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Abstract

Microscale swimming may be intuited to be dominated by background flows, sweeping away any 

untethered bodies with the prevalent flow direction. However, it has been observed that many 

microswimmers utilize ambient flows as guidance cues, in some cases resulting in net motion 

upstream, contrary to the dominant background fluid direction and our accompanying intuition. 

Thus the hydrodynamic response of small-scale motile organisms requires careful analysis of the 

complex interaction between swimmer and environment. Here we investigate the effects of a 

Newtonian shear flow on monoflagellated swimmers with specified body symmetry, representing, 

for instance, the Leishmania mexicana promastigote, a parasitic hydrodynamic puller that inhabits 

the microenvironment of a sandfly vector midgut and is the cause of a major and neglected human 

tropical disease. We observe that a lack of symmetry-breaking cellular geometry results in the 

periodic tumbling of swimmers in the bulk, with the rotations exhibiting a linear response to 

changes in shearing rate enabling analytic approximation. In order to draw comparisons with the 

better-studied pushers, we additionally consider virtual Leishmania promastigotes in a confined 

but typical geometry, that of a no-slip planar solid boundary, and note that in general stable guided 

taxis is not exhibited amongst the range of observed behaviors. However, a repulsive boundary 

gives rise to significant continued taxis in the presence of shearing flow, a phenomenon that may 

be of particular pertinence to the infective lifecycle stage of such swimmers subject to the 

assumption of a Newtonian medium. We finally propose a viable and general in vitro method of 

controlling microswimmer boundary accumulation using temporally evolving background shear 

flows, based on the analysis of phase-averaged dynamics and verified in silico.
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I Introduction

In the microscale world of unicellular swimmers, the background dynamics of the 

environment may seem to dominate cell motion. However, such motile microorganisms are 

guided by background flows, enabling the directed taxis of cells in their microenvironment. 

For example, a background shear flow is seen to influence the swimming direction of 

mammalian spermatozoa near a boundary [1–3], and bias the orientation of Escherichia coli 
both in the proximity of a planar boundary and in the bulk fluid [4,5]. Such a directed 

response to background flow, known as rheotaxis, is hypothesized in cases to be a 

contributing factor to the function or survival of the swimmer, as in the case of the canonical 

human spermatozoon [2,6]. Rheotaxis is widely prevalent in nature across a range of scales, 

being commonly observed in fish [7] and additionally exhibited amongst insects [8]. In 

terms of microscale swimming, the rheotaxis of squirmers, typically spherical particles that 

generate a fluid velocity at their surface, has been considered in detail [9,10], a biological 

example being the ciliated microorganism Opalina [11–13]. Squirmers, along with all 

microswimmers, may be classified hydrodynamically as either pushers or pullers depending 

on their method of locomotion [14]. A puller is characterized by drawing in fluid along one 

axis, before then expelling the fluid out at the sides, whilst pushers perform the reverse 

action, thus achieving propulsion in the opposite direction. In general the behaviors of the 

flagellated pushers are better studied than those of pullers, with particular recent focus on 

the boundary accumulation of flagellates such as the mammalian spermatozoon and the 

bacterium E. coli [2,15–18]. In particular, rheotaxis of mammalian spermatozoa has been 

known to occur for over 100 years [19], and has been recently explained in more detail with 

reference to its potential biological significance [1,6,20–22]. Given the lack of analogous 

knowledge regarding pullers, examples of which include the insect pathogens Crithidia spp. 

and related genera, as well as the genus of plant pathogens Phytomonas, there is therefore 

extensive scope to expand on current understanding and examine bulk puller response to 

background flows, as well as the additional effects of boundary proximity.

A further example of a hydrodynamic puller, the parasitic monoflagellates of the genus 

Leishmania are responsible for a major tropical human disease, leishmaniasis, which affects 

around 4 million individuals across the globe, from the Americas to the African continent 

[23]. Motile forms of Leishmania spp. utilize tip-to-base flagellar beating to achieve 

locomotion in the sandfly vector midgut, a feature of motile life cycle stages of all species of 

the family Trypanosomatidae including the aforementioned genera Crithidia and 

Phytomonas [24–29]. During their life cycle stage in the sandfly midgut, Leishmania 
promastigotes, characterized by their particular morphology, with a large cell body 

compared to their flagellum, are known to migrate toward the foregut following detachment 

from midgut epithelium [30]. They have also been observed at this stage to induce 

regurgitation in the vector by the secretion of promastigote secretory gel into their 

environment [31,32]. The precise role of such regurgitation is unknown, but is suggested by 

Walker et al. [33] to aid in the taxis of promastigotes in the bulk fluid. However, any 

possible rheotactic effects of background flows near boundaries have previously not been 

considered for Trypanosomatidae, even for Newtonian media, in contrast to their dynamics 

in quiescent fluid [33]. Thus our objective is to examine the effects of ambient Newtonian 
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flows on the boundary swimming of this monoflagellated puller. Such a study will not only 

elucidate the behavior of Leishmania in experimental settings and microfluidic devices, but 

also inform our understanding of its behavior in situ, subject to the caveat that the rheology 

in the sandfly midgut is unknown.

To proceed we will investigate the response of motile monoflagellates to a shearing flow, 

with particular reference to the morphology and swimming characteristics of the Leishmania 
mexicana promastigote. Our candidate background flow, a shear flow, is one in which the 

fluid moves in nonmixing layers, may be generated experimentally near boundaries in 

microfluidic channels [4], and has previously been used to study the rheotaxis of human 

spermatozoa [1,2,6]. Indeed, the phenomenological model of Kantsler et al. [1] proposes a 

simple linear relationship between flagellate velocities and the parameters describing a 

background shear flow. If valid, such a model may be extended to the study of 

microswimmer populations, supplementing the prior descriptions of swimmer suspensions 

of Bearon and Grünbaum [34], Pedley and Kessler [35], and more generally facilitating 

further study into the behaviors of flagellate and active particle populations, with the latter as 

reviewed by Bechinger et al. [36]. Thus we additionally aim to ascertain to high precision 

the level of agreement between free-space flagellate swimming and a simplified description 

of their response to shear flows.

To proceed, we firstly recapitulate the boundary element formulation of the governing 

equations and detail the construction of a virtual swimmer. Further, we use the technique of 

phase averaging to provide an approximate quantification of virtual monoflagellate 

swimmers in free space and exposed to a shearing flow, drawing comparisons with classical 

studies of nonmotile bodies. We vary body lengthscales and flagellar kinematics in order to 

compare hydrodynamic classifications and the impacts of morphology in the scenarios of 

bulk and boundary swimming, and comment on the effects and the implications for guidance 

via time-dependent shearing rates. Our final objective is then to use the above to comment 

on the effects of shear flows on the boundary swimming of virtual Leishmania, and discuss 

potential relevance to in vivo promastigotes.

II Methods

A The virtual monoflagellate

In order to simulate the motion of monoflagellates, we utilize a general idealized 

computational representation: the virtual monoflagellate. Equipped with an axisymmetric 

ellipsoidal body and a long attached flagellum, the construction of a universal virtual 

monoflagellate enables the study of a variety of flagellated swimmers, and of perhaps most 

significance the L. mexicana promastigote. We model such a virtual promastigote as having 

a large prolate body, with typical major and minor axes of 11 and 3.5 μm, respectively, and a 

flagellum of length 13 μm, using the typical measurements of Wheeler et al. [37]. We define 

two reference frames, a laboratory and a swimmer-fixed frame, with coordinates x1x2x3, and 

x1x2x3, respectively, as shown in Fig. 1 and where the major axis of the ellipsoidal body lies 

along the x1 axis. The origin of the swimmer-fixed frame in the laboratory frame is denoted 

x0(t), and is the location of flagellar attachment to the swimmer body. The surface of the 
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monoflagellate is typically meshed using 644 triangular elements, with more elements being 

utilized for verification purposes and a coarse example being shown in Fig. 1.

To complete a kinematic description of the swimmer, we prescribe a planar beating pattern 

for the flagellum, as is evidenced to be typical for Leishmania in Fig. 1 of Walker et al. [33] 

and observed in other microswimmers, and adopt the convention that the beat plane lies on 

x3 = 0. In particular, we use the description of Leishmania beating identified by Walker et al. 
[33], with the flagellum centerline being parametrized explicitly by ξ in the swimmer-fixed 

frame as

x1 ξ, t = ξ,

x2 ξ, t = A sin 2π
λ ξ + 2π f t − sin 2π f t ,

x3 ξ, t = 0

(1)

for parameters λ = 13 μm, f = 28 Hz, and A = 1.8 μm. Here ξ ∈ [0, ξ*], where ξ* is chosen 

to conserve the flagellar length over time, and the form of x2(ξ, t) is such that the proximal 

base of the flagellum is attached to the swimmer body for all time t. The above parameter 

choices give a typical free-space swimming speed of approximately 1.5–2 μm s−1, of similar 

magnitude to reported Leishmania motion in vitro [37]. We here note that the analysis that 

follows is robust to small changes in beating parameters, but that the full effects of 

significant deviation are not explored here in detail. When briefly considering the motion of 

pusher swimmers we will typically retain the virtual promastigote swimmer parameters, 

subject to reversals in beating direction and variations in body lengthscale, but no other 

morphological changes.

B Governing equations and solution

The microscale dynamics of swimmers in a Newtonian medium are governed by the three-

dimensional incompressible Stokes equations, which give the fluid velocity u, expressed in 

the inertial laboratory frame, and pressure p as the solutions of the dimensional equations

μ∇2u = 𝜵 p, ∇ ⋅ u = 0, (2)

where μ is the dynamic viscosity of the fluid and these equations are imposed in the exterior 

of the domain Ω, which we will take to represent the exterior of the closed volume of a 

microswimmer. We enforce the additional conditions of force and torque-free swimming to 

close the system, as is typical for swimmers at small scale under the additional assumption 

of neutral buoyancy [14], removing the pressure gauge freedom as in Walker et al. [33]. The 

solution of these equations via the boundary element method is given by Pozrikidis [38], 

explicitly as the solution of
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u j x* = − 1
4πμ∫S

Gi j x, x* f i x dS x

+ 1
4π∫S

PV
ui x T i jk x, x* nk x dS x ,

(3)

shown here for a surface S that will typically represent the surface of the swimmer. Here x* 
is a point on S with coordinates given in the swimmer-fixed frame, fi are the components of 

surface traction, and n is the surface normal directed into the fluid domain. Additionally, Gij 

and Tijk are velocity and stress Green’s functions of three-dimensional Stokes flow, and ∫PV 

in the second summand denotes a principal value integral.

Prior to solution it is useful to decompose the fluid velocity into a known background and an 

unknown disturbance flow, denoted by ub and ud, respectively, expressed in the laboratory 

frame and following the work of Ishimoto and Gaffney [39]. Hence we prescribe u → ub in 

the far field and away from any boundaries, and the decomposition gives the appropriate 

condition at infinity for the unknown disturbance flow as ud → 0. On boundaries, including 

the swimmer surface, we impose the no-slip condition. In order to prescribe these conditions 

we may utilize the free-space or Blakelet integral kernels in Eq. (3) [40], with the latter 

additionally enforcing the no-slip condition on a specified planar boundary and noting that 

both choices yield solutions satisfying the far-field condition.

We may readily compute the solution of Eq. (3) for a known swimmer configuration in order 

to determine the instantaneous swimmer linear and angular velocities in the laboratory 

frame, taking μ throughout to be the dynamic viscosity of water at 25° C. We then employ a 

second-order time-stepping scheme to compute swimming trajectories, as detailed in Smith 

et al. [17].

The implementation of the boundary element method was verified against the work of 

Ishimoto and Gaffney [39], with sample simulations in agreement for the cases of bulk 

swimming and motion near a boundary. The integral kernels used in the solution of the 

boundary integral equations were compared with the implementations of Pozrikidis [38], 

showing agreement to machine precision. Final verification was also performed against the 

analytic solution of Jeffery [41] for passive ellipsoidal particles, with discretization 

parameters being chosen to give solutions of sufficient accuracy and precision. Where 

simulations include solid boundaries and will result in collision between the swimmer and 

the surface, simulations are halted when the distance between swimmer and boundary 

reaches ~2 nm.

In studying the response of virtual monoflagellates to a shearing flow in the bulk we will 

prescribe ub = γd x2, 0, 0 , where γd is a dimensional shearing rate and the frame coordinates 

are as shown in Fig. 2, whereas study near a planar boundary given by x1 = 0 will entail 

ub = γd 0, − x1, 0  to satisfy the no-slip condition at the boundary. A biologically appropriate 

Walker et al. Page 5

Phys Rev E. Author manuscript; available in PMC 2019 January 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



choice of γd is unknown, thus we will typically take γd such as to give a nonwashout flow 

that nonetheless influences the swimmer.

C Phase-averaged analysis

When investigating the long-time swimming of virtual monoflagellates we will often 

consider a phase-averaged analysis, utilized partly to reduce the computational costs of 

simulation, which can be prohibitively high due to the high mesh resolutions required for 

sufficient accuracy [33], but primarily to enable the application of dynamical systems theory 

in the study of swimmer motion. In order to obtain these averaged dynamics we simulate a 

swimmer in a given configuration at multiple points over its beat period, typically 20 or 40 

sample points, and average the computed linear and angular velocities over the beat.

Additionally, in free space we will align the swimmer along the direction of shear, restricting 

the three-dimensional angular motion of the virtual flagellate to the beating plane. The 

orientation may then be described by the single clockwise angle θ as shown in Fig. 2. This 

significant restriction greatly simplifies the dynamics and enables analysis of an otherwise 

computationally complex scenario, exploiting body symmetry and the shearing nature of the 

background flow.

We make a similar simplification to the dynamics near a planar wall given by x1 = 0,

restricting the motion to a plane x3 = const and parametrizing by orientation θ and separation 

h. Here θ is defined as the clockwise angle between the swimmer-fixed x1 axis and the x1
axis of the laboratory frame, and the dimensional separation h is the perpendicular distance 

from the attachment point x0(t) to the boundary, shown in Fig. 1. This gives a two-

dimensional autonomous system, comparable with known analytic results for squirmers 

[42,43], and reduced from the four-dimensional dynamics that would allow rotations out of 

the plane of the shear.

The relevance of the study of these restricted dynamics in describing the full system is 

examined and evidenced in the Appendix. Comparisons between the predictions of the 

constrained dynamics and long-time simulations of the full dynamics, in particular 

pertaining to swimmers that are not aligned with or restricted to a plane, highlight 

remarkable agreement between the two systems, and thus justify the detailed study of the 

above dimensionally reduced systems in describing the behaviors of unrestricted swimmers.

D Repulsive boundary forces

Reported in vitro for the bacterium Staphylococcus aureus by Klein et al. [44], strong 

repulsive boundary forces act between cells and boundaries. In order to capture the effects of 

such surface forces, including the effects of contact with the boundary, we can include short-

range repulsive boundary forces of steric origin, given per unit surface area and scaling in 

strength with the ratio of fluid viscosity and dimensional beating period, μ/Td. Following 

Ishimoto and Gaffney [45], we explicitly give the force per unit area in dimensional form as
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f wall s = g μ
Td

e−s/l

1 − e−s/l n, (4)

for outward-pointing unit boundary normal n, boundary separation s, nondimensional 

scaling g = 1250 chosen to represent a strong force relative to other scales in the model, and 

characteristic decay length, l, that is much smaller than the cell scale, with l = 0.2 μm. We 

will refer to a boundary equipped with this force as repulsive, whilst a boundary without 

such a potential will be described as passive.

III Results

A Virtual monoflagellate rotation in the plane may be partially approximated by passive 
ellipsoids in the bulk

Due to a lack of symmetry-breaking features, in the bulk virtual pushers equipped with a 

planar flagellar beat are observed to turn in a shear flow aligned with their beat plane (see 

Fig. 2), rotating in unison with being guided by the background flow. The evolution and 

period of the rotation have been calculated using phase-averaged analysis, with the evolution 

of the angular displacement of the cell shown over dimensional time in Fig. 3(a). The phase-

averaged planar motion is compared and verified against long-time simulation of the full 

system, and good agreement is observed. The angular motion is similar in character to the 

well-known Jeffery’s orbits of passive ellipsoidal particles in shear flow [41]. Thus the orbits 

were compared against the dynamics of axisymmetric ellipsoidal particles with appropriate 

dimensional period of rotation Td, choosing the aspect ratio r > 1 of each ellipsoid as that 

given by Jeffery’s formula,

Td = 2π
γd

r + 1
r . (5)

One such comparison is shown in Fig. 3(b), between a passive ellipsoid and an active virtual 

promastigote, where only slight quantitative differences are observed between the two. Thus 

the phase-averaged angular dynamics of our large-bodied puller may be approximately 

captured by a Jeffery’s orbit for a given shear rate, but the same ellipsoid a priori may not be 

a suitable replacement across a range of shearing rates. In fact, analysis of the dimensional 

period Td as a function of shearing rate γd revealed that a single choice of ellipsoid is indeed 

appropriate for a range of background flow rates (r ≈ 5.49 for the virtual promastigote), and 

shows remarkable agreement with the functional form given in Eq. (5), as shown in Fig. 

3(c). Hence we conclude that the rotational motion of flagellated pullers with large cell 

bodies and a planar beating pattern may be reasonably approximated by the Jeffery’s orbit of 

an appropriate passive ellipsoid, the aspect ratio of which may be determined by simple 

phase plane analysis and curve fitting.

By the time reversibility of the governing equations and boundary conditions, this method of 

approximation is also valid for a pusher with the same morphology and beat characteristics, 
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obtained as a result of reversing the direction of flagellar beating. Thus the efficacy of 

approximating angular dynamics with Jeffery’s orbits is independent of whether the 

swimmer is a pusher or a puller.

The above analysis was repeated for a range of body lengthscales, whilst retaining body 

symmetry and flagellum lengthscale, with the resulting periods of rotation shown in Fig. 4. 

Here we have fixed the shearing rate γd = 1 s−1, along with flagellum morphological and 

beating parameters. The resulting curve highlights a maximal period of rotation, 

corresponding approximately to the body lengthscale of the virtual promastigote. Thus L. 
mexicana promastigotes of typical length appear to exhibit the largest period of rotation for 

variations in body scale.

B Guided bulk swimming may be achieved using temporally evolving shearing flows, and 
readily approximated

Coupling the angular evolution of a monoflagellate with its linear velocity completely 

describes the phase-averaged planar motion of such a swimmer. Computing the phase-

averaged linear velocity of the swimmer for given background flow rate γd and orientation 

θ, notably less expensive computationally than full long-time simulation, it is possible to 

simulate the approximate long-time motion of the microswimmer and determine the effects 

of a variable background shearing rate. It is thus feasible to obtain an approximate 

swimming trajectory without large computational cost given a prescribed time-varying 

background flow.

Via the same method it is also possible to approximately determine the set of all possible 

swimming paths from a given configuration for a specified background flow. We consider a 

swimmer in a background shear flow ub = γd x2, 0, 0 , expressed in the laboratory frame and 

here with γd = 1 s−1. Additionally assuming that the initial swimmer position is known, 

without loss of generality we take this position to be the origin of the laboratory frame. 

Supposing that the unknown initial orientation of the swimmer is distributed uniformly in [0, 

2π], as might be a naive assumption for an unknown flagellate, we see in Fig. 5(a) that the 

most probable positions after some fixed time may be identified with the regions of 

increased point density, with paths being shown after 2 s and qualitatively robust to large 

variations in simulation interval and shearing rate. Refining the distribution of initial 

orientation using the dynamics of the Jeffery’s orbit approximation, we obtain the profile 

shown in Fig. 5(b), exhibiting a stark contrast in distribution and showing a greater 

likelihood of travel along the axis of the flow than the naively distributed approach, as might 

be reasonably expected.

In addition, we theorize that one may inform the specification of background flows using the 

same phase-averaged analysis in an attempt to prescribe a swimming path, thereby enabling 

the guidance of a swimmer along a specified path by dynamic changes in background 

shearing rate. As an example of this, a simple path shown as a black dotted curve in Fig. 6 

was prescribed for the typical virtual promastigote, informed by Fig. 5 and aiming to guide 

the swimmer in a fixed direction. Taking the intended direction of guidance to be along that 

of the shear flow without loss of generality, an appropriate shearing rate evolution was 
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determined from phase-averaged analysis. For such a rotationally symmetric path only a 

single shear reversal is required, with the reversal time being half the period of rotation. 

Long-time simulation of the swimmer in this time-dependent background flow illustrates 

good agreement between the predicted and fully simulated paths, particularly on a short 

timescale. Agreement is improved by refining the simulation of the full system, and thus the 

comparison validates the efficacy of both the phase-averaged approximation and the 

proposed method of swimmer guidance.

C Shearing flow in general does not induce stable boundary taxis in virtual 
promastigotes

In order to characterize behaviors of virtual monoflagellates near a passive no-slip boundary 

in the presence of shear flow, we compute a time-averaged phase plane as described in Sec. 

II C, where orientation θ is as shown in Fig. 1. An example of such a phase plane is shown 

in Fig. 7(a), where we have simulated a virtual promastigote in moderately strong shear flow 

of dimensional shearing rate γd = 1 s−1 parallel to the boundary, with the flow direction 

being such that θ̇ > 0 in the absence of boundary effects. From the phase plane we identify a 

fixed point of the system in 0 < θ < π/2, corresponding to the balance of torques from the 

rotational background flow and attractive hydrodynamic boundary effects. The fixed point is 

seen to be a saddle, and thus unstable, with approximate stable and unstable manifolds being 

shown in Fig. 7(a). Further, noting the periodicity of the system in θ, we observe a 

homoclinic orbit connecting the saddle to itself, creating a separatrix between the behaviors 

of boundary trapping and deflection into the bulk.

Here, with a passive no-slip solid boundary, we observe that configurations on one side of 

the separatrix will eventually result in boundary collision, with the lower branch of the 

unstable manifold preventing periodic swimming and thus lasting accumulation. Conversely, 

on the other side, boundary escape is predicted. These behaviors were confirmed by long-

time simulation of the full system, and observed to be robust to perturbations in body 

lengthscale and flagellum beating parameters, as well as significant changes in background 

flow rates, where γd ranges between 0.01 and 2 s−1.

A reduction in shearing rate sees the separatrix retained, but situated at increased values of 

separation h, with the saddle moved correspondingly. An increase in shearing rate γd from 

the reference value of 1 s−1 to above a critical value, computed for our virtual promastigote 

to be γd ≈ 1.2 s−1, results in the stationary point being in such close proximity to the 

boundary that configurations beneath the separatrix effectively represent immediate 

boundary collision. Thus in high shear we enter a parameter regime where the steady state 

approximately corresponds to collision with the surface, resultant of the large-magnitude 

torque exerted on the swimmer by the background flow. However, at such flow rates the 

details of microswimmer morphology and flagellar beating are subdominant to the effects of 

the background flow and washout, thus we will not consider high flow rates further. For all 

flow rates of physical interest we therefore conclude that the same behavioral dichotomy 

exists with no possibility of periodic swimming, and thus virtual promastigotes will not in 

general boundary accumulate in shear flow.
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D Boundary behaviors may be controlled via variable shearing rates

Recalling from Sec. III C that decreasing background flow shear reduces proximity of the 

separatrix to the wall, we note that toggling cell behavior between wall escape and attraction 

for a given location and orientation may be effected by altering shear. In order to change the 

swimming behavior an appropriate change in shear is required. From a sample phase plane 

[see Fig. 7(a)] we see that in fact an instantaneous change from a shearing rate γd to the 

reverse flow (γd ↦ −γd) will achieve behavior reversal in a large proportion of reasonable 

cases, simply by noting that a reversal in shear direction is equivalent to the mapping θ ↦ 
2π – θ, and thus gives a separatrix mirrored about θ = π. A sample trajectory illustrating 

this effect is presented in Fig. 7(b).

Whilst instantaneous changes in background flow are acceptable in the inertia-free limit of 

Stokes equations, it is not clear that such immediate changes in shear can be performed in 

practice. However, we observe that the same behavioral change may be obtained from a 

continuous variation in shearing rate, exploiting the response of the separatrix to a change in 

shearing rates, and, in particular, without the need for an explicit and instantaneous 

background flow reversal. Hence we conclude that the long-time boundary behaviors of a 

large-bodied puller may be dynamically adjusted via background flow calibration.

E Repulsive boundary character combined with shear flow may give rise to boundary 
swimming in virtual promastigotes

Whilst we have observed that a shear flow alone is not sufficient to induce stable boundary 

swimming in a large-bodied puller like the virtual promastigote, we investigate a boundary 

of different character by introducing a short-range repulsive boundary potential, simulating a 

contact force or other strong repulsion close to the boundary, as discussed in Sec. II D. Due 

to the short range of the repulsion, it is not in general appropriate to use the method of phase 

averaging to study the near-boundary behavior of flagellates due to the flagellar beat, 

typically possessing an amplitude larger than the characteristic range of the boundary force 

and thus rendering phase averaging unreliable. However, in the medium to far field of the 

boundary the use of the phase-averaged dynamics is justified, as the surface potential is of 

negligible magnitude away from the boundary. Hence we use long-time simulation in 

conjunction with the phase planes of Sec. II C to investigate the effects of a repulsive 

boundary potential on monoflagellate swimming.

Simulating the long-time motion of a virtual promastigote in close proximity to the 

boundary in significant shear flow, we observe a qualitative change in overall swimmer 

behavior. To see this we consider the example phase plane of Fig. 8, computed for shearing 

rate γd = 1 s−1 for the promastigote-type swimmer, along with the full simulation of the 

near-boundary dynamics exemplified in Figs. 8(b) and 8(c). Beginning from any given initial 

configuration (examples shown in red in Fig. 8), we simulate the full system to accurately 

determine the motion induced by the boundary repulsion. As the flagellum approaches the 

boundary, promoted by the tip-first swimming of the flagellate, the strong boundary force 

exerts a torque on the swimmer, causing it to rotate away from the surface. Following this 

reorientation, the swimmer evolves to a configuration away from the surface in which the 

repulsive force is again subdominant, with the flagellum directed into the bulk. For 
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swimmers initially near θ = 3π/2, we then note from the phase plane that the resulting 

configuration (shown in blue) is greatly beneath the separatrix, and thus the motion that 

follows will entail the swimmer again drawing close to the boundary (shown in black), 

where the process will repeat following an apparent limit cycle. For configurations that are 

initially close to the saddle point at θ ≈ π/2, as can be seen in Fig. 8(a), we observe a 

repeated tumbling motion, with the repulsive surface force allowing swimmers to cross the 

unstable manifold of the saddle in phase space and remain beneath the separatrix. The 

swimmer then moves off into the bulk, but is still captured by the shear flow and again draws 

close to the boundary. During this cycle the swimmer is largely far from the boundary and 

facing downstream (θ > π), and hence is convected predominantly with the background 

flow.

Thus we have identified two modes of downstream quasiperiodic boundary swimming of 

virtual promastigotes in the plane, one in which swimmers remain facing downstream and 

another in which the virtual flagellate tumbles. In the former case the rotational effects of the 

shearing flow cause the forward-facing flagellum of the puller to approach the boundary, 

where it is then subject to significant repulsive forces and subsequently reoriented back 

away from the boundary. This repeated behavior is not seen in pushers in the same way, 

exemplified by the well-known upstream stable boundary swimming of the human 

spermatozoon in a shear flow [1,6,20–22]. We do, however, retain the quasiperiodic 

swimming in pullers with reduced body lengthscales, having repeated the above analysis for 

a swimmer with body length-scale decreased by 80% from that of the virtual promastigote. 

This suggests that the presence of such a behavior is reliant on a hydrodynamic mechanism 

and independent of body lengthscale.

IV Discussion and Conclusions

In this work we have explored the response of idealized virtual microswimmers to a shearing 

flow, examining the resulting behaviors of the flagellates and their dependence on swimmer 

type and morphological scale. We have compared the planar orbits of virtual monoflagellates 

aligned with shear flow to the Jeffery’s orbits of passive ellipsoidal particles, observing 

remarkable agreement and thus justifying the use of the latter as an approximation of the 

angular evolution of the former. Considering the resulting period of orbit as a function of the 

body lengthscale, we observed a scaling that gives rise to virtual promastigotes undergoing a 

maximal period of rotation, for typical parameters used in the study of L. mexicana 
promastigotes [33,37], suggesting some notion of optimality in L. mexicana morphology. 

However, due to morphological differences and natural variation in promastigotes within the 

cell cycle and across life cycle stages [37,46], there may be little biological significance of 

this property, if indeed the property holds for nonidealized swimmers in vivo.

Following the discovery of Jeffery’s orbits as an appropriate approximation to the angular 

motion of our monoflagellates, we then demonstrated that the linearity inherent in the orbits 

of these passive particles may be exploited to enable computationally feasible approximation 

of long-time trajectories of the planar motion of monoflagellates. This in turn may be 

utilized for flow-driven swimmer guidance in the bulk. Whilst variations in body 

lengthscales were considered, the effects of symmetry-breaking morphology were not 
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examined in detail. Indeed, due to the rich character of Jeffery’s orbits for nonaxisymmetric 

particles, as reported classically by Hinch and Leal [47], we expect the effects of asymmetry 

to depend strongly on the particular morphology of the swimmer, and is for future 

consideration.

Nonetheless, for axisymmetric swimmers moving in a plane we have demonstrated that 

swimming paths may be predicted with significant accuracy and low computational cost, 

enabling further study of swimmer response to bulk guidance cues. Additionally, as 

explicitly demonstrated in the Appendix, such dynamics also tracks the projection onto 

phase space of trajectories that are not restricted to the plane of shear. Furthermore, the 

Jeffery’s orbit dynamics, coupled with progressive velocity, entails a verified description of 

the monoflagellate swimmers that is very simple, with further possibilities in exploring such 

approximations in more complex background flows, applied to other swimmers and 

population dynamics. Indeed, the phenomenological model of rheotaxis proposed by 

Kantsler et al. [1] is here justified physically (at least in projection for the out-of-plane 

dynamics) by our comparison of monoflagellate rotation with Jeffery’s orbits, verified by the 

phase-averaged path analysis of Sec. III B. We further propose that the two-dimensional 

models of Bearon and Grünbaum [34] and the continuum formulation of Pedley and Kessler 

[35] may be augmented with the analytic solution of Jeffery’s orbits in order to simulate the 

approximate collective motion of a population of flagellated swimmers.

We have additionally produced a qualitative description of the distribution of trajectories for 

a randomly oriented swimmer in a prescribed shearing flow, comparing naive and informed 

distributions of initial flagellate alignment. We observed a significant bias for motion along 

the direction of shear, as would be expected for passive particles, demonstrating further the 

similarity in behaviors between passive ellipsoids and motile flagellates of this type.

Further, we have investigated the impacts of a passive planar no-slip boundary on how 

shearing flows affect monoflagellates. In particular, we have observed a lack of stable 

boundary swimming in the planar behaviors of virtual L. mexicana promastigotes, 

additionally demonstrating that swimming stability is not qualitatively dependent on 

moderate changes in body lengthscale. Following from the pusher-puller duality of 

microscale swimming, which arises from the time reversibility of Stokes equations and 

accompanying boundary conditions, in this case we may identify the behavior of a puller as 

the time reversal of the morphologically equivalent pusher. From this we see that the lack of 

stable swimming behavior observed here in pullers is consistent with the recent analysis of 

monoflagellated pushers [17,18,39,48,49], which are seen to stably accumulate near 

boundaries, although the findings here may not be immediately inferred due to the large cell 

body of Leishmania compared to pusher monoflagellates such as sperm.

We have explored and classified the behaviors via the use of a separatrix, a feature of the 

phase-averaged planar dynamics that partitions the swimmer behavior based on its 

instantaneous configuration. Analysis of the dependence on shearing rate of this curve in 

two-dimensional configuration space suggested a method for controlling a swimmer near 

boundaries, providing a quantitative description of the effects of time-varying background 

flows on long-time swimming behavior. Indeed, we have demonstrated that flow reversal 
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may be capable of switching swimmer behavior between boundary escape and attraction in 
vitro, and have further shown that similar results may be obtained by continuous changes to 

background flow rates.

Changing the character of the planar boundary from a passive to a repulsive surface, we have 

noted the exhibition of boundary swimming in the behaviors of idealized pullers exposed to 

shear flow. Identifying this virtual swimmer with the L. mexicana promastigote suggests a 

potential accumulation behavior of in vivo parasites in any rotation-inducing background 

flow, although the effects of symmetry-breaking morphological differences between the two 

swimmers and non-Newtonian media remain to be investigated in detail. Nevertheless, 

following the direction of the background flow this downstream shear-resultant taxis is 

markedly different from the documented upstream rheotaxis of flagellated pushers 

[2,17,18,39,48,49], and notably is exhibited across a range of body lengthscales.

As detailed in the Appendix, we have seen that the rich and complex dynamics of the two-

dimensional subspace we have considered is highly representative of the full dynamics for 

behavior near boundaries, at least in projection onto the height, h, and the angle, θ, and thus 

not recording the orientation dynamics. Furthermore, the observed lack of dependence of the 

behaviors on the details of the swimmer body suggests that the nature of boundary 

accumulation in monoflagellates is more significantly dependent on the hydrodynamic 

classification of the swimmer, with the boundary swimming of pullers only quantitatively 

reliant on body lengthscales.

In summary, we have considered in detail the responses of virtual monoflagellated 

swimmers to a shearing background flow, exploring the effects of varying body lengthscales, 

shear strengths, and the hydrodynamic classification of the swimmer. We have seen that in 

the bulk we may reliably utilize the Jeffery’s orbits of passive particles to approximate the 

rotational dynamics of both hydrodynamic pushers and pullers, having demonstrated the 

efficacy of phase-averaged approximations of motion and a proposed method of bulk 

swimmer control. Having sought to determine the impact of a planar boundary on 

swimming, we observed an absence of boundary swimming in virtual promastigotes, in 

contrast to the widely reported behaviors of monoflagellated pushers. Further, the 

identification of a phase-averaged separatrix highlighted a dichotomy of behaviors, with 

configurations split between unimpeded motion in the bulk and collision-bound swimming. 

Introducing a repulsive surface potential, we saw the emergence of quasiperiodic 

downstream rheotactic boundary swimming in idealized promastigotes, driven by oscillatory 

switching in the dominance of boundary forces and shear-induced rotation. Finally, we have 

demonstrated a potentially general method for realizing individual swimmer guidance, in 

principle enabling the dynamic guidance of a variety of motile monoflagellates in 

microfluidic devices.

The research materials supporting this article have been made available [50].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Computational representation of a monoflagellate. We model monoflagellated swimmers 

with an axisymmetric ellipsoidal body and an attached flagellum, as shown here for a virtual 

promastigote. The attachment location is denoted x0(t) in the laboratory reference frame 

x1x2x3, and forms the origin of the swimmer-fixed reference frame x1x2x3. Planar 

boundaries will typically be specified by x1 = const, with accompanying swimmer separation 

h and orientation θ shown.
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Fig. 2. 
Describing planar flagellate motion in the bulk. Shown for a virtual promastigote, we define 

θ to be the clockwise angle between the swimmer-fixed major axis, x1, and the principal 

axis of the shear flow, x1, with the flow specified in dimensional form as ub = γd x2, 0, 0 ,

expressed in and relative to the laboratory frame. The monoflagellate’s beating plane lies in 

the plane of the background shearing flow (see Appendix for results concerning the more 

general case).
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Fig. 3. 
Free-space angular evolution of virtual monoflagellates, as predicted by phase averaging, in 

comparison to passive ellipsoids. (a) Temporal evolution of the angular displacement of a 

virtual promastigote in the bulk over one period, for background shear flow of shearing rates 

between 0.2 and 1 s−1. Here the period of rotation is seen to increase as shearing rate 

decreases. (b) The Jeffery’s orbit of an ellipsoidal particle in shear flow with the same period 

as the virtual promastigote is shown for γd = 1 s−1 (blue, solid), showing remarkably similar 

dynamics to the corresponding promastigote orbit (red, dashed). The residual plot is inset, 

displaying error on the order of 10−2. (c) The dimensional period of promastigote rotation as 

a function of dimensional shearing rate (black dots). The periods of the promastigote 

rotation exhibit the same dependence on shearing rate as Jeffery’s orbits, as given by the 

smooth curve. Hence the interaction between the timescales of the background flow and 

flagellar beating are seemingly of little consequence in the phase-averaged system.
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Fig. 4. 
Period of rotation for virtual puller monoflagellates in shear flow of rate γd = 1 s−1, for a 

range of body lengthscales. Body lengthscale is shown as a scaling factor applied to the 

typical pro-mastigote body parameters introduced in Sec. II A, where a scaling of 1 

corresponds to the typical Leishmania mexicana lengthscale. The maximum period of 

rotation is highlighted by the dashed vertical line and occurs for a scaling ~1, which 

corresponds approximately to a typical promastigote.
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Fig. 5. 
Swimmer trajectories computed from phase-averaged analysis, initialized at the origin of the 

laboratory frame in a background shear flow and shown after 2 s. (a) Trajectories with initial 

orientation sampled from a uniform distribution. The density of endpoints provides a naive 

estimate of the probability of initially randomly oriented swimmers being in a given region 

after a specified time. (b) Trajectories where initial orientation is sampled according to the 

distribution of orientations during a Jeffery’s orbit. A differing distribution of endpoints to 

(a) can be clearly seen, giving a markedly different but physically realistic quantification of 

how the location evolves for a swimmer with unknown orientation. Here the background 

shear flow is prescribed in the laboratory frame as ub = γd x2, 0, 0 , where results are shown 

for γd = 1 s−1 and are qualitatively robust to changes in both shear rate and simulation 

length.
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Fig. 6. 
The shear-guided swimming path of a monoflagellate in a specified time-dependent shear. 

The phase-averaged approximation (red, dashed) is observed to closely resemble the long-

time simulation of the swimmer (blue, solid), beginning from the origin of the laboratory 

frame with x1 parallel to x1 . The locations of background flow reversal, corresponding to a 

specific time and switching the shearing rate from γd = 1 s−1 to γd = −1 s−1, are highlighted 

on the paths (black, filled). The prescribed path is shown as a black dotted curve, seen to 

coincide with the phase-averaged approximation. Inset is the initial section of the trajectory. 

Quantitative agreement is improved with increased refinement of the phase-averaged and 

long-time simulations, but computation of the latter is prohibitively expensive. Overall good 

agreement over such a timescale (60 s) validates the phase-averaged approximation and the 

resulting method of path prediction.
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Fig. 7. 
Phase planes describing the phase-averaged dynamics of a large-bodied puller in shearing 

flow of rate γd = 1 s−1 near a no-slip planar boundary. The black dashed line separates off 

the region of the phase plane where configurations intersect with the boundary. (a) 

Approximate stable and unstable manifolds of the saddle in 0 < θ < π/2 are shown as green 

(left) and red (right) curves, respectively. A sample trajectory exemplifying boundary 

collision is shown as a black curve, with the start and endpoints shown as a red circle and a 

blue diamond, respectively. The separatrix, partitioning the phase plane into collision or 

bulk-bound configurations, is shown as a dot-dashed blue curve. (b) The phase plane 

corresponding to a reversal of shear direction from (a). The separatrix corresponding to the 

original flow direction (blue, dot-dashed) is shown superimposed upon the phase plane, a 

mirror of the reversed separatrix (red, dashed). The cross-hatched region lying between the 

two curves includes those configurations whose characteristic long-time behavior will be 

changed by a shear reversal. The smoothed path of a sample long-time simulation in the 

reversed flow is shown (red, solid), which crosses the original separatrix from beneath. 

Following the crossing, if the flow direction is reversed, the dynamics become those 

represented in (a), changing the long-time behavior of the swimmer, with the trajectory 

following the direction of the large black arrow.
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Fig. 8. 
Motion of virtual promastigotes in a shear flow near a repulsive planar boundary. (a) With 

the h nullcline displayed in green (approximately vertical) and the separatrix displayed as a 

blue dot-dashed curve, multiple trajectories are shown across the phase plane, with start and 

endpoints of full simulations being shown as red circles and blue diamonds, respectively. 

Shown in black are smoothed traces of motion, resultant of simulating the full dynamics, in 

addition to their phase-averaged continuations, demonstrating a repeated washout tumbling 

for configurations beginning near the saddle point, and quasiperiodic behavior for those 

around θ = 3π/2. (b) Results of a full simulation of motion, with the first and last frames 

displayed in red (lower) and blue (upper), respectively. (c) A region of the phase plane 

representing the motion of (b), with the endpoints of the full simulation highlighted. The h 
nullcline is shown in green (approximately vertical), with the smoothed trajectory shown in 

black, dashed. At the end of the full simulation the repulsive boundary force becomes 

negligible, hence the dynamics then follow the phase plane on a collision-bound trajectory 

(black, solid).
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