used to assess the correlation of DM-BMI and clinical
characteristics (menopause status, hormone status, copy
number variation and gene mutation) in BC. Gene
expression profile related to DM-BMI was identified;
functional analysis of the related genes was process by GO
and KEGG analysis. Besides, we performed gene set variation
analysis (GSVA) to identify DM-BMI related gene signature
using gene expression data in TCGA (Hanzelmann et al,
2013). The above procedures were performed using the R
software.

Evaluation of correlations between DM-BMI
and the immune microenvironment in

breast cancer
Tumor mutation burden (TMB) was defined as the number of
non-synonymous mutations/Mb of genome. As previously
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Develop a DNA methylation-based estimate of Body Mass Index (DM-BMI) in training set (100 +
121 normal breast tissues in GSE88883 and GSE101961)

Validate the DM-BMI in validation set1 (26 + 18 normal breast tissues in GSE67919 and
GSE74214) and validation set 2 (70 tumor-adjacent breast tissues in GSE67919)

Evaluate the DM-BMI variations between paired BC and tumor-adjacent breast tissues (76
pairs in TCGA)

Evaluate the biological functions of BMI-related gene expression in BC tissues (TCGA BC
tissues)

Evaluate the correlation of DM-BMI and the immunotherapy response in BC (TCGA BC tissues)

FIGURE 1 | Flow chart of the study design. We enrolled 221 normal breast tissues as training set to develop a lasso regression to predict DM-BMI and validated the
accuracy of the model with data from normal breast tissues and tumor-adjacent breast tissues. Then, we predicted DM-BMI in 775 BC tissues and 76 matched tumor-
adjacent breast tissues. The correlation between DM-BMI and clinical characteristics was assessed in BC tissues. Further, we identified the DM-BMI related gene profile
and evaluated the relationships between DN-BMI and tumor immune response in BC tissues.

reported (Chalmers et al., 2017), TMB of BC tissues in TCGA was
calculated as (whole exome non-synonymous mutations)/
38 (Mb).

The level of tumor-infiltrating immune cells and stromal cells
in each tissue were evaluated by ESTIMATE algorithm
(Yoshihara et al., 2013). The proportion of 22 immune cells in
each tissue was evaluated using the CIBERSORT algorithm
(http://cibersort.stanford.edu/)  (Gentles et al, 2015).
Correlations between DM-BMI and ESTIMATE/CIBERSORT
scores were calculated using Spearman correlation coefficient.
The data for TMB, ESTIMATE, and CIBERSORT analysis are
listed in Supplementary Material S4.

Evaluation of correlations between DM-BMI

and the cancer immunotherapy response
Biomarkers used to predict the immunotherapy response
includes: IFN-y signature (IFNG) (Ayers et al.,, 2017), IFNG
hallmark gene set (IFNG.GS) (Benci et al, 2019), antigen
processing and presenting machinery (APM) score (Leone
et al., 2013), CD274, CD8, Tumour Immune Dysfunction
and Exclusion (TIDE) (Jiang et al., 2018), myeloid-derived
suppressor cells (MDSCs), cancer-associated fibroblasts
(CAFs), and the M2 subtype of tumor-associated
macrophages (TAM-M2) (Joyce and Fearon, 2015). IFNG
was calculated by averaging six genes (IFNG, STATI, IDO1,
CXCL9, CXCL10, HLA-DRA) (Ayers et al., 2017). IFNG.GS was
calculated as the average expression of all genes in the set (Benci
etal, 2019). APS was defined as the mRNA expression status of
APM genes (PSMB5, PSMB6, PSMB7, PSMBS8, PSMB9Y,
PSMBI10, TAP1, TAP2, ERAPI, ERAP2, CANX, CALR,
PDIA3, TAPBP, B2M, HLA-A, HLA-B, and HLA-C) (Leone
etal., 2013). CD274, CD8, TIDE, MDSCs, CAFs, and TAM-M2
were calculated using the web application (http://tide.dfci.
harvard.edu). The relevant data are listed in Supplementary
Material S4.

RESULTS

Development and validation of DM-BMI in
breast, tumor-adjacent, and breast cancer

tissues

A total of 221 breast tissues from non-BC cases (GEO database)
were selected as the training cohort to develop the DNA-
methylation-based BMI  (DM-BMI) prediction model
(Figure 1). The median BMI and median age of the training
cohort were 28.24 (6.07-53.74) and 37 (17-82). Fifty lasso
regression models based on DNA methylation data of the
training cohort (301,998 probes per sample) were constructed.
A model with minimum mean-squared error was selected based
on the Lambda value (Supplementary Figure S1A). Forty-two
probes were included and their coefficients are shown in
Supplementary Figure S1B and Supplementary Material S5.
We used Spearman correlation coefficient and paired t-test to
assess the predictive accuracy of the DM-BMI model. DM-BMI
showed a significant correlation with BMI (Figure 2A) while
paired t-test revealed that there was no significant difference
between DM-BMI and BMI (¢t = -0.384, df = 220, p-value =
0.702). Using a deconvolution algorithm, we evaluated the breast
tissue composition and observed that the increased DM-BMI was
significantly correlated with higher proportion of adipose tissue
(Figure 2B). These results showed the high accuracy of DM-BMI
for BMI prediction.

Next, 44 normal breast cases (Validation Set 1) and 70 tumor-
adjacent breast tissues (Validation Set 2) were enrolled for
external validation (Figure 1). The median BMI and median
age of Validation Set 1 were 27.1 (14.6-62.7) and 44 (13-80);
median BMI and median age of Validation Set 2 were 28.65
(16.5-53.4) and 56 (29-84). In both Validation Sets 1 and 2, DM-
BMI showed positive correlation with BMI (Figures 2C,E).
Paired t-test revealed that there was no significant difference
between DM-BMI and BMI (t = —0.253, df = 43, p-value = 0.801,
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FIGURE 2 | Development and validation of the DA-BMI predicting model. (A,B) Correlation of DM-BMI with (A) BMI and (B) proportion of adipose tissue in normal
breast tissues based on the training set (GSE88883 and GSE101961). (C,D) Correlation of DM-BMI with (C) BMI and (D) proportion of adipose tissue in normal breast
tissues based on Validation Set 1 (GSE67919 and GSE74214). (E,F) Correlation of DM-BMI with (E) BMI and (F) proportion of adipose tissue in tumor-adjacent breast
tissues based on Validation Set 2 (GSE67919). (G) Analyzing the differences of DM-BMI between tumor tissues (n = 76) and matched tumor-adjacent breast
tissues (n = 76) based on the TCGA-BRCA dataset. (H) Correlation of DM-BMI with proportion of adipose tissue in BC tissues based on the TCGA-BRCA dataset (n =
775). (A-F and H) r, Spearman correlation coefficient. (G) p-values were determined by paired t-test.

Validation Set 1; t = —1.87, df = 69, p-value = 0.066, Validation Set
2). Moreover, DM-BMI is significantly correlated with adipose
tissue proportion in both normal and tumor-adjacent breast
tissues (Figures 2D,F). The above results showed a high
prediction accuracy of DM-BMI model in normal and tumor-
adjacent breast tissues.

Furthermore, we assessed the DM-BMI of paired tumor and
tumor-adjacent breast tissues in TCGA database. The tumor
tissues exhibited a higher level of DM-BMI compared with its
paired tumor-adjacent tissues (Figure 2G). In BC tissues, DM-
BMI is positively correlated with adipose tissue proportion

(Figure

2H).
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FIGURE 3 | methylation level of BMI predictors. r, Spearman correlation coefficient; 39 BMI predictors positively correlated with DM-BMI (BMI predictors with correlation
coefficient >0.3 were marked as red dot; n = 10), and five BMI predictors negatively correlated with DM-BMI (BMI predictors with Spearman correlation coefficient < —0.3
were marked as green dot; n = 1). (E) Venn diagram of DMP; DM-BMI-correlated and expression-correlated BMI predictors. BMI predictors differentially methylated
between tumor and tumor-adjacent tissues were labeled as blue; methylation levels of the BMI predictors correlated with DM-BMI were labeled as red; methylation levels
of BMI predictors negatively correlated with gene expression were labeled as green.

What is known about the 42 body mass

index predictors?

As DM-BMI was significantly correlated with obesity status,
which has been suggested to regard as a risk factor for BC, we
further assessed the relevance between BMI predictors and BC.
As hyper-methylation of CpG island at gene promoter regions
often causes gene silencing, we first evaluated the distribution of
BMI predictors. Among 22 pairs of chromosomes (Chr), Chrl
and 16 are the most common region for BMI predictor
distribution; 45.2% of BMI predictors were located at the gene
body regions while only 23.8% of them were located at the
promoter regions (TS1500 and TS200). Furthermore, we
observed that only a few parts of BMI predictors were located
at CpG islands (Figure 3A).

Next, we assessed the methylation variation of BMI
predictors between tumor and tumor-adjacent breast tissues.
Twenty-six differentially methylated probes (DMP) were
identified: 22 BMI predictors were hyper-methylated in
tumor tissues compared with the tumor-adjacent breast
tissues; 4 were hypo-methylated in tumor (Figure 3B). Three
of 42 BMI predictors were correlated with better OS for BC
patients, while 2 of them were located at gene-coding regions
(Figure 3C). In BC tissues, the correlation between the
methylation level of 42 BMI predictors and DM-BMI was
evaluated. Eleven of them were significantly correlated with
DM-BMI (correlation coefficient >0.3 or < —0.3; Figures 3D,E);
35 of 42 BMI predictors were matched to the human gene
region. Through the integrative analysis of DNA methylation
and expression data, the negative correlation between
methylation level and gene expression was observed in 22 of
42 BMI predictors (Figure 3E).

Functional and clinical characteristics
analysis of DM-BMI related gene profile in

breast cancer

Later we explored the biological significance of DM-BMI in breast
cancer tissues. The survival correlation of DM-BMI was evaluated
in BCs and the subgroup of BCs with cancer therapy
(chemotherapy, endocrine-therapy, anti-HER2 therapy, and
radiation-therapy). DM-BMI was consistently correlated with
higher mortality risk in the whole cohort of BC patients and
subgroups of patients with chemotherapy, endocrine-therapy or
radiation-therapy, respectively (Table 2). Tissues from patients
with postmenopausal status and TP53-mutation exhibited a
significantly higher level of DM-BMI (Figures 4A,B). Apart
from that, an increasing level of DM-BMI was correlated with
an increased proportion of ERBB2 and MYC amplification
(Figures 4C,D).

TABLE 2 | Survival analysis of DM-BMI in BC with systemic therapy

Subgroup Hazard ratio (high vs. 95%CI p-Value
Low)

Overall 1.046329459 1.005-1.089  0.027924058

Chemotherapy 1.100065801 1.029-1.176 0.00529122

Hormone therapy 1.087123098 1.009-1.171 0.027857745

Anti-HER2 therapy 1.048120675 0.832-1.320  0.689677033

Radiation therapy 1.0775886 1.003-1.158  0.041331982

Previous studies showed that adipokines produced by obese
adipose tissues leads to obesity-mediated inflammation and BC
progression. In BC tissues, sections of adipose tissue were
positively correlated with DM-BMI. Expression of six pro-
inflammatory adipokines was positively correlated with DM-
BMI while the expression of two anti-inflammatory adipokines
was negatively correlated with DM-BMI (Figure 4E). These
results indicated that obesity increased the expression of pro-
inflammatory adipokines in BC tissues.

Furthermore, we assessed the DM-BMI (obesity)-related gene
expression profile and mRNA expression of 10,032 genes
significantly correlated with DM-BMI. To evaluate the
biological effect of obesity on BC, we performed a GSEA
analysis of DM-BMI-related genes using KEGG and GO
database. GO analysis showed that gens positively correlated
with DM-BMI were significantly involved in antigen process
and presentation, immune cell activation, MHC protein
binding, and immune receptor activity in BC (Figure 4F).
KEGG consistently showed that DM-BMI-related genes were
significantly enriched in tumor-immunity-related pathway
(which includes antigen processing and presentation, NK cell-
mediated cytotoxicity, T cell differentiation, and PD-1 checkpoint
pathway) (Figure 4G). These results indicated that the obesity-
related gene profile is involved in the regulation of immune
response in BC.

DM-BMI correlated with T-cell infiltration
and immune checkpoint inhibitor response

markers in breast cancer

We evaluated the correlation between obesity and immune
response to BC. Gene mutation which changes the protein-
coding sequence and leads to the expression of abnormal
proteins was suggested to be the driving factor for cancer
development. Also, the abnormal protein derived from tumor
mutation might rouse immune response. In BC tissues, we
observed a positive correlation between DM-BMI and TMB
(Figure 5A). Using the Estimate algorithm, we evaluated the
degree of immune cell infiltration in TCGA BC tissues.
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Interestingly, we found a positive correlation between DM-BMI
and Estimate-immune score while no significant correlation was
observed between DM-BMI and Estimate-Stromal score
(Figure 5B). Next, we calculated the relative abundance of 22
immune cell types in TCGA BC tissues. Among them, the content
of CD8-T, CD4 memory-activated T, T follicular helper, and
regulatory T cells (Treg) were positively correlated with DM-
BM]I, indicating a more intense T cell-mediated immune response
in BC tissues with increased DM-BMI (Figures 5C,D). As the
representative of immunotherapy, the ICI therapy suppressed BC
progression by activating T cell-mediated immune response.
Thus, we examined whether DM-BMI predicted the tumor
response to ICI. Five markers for ICI response and four
markers for ICI resistance were selected to evaluate the tumor
response. In BC tissues, DM-BMI is positively correlated with
IENG, IFNG.GS, CD274, CD8, and APS, indicating that BC
tissues with increased DM-BMI exhibited a better response to
ICI (Figures 5A,E). Moreover, DM-BMI was negatively
correlated with two ICI resistance markers (CAFs and TAM-
M2). All those results indicated that BC tissue at obesity status
might exhibit a more intense response to ICI based on markers of
ICI response.

DISCUSSION

Based on the DNA methylation pattern, we developed an obesity
evaluation model (DM-BMI) in the study. We then further
identified the obesity-related gene expression profile based on
the DM-BMI model. Although obesity has been shown to be a BC
risk factor for many years, most studies have been focusing on the
correlation between obesity and clinical prognosis while studies
about the biological and genomic impact of obesity on breast
cancer were limited. The adipose tissue, as the major agent
mediating obesity-related biological effects, is an important
starting point for the study of the obesity impact. In both
breast and BC tissue, we observed a positive correlation
between the proportion adipose tissue content and the DM-
BMI. Previous studies reported that the expansion of adipose
tissue, accompanied by the dysregulation of the endocrine
function (adipokine secretion) of the adipose cells, was driven
by an increase in size of adipose or by a formation of a new
adipose cell (Ghaben and Scherer, 2019; Quail and Dannenberg,
2019). As the DM-BMI increased, we observed an increased
expression of pro-inflammatory adipokines but a decreased
expression of anti-inflammatory adipokines which might
synergistically induce obesity-mediated inflammation through
the activation of the NF-kB pathway and a pro-oncogenic
environment.

In addition to the expansion of adipose tissue, we also
observed a promoting effect of obesity on immune response in
BC tissue. For those obese individuals, adipose tissue expands
with the increasing demand of oxygen, which induces the
development of the hypoxia environment (Iwamoto et al,
2018). The activation of hypoxia signaling increases the
expression of adipokines, especially the pro-inflammation
adipokines (including CCL2, CXCL8, CXCL10, IL-18, IL-la

Obesity biomarker in breast cancer

and Oncostatin M), which is involved in the recruitment of
tumor-associated immune cells (Taylor and Colgan, 2017; Hou
et al., 2020; McGettrick and O’Neill, 2020). Moreover, previous
studies showed that adipocytes could fuel immune cells by
releasing exosome-sized and lipid-filled vesicles (Flaherty et al.,
2019; Zhang et al., 2020). In BC tissues, we observed that DM-
BMI is positively correlated with the degree of M1 macrophages
and activated dendritic cell and T cell infiltration, indicating an
increase activity of tumor immune response. As T cell exhaustion
is the key for tumor immune escape, previous studies have
indicated that T cell exhaustion could be reversed by immune
checkpoint inhibition (such as PD-1 inhibition) and replenishing
activated T cells (such as CAR-T) (Bajgain et al., 2018; Bassez
et al,, 2021). Interestingly, in obese BC tissues, we found an
increase content of CD4 +CD8 + and follicular helper T cells,
which may be the result of an increased secretion of immune
chemokines in adipose tissue. Although we observed a positive
correlation between DM-BMI and regulatory T cell (Treg),
coupled with a  subset of cell with
immunosuppressive activity, they can be interpreted as a
negative feedback regulation by the immune system to
maintain the stability of the immune environment after the
activation of the immune response (von Boehmer and Daniel,
2013). Furthermore, our study revealed that DM-BMI is
positively correlated with ICI response markers in BC tissues.
These results suggest that obese BC patients may benefit from ICL
Recently, Wang et al. consistently reported that obesity is
concerned with increased response of PD-1/PD-L1 blockade in
an animal melanoma tumor model (Wang et al., 2019). However,
as our findings were mainly supported by database analysis, data
from clinical samples treated with ICI treatment are still required
to validate the correlation between DM-BMI and ICI response.

With the increasing number of obese patients, the impact of
obesity on the treatment of breast cancer has aroused more and
more attention. We observed that the increased DM-BMI was
correlated with higher mortality risk in patients with
chemotherapy, hormone therapy, and radiation therapy.
Although no evidence pointed out that obesity will induce
drug-resistance in cancer cell, dose of chemotherapy and
radiation might still be routinely reduced in obese individuals
as doctors usually limit body surface area under 2 m* to reduce
toxicity when calculating the dose of chemotherapy (Lyman,
2012; Picon-Ruiz et al., 2017). As is highly expressed of
aromatase, adipose tissue is an endocrine organ, which is an
important site for estrogen biosynthesis, especially for
postmenopausal women (Liedtke et al., 2012). For obese BC
patients, increased expression of aromatase might cause the
resistance to endocrine-therapy.

Because of the limitation of BMI in obesity evaluation, several
imaging methods have been developed for obesity evaluation
(including: bioimpedance analysis instruments, dual-energy
x-ray absorptiometry, computed tomography, and magnetic
resonance imaging) (Karlsson et al., 2013; Neamat-Allah et al,
2014). Although these new methods enabled the precise
quantification of adipose tissue, the operational complexity did
limit their application (Nimptsch et al., 2019). Developing new
methods to evaluate the degree of obesity is of great value.

immune
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Recently, an increased number of studies indicated that
environmental factors (such as dietary pattern and lifestyle)
will induce changes in the DNA methylation pattern
predisposing to obesity and obesity and, likewise, results in
genome-wide methylation variation (Wahl et al, 2017
Samblas et al., 2019). Moreover, biomarkers based on DNA
methylation have been shown to be effective in obesity
evaluation while most of them were only applied in blood
samples (Samblas et al., 2019). Thus, we developed a DNA-
methylation-based biomarker (DM-BMI) for obesity evaluation
in breast tissue. In both normal breast and tumor-adjacent breast
tissue, DM-BMI showed a significant correlation in both BMI and
the content of adipose tissue. In addition, we also observed that
DM-BMI was positively correlated with the degree of pro-
inflammatory adipokine and immune cell infiltration in BC
tissues. All those data indicated that DM-BMI is an effective
biomarker to evaluate the biological changes in tumor tissues of
obese patients.

The identification of BMI predictors naturally causes the
assumption that these CpGs are critical regulators of obesity. In
our study, only 11 of 42 BMI predictors were significantly
correlated with DM-BMI while the others exhibited negligible
correlation with DM-BMIL. Although DNA methylation level
was negatively correlated with gene expression in over half of
BMI predictors, 45.2% of BMI predictors were located at the body
region of gene sequence. How the CpGs located at the body region
regulate gene expression remains unclear. As a previous study
reported, the variations of DNA methylation pattern are the
consequence, rather than cause, of adiposity (Wahl et al., 2017).
Whether these BMI predictors are regulators of obesity or imprints
of the biological process remained to be further investigated.

CONCLUSION

Collectively, we established a new biomarker for obesity
evaluation and discovered that BC tissues of obese individuals
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