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Abstract

Connectomes derived from resting-state functional MRI scans have significantly benefited from 

the development of dedicated fMRI motion correction and denoising algorithms. But they are 

based on empirical correlations that can produce unreliable results in high dimension low sample 

size settings. A family of statistical estimators, the covariance shrinkage methods, could mitigate 

this issue. Unfortunately, these methods have rarely been used to correct functional connectomes 

and no extensive experiment has been conducted so far to compare the shrinkage methods 

available for this task. In this work, we propose to fix this issue by processing a benchmark 

dataset made of a thousand high-resolution resting-state fMRI scans provided by the Human 

Connectome Project to compare the ability of five prominent covariance shrinkage methods 

to produce reliable functional connectomes at different spatial resolutions and scans duration: 

the pioneer linear covariance shrinkage method introduced by Ledoit and Wolf, the Oracle 

Approximating Shrinkage, the QuEST method, the NERCOME method, and a recent analytical 

approximation of the QuEST approach. Our experiments establish that all covariance shrinkage 

methods significantly improve functional connectomes derived from short fMRI scans. The Oracle 

Approximating Shrinkage and the QuEST method produced the best results. Lastly, we present 

shrinkage intensity charts that can be used for designing and analyzing fMRI studies. These charts 

indicate that sparse connectomes are difficult to estimate from short fMRI scans, and they describe 

a range of settings where dynamic functional connectivity should not be computed.
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1. Introduction

Resting-state functional MRI (rs-fMRI) offers a precious insight into brain function by 

measuring at the scale of the entire brain a Blood-Oxygen-Level-Dependent (BOLD) signal 

reflecting brain activity over long periods of rest (Fox and Raichle, 2007). Over the past 

three decades, multiple measures were proposed to estimate information transfers between 

brain regions from BOLD time series. To name a few, partial correlations were computed to 

estimate the effective brain connectivity obtained after removing indirect connections from 

BOLD signals correlations (Varoquaux et al., 2010), wavelet coherence was used to capture 

rs-fMRI synchronicity over different ranges of time frequencies (Chang and Glover, 2010), 

and causality was used to capture the amplitude and the direction of information transfers 

in the brain (Stokes and Purdon, 2017). The Pearson correlations between BOLD signals 

measured at different brain locations were among the first measures to be computed (Smith 

et al., 2011). These correlations are straightforward to estimate empirically from fMRI data, 

by calculating ratios of BOLD time series empirical covariances (Smith et al., 2011). In 

addition, they are easy to interpret and they rank among the most robust and reproducible 

functional connectivity measures (Smith et al., 2011). For these reasons, empirical Pearson 

correlations between BOLD time series have become the standard measure of functional 

connectivity. Their quality is crucial for subsequent analysis, such as the definition of binary 

connectomes and the extraction of graph-theoretical features (Bullmore and Sporns, 2009; 

Rubinov and Sporns, 2010).

However, statisticians noted that empirical covariances and empirical Pearson correlations 

are not the best possible statistical estimators of the “real” covariances and Pearson 

correlations that would be measured if an infinite number of measurements were performed. 

When few measures are available to estimate many covariances or many correlations at the 

same time, their amplitude tends to be overestimated (Stein, 1975, 1986). Unfortunately, this 

setting corresponds to most rs-fMRI scans: while a few hundred brain volumes are usually 

recorded during a rs-fMRI scan, the brain presents thousands of interesting locations where 

investigating functional connectivity would provide useful information about the evolution 

of brain disorders, healthy neurodevelopment, or brain aging.

Several statistical procedures were proposed to correct empirical covariances. Because all 

these procedures have the effect of reducing the variability of covariances around their 

average, they were called covariance shrinkage methods. The first covariance shrinkage 

methods were proposed by Stein in the seventies (Stein, 1975, 1986) and a large part 

of modern approaches rely on his pioneering approach (Chen et al., 2010; Ledoit and 

Wolf, 2003, 2004, 2020; Schäfer and Strimmer, 2005). Unfortunately, this first approach 

suffers from severe practical implementation issues, despite the introduction of ad hoc 

fixes such as the isotonization procedure (Daniels and Kass, 2001; Ledoit and Wolf, 2004; 

Rajaratnam and Vincenzi, 2016). The linear covariance shrinkage methods emerged when 

new approaches were explored during the first decade of the new millennium to overcome 

these issues (Chen et al., 2010; Ledoit and Wolf, 2003, 2004; Schäfer and Strimmer, 

2005). The first linear shrinkage method, proposed by Ledoit and Wolf (2003, 2004), 

was first extended to use different shrinkage targets (Schäfer and Strimmer, 2005), and 

then further improved in the specific setting where covariances are calculated for random 
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data following a Gaussian distribution (Chen et al., 2010). All these linear shrinkage 

methods benefit from simple implementations and great computational efficiency (Chen 

et al., 2010; Ledoit and Wolf, 2003, 2004; Schäfer and Strimmer, 2005). In recent years, 

several non-linear covariance shrinkage methods were proposed with the hope that more 

subtle shrinkage schemes could produce better results (Abadir et al., 2014; Ledoit and 

Wolf, 2012) and, in particular, the NERCOME method that relies on the combination of 

covariance matrices estimated after random sample splits (Lam, 2016), the QuEST method 

based on the numerical inversion of a set of equations predicting empirical covariance 

matrix eigenvalues from their unbiased theoretical counterparts (Ledoit and Wolf, 2015) 

and a recent analytical approximation (Ledoit and Wolf, 2020). By adapting the shrinkage 

intensity to the amplitude of the covariance matrix eigenvalues, these more flexible methods 

can achieve better performances. But this advantage comes, for most methods, at the cost of 

a larger computational burden (Ledoit and Wolf, 2020).

Linear shrinkage methods have been successfully used in the past to improve functional 

connectomes (Deligianni et al., 2014; Fritsch et al., 2012; Ng et al., 2011, 2012, 2013; 

Rahim et al., 2019), but nonlinear shrinkage methods have never been used in that 

setting, and no detailed comparison between shrinkage methods has been carried out 

so far. All the covariance shrinkage methods could potentially produce more accurate 

functional connectomes. However, while the linear shrinkage methods mentioned above 

are mathematically guaranteed to produce correlation matrices when applied to correlation 

matrices (Chen et al., 2010; Ledoit and Wolf, 2003, 2004; Schäfer and Strimmer, 2005), the 

nonlinear shrinkage methods are not guaranteed to preserve the diagonal of the correlation 

matrices and not guaranteed to produce values between −1 and 1 when applied to correlation 

matrices. The output of these shrinkage methods would, therefore, need to be rescaled or 

projected to produce correlations, and the effect of these operations might partially reduce 

the benefits introduced by the non-linear methods. Moreover, the mathematical validity of 

most shrinkage methods has only been established under asymptotic conditions, such as 

matrix dimensions increasing to infinity. Experimental validation is still required to establish 

whether the connectomes extracted from rs-fMRI scans would be large enough for the 

covariance shrinkage methods to be effective in practice.

The present work addresses these issues by reporting detailed comparisons between five 

prominent covariance shrinkage methods. A large benchmark dataset of a thousand high-

resolution scans was selected in the Human Connectome Project (HCP) database (Essen 

et al., 2013) for the experiments, and the ability of the shrinkage methods to capture 

four prominent functional networks at different spatial resolutions were compared for a 

broad range of scan duration. In addition, two important applications were considered: the 

definition of binary connectomes and the analysis of heterogeneous sets of scans acquired 

using different fMRI protocols. For this last experiment, an additional large rs-fMRI data set 

known for its heterogeneity was processed: the ABIDE data set (Craddock et al., 2013a).
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2. Materials and methods

2.1. HCP Dataset

A thousand high-resolution resting-state fMRI scans were extracted from the Human 

Connectome Project (HCP) HCP_1200 release (Essen et al., 2013) by selecting the first 250 

HCP participants with a complete set of four rsfMRI scans. All these scans were acquired 

on the same customized Siemens 3T Connectome Skyra housed at Washington University in 

St. Louis, set for a gradient-echo EPI sequence with a repetition time of 720 milliseconds 

(TR), an echo time of 33.1 milliseconds (TE), a flip angle of 52 degrees, FOV 208×180 

mm (RO × PE), Matrix 104×90 (RO × PE). 72 slices of 2.0 mm thickness were acquired 

to obtain 2.0 mm isotropic voxels using a multiband factor of 8, an echo spacing of 0.58 

milliseconds, and a bandwidth (BW) of 2290 Hz/Px (WU-Minn HCP 1200 Subjects Data 

Release, 2018). In total, rs-fMRI scans were 14 minutes and 33 seconds long and 1200 

time points were acquired, which corresponds to an average time point duration of 727.5 

milliseconds. For each rsfMRI scan, the file storing the grayordinates time series denoised 

using the ICA-FIX method and registered using the MSMAll approach were downloaded 

from the HCP website (Glasser et al., 2013). Cortical time series were extracted from the 

files, temporally detrended, and bandpass filtered using a temporal Butterworth filter of 

order 2 to retain the BOLD signal between 0.01 Hz and 0.1 Hz (Smith et al., 2011). The 

first two hundred time points of each scan were dropped to alleviate bandpass filtering 

border condition effects. Lastly, time series were normalized to a zero temporal mean and an 

L2 norm equal to one. These three preprocessing steps, detrending, bandpass filtering, and 

normalization, were implemented in Python (scipy.signal library, version 1.4.1). The brain 

parcellation (Glasser et al., 2016) derived from the HCP data was used as a brain map. This 

parcellation defines 180 parcels per hemisphere that are matched between hemispheres and 

can be grouped into 22 large regions to investigate functional connectivity at a larger scale.

2.2. Shrinkage methods

Five prominent covariance shrinkage methods were included in the benchmark: (1) the 

original linear covariance shrinkage method introduced by Ledoit and Wolf (2004), (2) an 

improvement of this original approach coined the Oracle Approximating Shrinkage method 

(Chen et al., 2010), (3) the nonlinear covariance shrinkage method NERCOME (Lam, 

2016) that achieves the best performances among sample-splitting algorithms (Ledoit and 

Wolf, 2020), (4) the nonlinear shrinkage method QuEST (Ledoit and Wolf, 2015) that was 

shown to achieve the best performances so far but required a separate publication covering 

its difficult implementation (Ledoit and Wolf, 2017), and (5) a recent non-linear method 

easy to implement and able to handle large covariance matrices that was introduced as an 

approximation of QuEST (Ledoit and Wolf, 2020).

2.2.1. Original linear shrinkage—The linear shrinkage method introduced by Ledoit 

and Wolf (2003, 2004) was included at first in the benchmark. Let xi i = 1
n  denote a time 

series containing n measures of a p-dimensional random variable with zero mean, and let S 

denote the empirical covariance of this sample:
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S = 1
n ∑

i = 1

n
xixiT (1)

The shrinkage introduced by Ledoit and Wolf replaces the empirical covariance matrix S 
by a matrix Σ that is closer than S to the covariance matrix that would be obtained with 

an infinite set of observations, according to the standard squared L2 norm. The corrected 

covariance matrix Σ is obtained via the following linear combination:

Σ = λF + (1 − λ)S (2)

where the target matrix F is an isotropic diagonal matrix with the same trace as S and the 

shrinkage intensity λ is calculated as follows (Chen et al., 2010; Ledoit and Wolf, 2003, 

2004), where T r (.) denotes the trace of a matrix and I the identity matrix:

F = Tr(S)
p I (3)

λ =
∑i = 1

n xixiT − S 2
2

n2 Tr S2 − Tr2(S)
p

1

(4)

where ⌈x⌉1 denotes min (x, 1) and ensures that the shrinkage intensity is always smaller 

than one, even when computation errors happen. When S is a correlation matrix, where the 

diagonal is equal to 1, the formula simplifies to the convex combination:

ΣLW = λLW I + 1 − λLW S (5)

λLW =
∑i = 1

n xixiT − S 2
2

n2 Tr S2 − p

1
(6)

The identity matrix is a correlation matrix and the convex combination of correlation 

matrices is a correlation matrix. So, the linear shrinkage introduced by Ledoit and Wolf 

is guaranteed to generate correlation matrices when applied to correlation matrices. This 

property has already been exploited to improve the estimation of functional connectomes 

(Deligianni et al., 2014). The need for a correlation shrinkage and, in particular, when the 

sample size n is small and the xixiT  vary around their mean S, indicates that correlations’ 

amplitudes tend to be overestimated.

2.2.2. Oracle approximating shrinkage—The Oracle Approximating Shrinkage 

(OAS) is known to achieve better performances than the original Ledoit-Wolf method (Chen 

et al., 2010). It relies on the same setting but, under the assumption that the sample was 
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drawn for a Gaussian distribution, computes a modified shrinkage intensity that achieves 

improved performances in practice:

Σ = λF + (1 − λ)S (7)

λ =
1 − 2

p Tr S2 + Tr2(S)

n + 1 − 2
p Tr S2 − Tr2(S)

p

1

(8)

When S is a correlation matrix, where the diagonal is equal to 1, the formula boils down to 

the convex combination:

ΣOAS = λOASI + 1 − λOAS S (9)

λOAS =
1 − 2

p Tr S2 + p2

n + 1 − 2
p Tr S2 − p

1

(10)

Like the original linear shrinkage proposed by Ledoit and Wolf, the OAS of a correlation 

matrix is mathematically guaranteed to be a correlation matrix. OAS has already been used 

to improve functional connectomes (Fritsch et al., 2012; Ng et al., 2011, 2012, 2013).

2.2.3. NERCOME—NERCOME (Lam, 2016) is based on a sample-splitting scheme. 

More specifically, time series are randomly split in two, m times. For each split i, the 

eigenvectors of the empirical covariance matrix S1
i  obtained for the first part are computed 

and stored in a matrix P1
i , for instance, by Singular Value Decomposition (SVD). The 

empirical covariance matrix of the second part of the sample, S2
i , is then projected onto these 

eigenvectors to obtain a regularized covariance matrix. The average of the m regularized 

covariance matrices constitutes the output of the NERCOME method:

ΣNER = ∑
i = 1

m
P1

idiag P1
iTS2

iP1
i P1

iT
(11)

2.2.4. QuEST—The QuEST method produces a new covariance matrix by numerically 

solving a set of complex equations derived from Random Matrix Theory (Ledoit and 

Wolf, 2015, 2020). More specifically, the authors define a Quantized Eigenvalues Sampling 

Transform (QuEST) that maps the eigenvalues of the covariance matrix that would be 

obtained for an infinite sample size to the eigenvalues of an empirical covariance matrix 

observed for a limited sample size, in large dimensional asymptotic (i.e. when the dimension 

of the covariance matrices tends to the infinity). The numerical inversion of this QuEST 

function produces then an estimation of the ideal covariance eigenvalues from their 
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empirical counterparts, under the assumption that the matrix dimension is large enough 

for the QuEST function to be accurate.

2.2.5. Analytical nonlinear shrinkage—NERCOME and QuEST produced promising 

results, but these methods rely on time-consuming numerical schemes that are unable to 

accommodate large covariance matrices (Ledoit and Wolf, 2015, 2020). The analytical 

method recently proposed by Ledoit and Wolf (2020) addresses this issue by providing a 

set of transformations that can be directly applied to the eigenvalues of a covariance matrix 

to approximate its nonlinear shrinkage. This set of transformations was carefully selected 

so that they could be expressed in simple closed-form solutions easy to implement. As a 

result, the approach benefits from a great computational efficiency offering the possibility 

to process very large correlation matrices (Ledoit and Wolf, 2020). More specifically, a 

modified eigenvalue σi is obtained for each non-zero eigenvalue si of the covariance matrix 

as follows when the number of time points n is larger than the dimension p:

σi = si

π p
n siFi

2 + 1 − p
n − π p

n siHi
2 (12)

where

xi = si − sj
sjn−1/3

ℎj = sjn−1/3

y + = max(0, y)

Fi = 1
p ∑

j = 1

p 3
4 5ℎj

1 −
xi2

5

+

αij = −3xi
10πℎj

βij = 3
4 5πℎj

1 −
xi2

5

+
log 5 − xi

5 + xi
if xi2 ≠ 5

Hi = 1
p ∑

j = 1

p
αij + βij

otℎerwise

Hi = 1
p ∑

j = 1

p
αij

(13)

If U denotes the eigenvectors, the final covariance matrix is obtained as:

ΣNAS = U diag(σ)UT (14)

When the number of time points n is smaller than the dimension, xi, Fi, Hi are computed for 

the eigenvalues larger than zero as explained above, but the σi are now obtained as follows:
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ℎ = n−1/3

α = 1
nπ ∑

j

1
sj

β = 3
4 5ℎ 1 − 1

5ℎ2

H0 = α 3
10ℎ2 + βlog 1 + 5ℎ

1 − 5ℎ
δ = 1

π p − n
n H0

σi = si
π2si2 Fi

2 + Hi
2 − δ

(15)

and δI is added to the final covariance matrix:

ΣNAS = U diag(σ)UT + δI (16)

The idea of computing the eigenvalues and modifying their values directly without 

modifying the eigenvectors of the covariance matrix bears similarities with the original 

method published by Stein decades ago (Stein, 1975, 1986). However, the new approach 

alleviates the two most stringent limitations of Stein’s approach. First, Stein’s formula 

diverges as soon as two eigenvalues are close to each other, which happens more and more 

frequently as the size of the covariance matrices increases. And second, Stein’s method was 

not guaranteed to produce eigenvalues in the correct order of decreasing values. This second 

issue required the development of an ad-hoc fix called isotonization (Stein, 1975, 1986) that 

was shown to have a significant impact on the final results (Rajaratnam and Vincenzi, 2016). 

When implementing the new analytical nonlinear shrinkage method, we noticed nonetheless 

that very small eigenvalues corrupted by noise could derail the computation of H0 in large 

dimension low sample size settings. So, we decided to set all the eigenvalues smaller than 

0.1% of the largest eigenvalue to zero. This arbitrary threshold was manually selected after 

investigating the first connectome where the issue was noticed, but the implementation fix 

worked well for the rest of the data set.

2.3. Shrinkage intensity charts

Linear shrinkage methods reduce the amplitude of extra-diagonal covariances by the same 

scaling factor (1 − λ). So, when the shrinkage intensity λ reaches one, it means that the 

methods have concluded that no extra-diagonal covariance can be correctly estimated and 

they have taken the conservative decision of discarding them all. For correlation shrinkage, 

the expression of the OAS intensity is particularly elegant: the OAS intensity only depends 

on the number of time points n, the dimension of the correlation matrix p, and the squared 

L2 norm of the correlation matrix, Tr(S2). This squared norm is always larger than p, smaller 

than p2, and reflects the number of correlations with large amplitudes in the matrix. In the 

sequel, this quantity will be denoted functional connectome density and normalized between 

0 and 1 as follows:
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Density(S) =
Tr S2 − p

p2 − p
(17)

Thanks to its elegant formulation, the OAS intensity can be precomputed for broad ranges 

of n, p, and connectome density values to create intensity charts predicting how the OAS 

would alter a given functional connectome. Large shrinkage intensities would flag unreliable 

connectomes.

2.4. Alteration

For nonlinear shrinkage methods, the amount of statistical correction is not related to a 

global intensity shrinkage defined by a specific formula. The alterations introduced in 

connectomes were summarized by computing the squared Frobenius distance between the 

empirical correlation matrix and the connectome obtained after shrinkage, a quantity that 

will be denoted alteration in the sequel:

Alteration  ΣX = ΣX − S 2
2

(18)

For linear shrinkage methods, alteration (A), density (D), and dimension (p) are related as 

follows:

A ΣLW = p2 − p D(S) λLW 2
(19)

A ΣOAS = p2 − p D(S) λOAS 2
(20)

2.5. Spreads and bias

The heterogeneity of a set of correlation matrices was measured by computing a Spread 
equal to the mean of the squared Frobenius distances between the matrices in the set and 

their average. When a ground truth population average was known for this set of matrices, a 

ground truth spread was computed as the mean of the squared Frobenius distances between 

the matrices in the set and this population average, and a bias was measured by computing 

the squared Frobenius distance between the average of the connectivity matrices in the set 

and the population average.

3. Experiments

3.1. Implementation

The QuEST method is very difficult to implement (Ledoit and Wolf, 2015, 2017), so an 

existing library developed for R (version 3.6.3) was used in this work, the nlshrink library 

(version 1.0.1). The covariances estimated by the two different solvers implemented in this 

library (nlminb and nloptr) were compared (QuEST1 and QuEST2). The implementation of 

the original linear shrinkage (Ledoit and Wolf, 2003, 2004) provided by this library was also 
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used. All the other methods, NERCOME, OAS, and the analytical nonlinear shrinkage were 

re-implemented in Python (version 3.7.4). For all the methods, the same sets of rs-fMRI 

BOLD time series normalized to zero mean and unit variance were used. The covariance 

matrices produced by the nonlinear shrinkage methods were projected by replacing the 

diagonal of the matrices with a diagonal equal to one, setting all the values in the matrices 

lower than −1 to −1, and all the values larger than 1 to 1. Lastly, to prevent instability during 

the calculations, the eigenvalues passed to the nonlinear analytical shrinkage method were 

modified as follows. When the number of time points was strictly inferior to the dimension 

of the matrix, spurious eigenvalues were removed by discarding all the pairs of eigenvector 

and eigenvalue corresponding to eigenvalues smaller than 10−6 times the largest eigenvalue. 

When the number of time points was equal or larger than the dimension of the correlation 

matrix, the random fluctuations of the smaller eigenvalues were fixed by setting all the 

eigenvalues smaller than 10−3 times the largest eigenvalue to that threshold. NERCOME was 

tested for an average of 100 matrices, and five parameter values were compared: retaining 

half of the time series when computing the matrices S2
i N ERCOM E50 , retaining 75% of 

the time series (N ERCOM E75), 90% (N ERCOM E90), 95% (N ERCOM E95), or 99% (N 
ERCOM E99). As a result, during the experiments, baseline empirical Pearson correlations 

were compared to their improved counterparts generated by ten different shrinkage methods: 

the original Ledoit-Wolf approach (LW), the Oracle Approximating Shrinkage (OAS), 

the nonlinear analytical shrinkage (NAS), the two QuEST implementations (QuEST1 and 

QuEST2), and the five NERCOME variants.

3.2. Intensity charts and functional networks

Shrinkage intensity charts were first derived for a broad range of dimensions, sample sizes, 

and densities. More specifically, for each dimension p in (10, 25, 50, 100, 250, 500, 1000, 

10000) the OAS intensity was computed for a regular logarithmic grid of 501 time points n 
between 10 and 5000, and 501 values of density between 0.005 and 1. The standard contour 
function of the matplotlib python library (version 3.3.4) was then used to display the level 

sets corresponding to shrinkage intensities (0.002,0.005,0.01,0.025,0.05,0.1,0.25,0.5,0.9).

Then, the HCP benchmark data set prepared for this work was used to estimate typical 

connectome densities. Four bilateral connectomes were considered: (1) the connectome 

obtained for the entire HCP parcellation (180 parcels per hemisphere, 360 parcels in total), 

(2) the connectome obtained for the large HCP regions (22 regions per hemisphere, 44 

regions in total), (3) the connectome obtained for the 13 parcels of the dorsolateral prefrontal 

cortex in the HCP parcellation (DLPFC, 26 parcels in total), and (4) the connectome of the 

Default Mode Network (DMN, 76 parcels in total) (Buckner et al., 2008). The parcels part 

of the DMN were selected by averaging over both hemispheres and over the scans of all 

the 250 HCP participants the correlations between parcel BOLD signals and the average 

of the BOLD signals of the 14 HCP parcels in the Posterior Cingulate Cortex (PCC), and 

selecting all parcels with a correlation larger than 0.2 with the PCC (38 parcels passed that 

threshold). The density of these connectomes were measured repeatedly and for different 

random scan durations as follows. For each HCP participant, the four processed rs-fMRI 

scans were concatenated to create time series with 4000 time points. Then, ten times per 

HCP participant, the time points were shuffled at random and the first m time points were 
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used to compute the connectomes, with m uniformly selected at random among the OAS 

intensity chart grid points corresponding to less than 4000 time points. The densities of these 

2500 connectomes were computed and reported on the OAS intensity charts corresponding 

to the dimensions of the connectomes (360 for the high-resolution HCP parcellation, 44 for 

the low-resolution HCP, 26 for the DLPFC and 76 for the DMN).

3.3. Methods comparison

For the four functional networks separately (high-resolution HCP parcellation, low-

resolution HCP parcellation, DMN, and DLPFC), the methods were compared as follows. 

First, fifty-one numbers of time points were selected to cover the logarithmic scale between 

15 and 1000 time points. Then, for each of these scan duration, twenty-five times in a row, 

an HCP study participant was selected at random, the normalized BOLD time series of his 

four scans were concatenated, shuffled at random, cropped to the scan duration, normalized 

to zero mean and unit squared L2 norm, the correlation matrix was computed and corrected 

using the ten shrinkage methods compared in this study. The squared Frobenius distances 

between these eleven correlation matrices and the correlation matrix obtained for the 4000 

time points of the concatenated scans were reported as a measure of error, that was plotted 

as a function of the scan duration. Lastly, the results were refined by subtracting the error 

measured for the OAS to the errors measured for each other approach, measuring the mean 

and the median of these error differences, and checking their significance using a Wilcoxon 

signed-rank test.

3.4. Methods agreement

The agreement between shrinkage methods was calculated by comparing the shrinkage 

alterations they induce. More specifically, for all the matrices generated at the previous step, 

the shrinkage alteration measured for the OAS was compared to the alterations measured for 

the other methods, and the Spearman correlation between these alterations was computed.

3.5. Thresholded connectomes

The second set of experiments was carried out to study the impact of correlation shrinkage 

on thresholded connectomes. During these experiments, eleven different scans duration 

were considered: 25, 50, 75, 100, 125, 150, 200, 250, 300, 400, and 500 time points. For 

each scan duration, BOLD time series were extracted at random as explained above (by 

concatenating all study participant normalized data, shuffling, cropping the time series, 

and normalizing them again). Their correlation matrices, with and without OAS, were 

used to define connectivity matrices, and three binary connectomes were obtained for each 

connectivity matrix by thresholding the correlations at the values 0.3, 0.4, and 0.5. Three 

measures were then derived to compare these random connectomes with the ground truth 

binary connectomes obtained by thresholding the correlation matrices derived from all the 

data available for the study participant: a precision measuring the proportion of connections 

in both connectomes among the connections retained in the random connectomes; an 

accuracy equal to the sum of the numbers of connections in both connectomes and in none 

of the connectomes divided by the total number of possible connections; and a Jaccard index 

equal to the number of connections selected in both connectomes divided by the number of 

connections selected in at least one of them.
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3.6. Heterogeneous datasets

The effects of correlation shrinkage on a heterogeneous set of connectivity matrices derived 

from fMRI scans acquired using different protocols were simulated by randomly splitting 

the data available for a study participant into short time series, and using these time 

series to derive connectivity matrices with or without shrinkage. More specifically, after 

concatenation and shuffling, the time series available for each of the 250 study participants 

and each functional network were split in 50 different time series of random duration longer 

than 30 time points. The spread of these connectivity matrices, their spread around the 

ground truth connectivity matrix obtained when considering all the data at once, and the bias 

between that ground truth and the average of the connectivity matrices derived from short 

time series were measured.

Lastly, the pre-processed fMRI scans of an additional dataset known for its heterogeneity, 

the ABIDE dataset (Craddock et al., 2013a; Martino et al., 2014), were used to test whether 

OAS could reinforce the associations observed between functional connectivity changes 

and brain disorders. More specifically, for each of the 766 ABIDE participants with pre-

processed data and each available set of time series, a correlation matrix was calculated 

and improved via OAS. Then, for each pair of time series, a T-test was conducted on the 

functional connectivity to detect a group difference between ABIDE control participants and 

ABIDE participants with Autism Spectrum Disorder (ASD). These T-tests were conducted 

at first using the original correlations before shrinkage and then using the correlations 

produced by OAS. The analysis was replicated for the seven sets of time series available. 

These time series were derived from the following brain parcellations: the Automated 

Anatomical Labeling (aal, 116 parcels), the Eickhoff-Zilles parcellation (ez, 116 parcels), 

the Harvard-Oxford parcellation (ho, 111 parcels), the Talaraich and Tournoux parcellation 

(tt, 97 parcels), the Dosenbach 160 parcellation (do160, 161 parcels), the Craddock 200 

parcellation (CC200, 200 parcels), and the Craddock 400 parcellation (CC400, 392 parcels) 

(Craddock et al., 2013b). ABIDE scans were collected in 17 different locations using 

different scanners and various protocols.

Ethics Statement

The data used in this study are all public/shared data provided by the HCP consortium 

(https://www.humanconnectome.org) and the ABIDE consortium (http://preprocessed-

connectomes-project.org/abide/index.html).

The original ABIDE ethics statement (Martino et al., 2014) reads as follows: All 

contributions were based on studies approved by local IRBs, and data were fully 

anonymized (removing all 18 HIPAA protected health information identifiers, and face 

information from structural images). All data distributed were visually inspected prior to 

release.

HCP’s original publication (Essen et al., 2013) indicates: To aid in the protection 

of participants’ privacy, the HCP has adopted a two-tiered data access strategy 

(http://www.humanconnectome.org/data/data-use-terms/). Every investigator must agree to 

FieldTrip Toolbox. An additional set of Restricted Data Use Terms applies to an important 
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subset of the non-imaging data and is essential for preventing any inappropriate disclosure 

of subject identity. The released HCP data are not considered de-identified, insofar as 

certain combinations of HCP Restricted Data (available through a separate process) might 

allow identification of individuals as discussed below. It is accordingly important that all 

investigators who agree to Open Access Data Use Terms consult with their local IRB or 

Ethics Committee to determine whether the research needs to be approved or declared 

exempt. If needed and upon request, the HCP will provide a certificate stating that an 

investigator has accepted the HCP Open Access Data Use Terms.

No HCP Restricted Data was used in the present study.

4. Results

4.1. Shrinkage intensity charts

Fig. 1 presents the OAS intensity charts. Surprisingly, shrinkage intensity is very stable 

with respect to the dimension p: the chart obtained for a dimension of ten thousand is 

almost the same as the chart obtained for a dimension of one hundred. On the other 

hand, shrinkage intensity strongly depends on connectome density and the number of time 

points n. High densities corresponding to connectomes with multiple strong correlations 

and anti-correlations are judged more reliable by the OAS. These charts indicate that it is 

impossible to estimate reliable sparse connectomes from a limited number of time points.

4.2. Functional networks

Thirty eight regions were selected to form the DMN connectome: CVT, RSC, POS1, POS2, 

PCV, 7m, 23d, v23ab, d23ab, 31pv, 31pd, 31a in the Posterior Cingulate Cortex region; 

a24, d32, p32, 10r, 9m, 10v, s32 in the Anterior Cingulate and Medial Prefrontal Cortex 

region; 8Av, 8Ad, 9p, i6–8, in the DorsoLateral Prefrontal Cortex region; 10d and p10p in 

the Orbital and Polar Frontal Cortex region; PreS, PeEc, PHA1, PHA2, PHA3 in the Medial 

Temporal Cortex region; PGp, IP1, PGi, PGs, 7Pm in the Superior Parietal Cortex region; 

and STSva in the Auditory Association Cortex and TE1m and TE1a in the Lateral Temporal 

Cortex (Glasser et al., 2016). The functional networks and their spatial support are shown in 

Fig. 2.

4.3. Functional networks OAS intensity

Fig. 3 displays the OAS intensities obtained for all the HCP, DMN, and DLFPC 

connectomes. With a density between 0.1 and 0.2, the DLPFC is the connectome with 

the largest density, and therefore the one that can be estimated with the lowest number of 

time points: for 200 time points, the OAS intensity ranges between 0.05 an d 0.1, which 

indicates that the connectomes are reliable. On the other hand, the entire HCP connectome 

is moderately sparse (density close to 0.05) and would need to be shrunk by up to 0.25 

when only 100 time points are available. This duration corresponds to 72.75 seconds of 

scanning time using the high-resolution HCP acquisition protocol but would correspond 

to more than 3 minutes for a standard fMRI acquisition protocol with a TR of 2 seconds 

(Tremblay-Mercier et al., 2021). The Default Mode Network and the low-resolution HCP 

connectomes present intermediary densities.
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4.4. Methods performances

Fig. 4 shows that, except the last variant of NERCOME, all the methods improved 

functional connectomes when the number of time points was smaller than the dimension of 

the connectivity matrix and produced connectomes converging to the baseline connectome 

for large numbers of time points. The two QuEST variants produced very similar results, 

which suggests that the choice of the QuEST solver had a minor impact on the functional 

connectome shrinkage. Despite its improved implementation, the nonlinear analytical 

shrinkage generated wrong connectivity matrices when the number of time points was close 

to the dimension of the correlation matrices and, in particular, for the full resolution HCP 

parcellation. This issue suggests that the NAS method would require further implementation 

fixes to be fully effective in practice.

One-to-one methods comparisons were then conducted with the OAS shrinkage as a 

reference by computing, for each correlation matrix, the difference between the error 

measured for the empirical correlation matrices or the matrices obtained after shrinkage 

and the error measured after OAS shrinkage. The mean and the median of these differences 

were computed to estimate what method was producing the smallest error during each 

comparison (OAS or the alternative approach), and a Wilcoxon sign-rank test was conducted 

to derive a p-value indicating the significance of these differences. A subset of the one-to-

one comparisons conducted for the correlation matrices corresponding to the high-resolution 

HCP parcellation are presented in Fig. 5 and indicate that OAS significantly improves 

correlation matrices and significantly outperforms Ledoit-Wolf’s original approach. The 

complete results presented in supplementary materials indicate that OAS outperforms all 

NERCOME variants. For the DMN, shown in supplementary materials, NAS and both 

QuEST variants produce significantly better results than OAS. For the full resolution HCP 

parcellation, the improvements observed for the QuEST variants are the only one significant 

(NAS improvements do not reach significance level 0.05). By contrast, OAS was the best 

method for the low-resolution HCP parcellation and the DLPFC shown in supplementary 

materials. These results suggest that OAS and QuEST are the best methods, QuEST2 

generating slightly better results than QuEST1. A direct comparison between QuEST1 and 

QuEST2 confirms that QuEST2 produces lower errors, on average by 0.297 for the high-

resolution HCP network, by 0.111 for the low-resolution HCP network, 0.022 for DMN, 

and 0.037 for DLPFC. These improvements were significant at level 0.05, except for the 

high-resolution HCP parcellation (Wilcoxon signed-rank test W 494447, p-value 0.34).

4.5. Computational time

NERCOME was the most time-consuming method, even when running for a single 

parameter value. NERCOME is straightforward to implement but requires multiple time-

consuming matrix multiplications and additions. In addition, the method depends on a 

parameter, the proportion of samples retained to compute S2 during each split, which can 

only be selected by conducting an experimental replication or a cross-validation. This extra 

step of parameter selection further increases NERCOME computational cost. As a result, the 

computational burden was significantly larger for NERCOME than the other methods tested. 

The second slowest approach was QuEST, because of the cost required for the numerical 

inversion of the equations defined by the method. The other methods, the OAS, NAS, and 
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the original LW method, exhibited a similar, significantly faster speed and would scale to 

large matrices, as noted by Ledoit and Wolf (2020).

4.6. Shrinkage alterations

The agreement between OAS and the other methods shown in Fig. 6 for the high-resolution 

HCP parcellation and in supplementary materials for the other networks are always larger 

than 0.9, the largest values been obtained with the original Ledoit-Wolf linear shrinkage 

and QuEST. These large Spearman correlations suggest that OAS alterations are a reliable 

indicator of the alterations that would be introduced by the other methods. In other words, 

when OAS flags connectomes as less reliable and corrects them more substantially, other 

shrinkage methods would introduce stronger corrections as well.

4.7. Thresholded connectomes

Figs. 7 and supplemental Figure 11 show that OAS has the effect of maintaining a 

good precision for thresholded connectomes derived from short scans. By focusing on a 

reduced set of reliable correlations, OAS is able to prune a significant part of the spurious 

connections that gradually appear in thresholded connectomes derived from empirical 

correlations as the number of time points is reduced. This benefit is sometimes associated 

with a moderate accuracy improvement, such as the one observed for the high-resolution 

HCP parcellation. However, it systematically comes at the cost of a reduced Jaccard Index, 

the shrinkage reducing the overlap between random and ground truth connectomes by 

strongly restricting the number of connections in random connectomes. The results obtained 

for the higher thresholds shown in supplementary materials indicate that these effects 

are stronger when the threshold is set to larger values selecting fewer connections, as 

long as OAS does not discard all the correlations. This issue happened once during the 

experiments, for connectomes estimated from 25 time points, for the high-resolution HCP 

parcellation, and the largest threshold tested τ = 0. 5. Interestingly, for the high-resolution 

HCP parcellation and the largest threshold τ, the precision improvements induced by OAS 

were still fairly strong for the longest time series tested: for the time series of five hundred 

time points, corresponding to six minutes scans acquired using the HCP protocol, the 

baseline precision of 0.89 was boosted by the OAS to 0.96. This corresponds to a threefold 

reduction of the fraction of spurious connections in the connectomes (4% versus 11%).

4.8. Heterogeneous datasets

Fig. 8 demonstrates that, for the synthetic data generated in this experiment, OAS reduces 

connectome heterogeneity and produces connectomes that are not only closer to each other 

but also closer to the ground truth they are attempting to capture. However, the fact that 

all the connectomes are shrunk towards the identity matrix shifts their mean and introduces 

bias. This issue could perhaps be addressed in the future by developing new shrinkage 

methods using the population average correlation matrix as a shrinkage target (Rahim et al., 

2019; Schäfer and Strimmer, 2005).

Fig. 9 presents the ABIDE dataset, the OAS intensity, and the proportion of pairwise 

functional connections strongly associated with ASD that are reinforced after OAS. These 

results point the variability between the 17 ABIDE acquisition sites. Most shrinkage 
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intensities, close to 0.1 or larger, are not negligible. As a result, OAS had a noticeable 

impact on the results. By reinforcing the most significant associations while reducing the 

significance of spurious associations (see supplementary materials), OAS had a beneficial 

impact similar to a denoising procedure. The parcellation associated with the smallest 

shrinkage intensities was the Harvard-Oxford parcellation (ho, 111 parcels), followed by 

Eickhoff-Zilles (ez, 116 parcels), the Automated Anatomical Labeling (aal, 116 parcels), the 

Craddock 200 parcellation (CC200, 200 parcels), the Talaraich and Tournoux parcellation 

(tt, 97 parcels), and the Craddock 400 parcellation (CC400, 392 parcels). The Dosenbach 

160 parcellation (do160, 161 parcels) produced the worst connectivity matrices. For all the 

parcellations except Dosenbach 160 the scans acquired at the Max-Mun and OHSU sites 

were the worst and the scans acquired at CMU, Leuven, and UM the bests. Please refer to 

the supplementary materials for complete results.

5. Discussion

5.1. Summary

This work examined how the most prominent covariance shrinkage methods available today 

could be used to improve functional connectomes. The experiments were carried out on 

a benchmark dataset of a thousand high-resolution fMRI scans extracted from the Human 

Connectome Project dataset, that were used to generate thousands of short time series to 

study the benefits of covariance shrinkage for various scans durations. The investigations 

were replicated for four functional networks presenting different topologies and spatial 

resolutions: the entire cortex for high-resolution and low-resolution HCP parcellations, the 

spatially disconnected regions part of the DMN, and the functional units inside the DLPFC.

Our experimental results suggest that the connectome alterations introduced by the different 

methods are in agreement. When set correctly, all the methods were able to improve 

the connectomes derived from short fMRI time series significantly. Method comparisons 

suggest that NERCOME should not be used, the original Ledoit-Wolf shrinkage is obsolete 

compared to the OAS, and the QuEST method is the gold standard for nonlinear shrinkage 

approaches. The most recent approach, the nonlinear analytical method, requires additional 

implementation fixes. We established that shrinkage significantly improves the quality of 

thresholded binary connectomes (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010) 

by pruning unreliable connections. Lastly, we found that the shrinkage intensity charts 

derived to investigate the effects of the OAS method are not only easy to interpret but also 

predictive: they delimit ranges of settings where functional connectomes cannot be correctly 

estimated. These charts suggest, in particular, that sparse connectomes require large numbers 

of time points to be distinguished from random noise. This observation is in line with 

the literature on sparse covariance estimation, that reports estimation errors for sparse 

covariance matrices slowly decreasing with the number of samples (Bien and Tibshirani, 

2011), such as the EC2 method estimation error proportional to the square root of the inverse 

of the number of samples (Liu et al., 2014). This result is of crucial importance, as it 

states the impossibility of studying dynamic functional connectivity below a connectome 

density limit that depends on the length of the time windows considered to estimate that 

connectivity (Zhang et al., 2018). By reporting the characteristics of our functional networks 
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on these charts, we found that typical connectomes derived from fMRI time series of a 

hundred to three hundred time points, while being relatively well estimated, would still 

significantly benefit from shrinkage. We observed that the best nonlinear method (QuEST) 

does not systematically outperform the best linear method (OAS). This result suggests that 

the superior flexibility of the nonlinear shrinkage methods might sometimes lead to a form 

of overfitting. So, we would suggest the simpler, most computationally efficient, and easier 

to interpret OAS method as a gold standard for fMRI processing.

5.2. Test-retest connectome reliability

Our results are in line with previous works that have established that other forms of 

connectivity shrinkage can successfully improve the test-retest reproducibility of correlation 

matrices (Mejia et al., 2018, 2015). When investigating the reliability of connectomes 

derived from fMRI scans, the meta-analysis (Noble et al., 2019) concluded that test-

retest reproducibility increases with the amount of fMRI data available to estimate the 

connectomes and with the strength of their connections. These effects are consistent with our 

OAS intensity charts predicting better connectivity estimates for long BOLD time series and 

dense connectomes. However, it is still unclear how our results could be exploited to predict 

the reliability of individual connections as in recent works (Noble et al., 2019; Zhang et al., 

2018).

5.3. Partial correlations

These test-retest studies have also pointed that partial correlations are less reliable than 

Pearson correlations, an issue that has already been reported multiple times in the past 

(Mejia et al., 2018; Noble et al., 2019; Smith et al., 2011). In the light of our results, 

this fact could be explained by the lower density of the connectomes derived from 

partial correlations, which makes them more difficult to distinguish from noisy fluctuations 

(Varoquaux et al., 2010). But more investigations would be required to compare the different 

approaches that could be employed to shrink partial correlations before concluding whether 

partial correlations necessarily require more shrinkage than the full Pearson correlation they 

originate from.

In any case, partial correlations estimation could also benefit from the covariance shrinkage 

methods presented in this work, particularly when the number of time points is smaller than 

the spatial dimension. In this setting, empirical covariance matrices are not invertible. By 

scaling null covariance matrix eigenvalues to strictly positive values, covariance shrinkage 

fixes the issue by producing an invertible matrix. A step of covariance shrinkage can thus 

be performed as a preprocessing before computing partial correlations via covariance matrix 

inversion (Varoquaux et al., 2010). By increasing the values of small noisy eigenvalues in 

the covariance matrix, covariance shrinkage also has the effect of reducing their influence in 

the precision matrices, which contributes to denoising the partial correlations (Honnorat and 

Davatzikos, 2017).

5.4. Binary connectomes

When binary connectomes are defined by thresholding Pearson correlations according to 

their amplitudes (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010), the lack of 
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data induces the apparition of spurious connections. During our experiments, the OAS was 

very efficient at pruning these wrong connections. For the connectomes derived from the 

high-resolution HCP parcellation and thresholded to focus on strong correlations larger 

than 0.5, this beneficial effect was still significant for time series of five hundred time 

points. These results demonstrate that covariance shrinkage methods have the potential to 

significantly improve the quality of binary graph connectomes extracted from short time 

series and individual fMRI scans. We hypothesize that these more reliable connectomes 

would exhibit more stable graph theoretical measures as well (Bullmore and Sporns, 2009; 

Rubinov and Sporns, 2010).

5.5. Dynamic functional connectivity

We think that our results bear crucial implications for dynamic functional connectivity (dFC) 

studies. Covariance shrinkage mitigates a form of statistical noise introduced by the limited 

ability of empirical Pearson correlations to capture exact Pearson correlation values when 

data lacks for the estimation. In dFC studies where Pearson correlations are computed for 

short time windows, this statistical noise will amount for a significant part of the dFC 

variability. As a result, all the statistics derived from dFC, such as standard deviation, ALFF, 

and excursion (Zhang et al., 2018) will be corrupted by a noise that has no biological 

substrate of interest. This issue calls for caution when conducting dFC studies and analyzing 

their results.

5.6. Scan duration and target networks

Lastly, we think that our OAS intensity charts could help designing fMRI experiments. 

Scan duration is a highly debated question in the field. Most researchers agree that longer 

scanning times produce more accurate results but resources are limited and the scanners 

could be employed to acquire other MRI modalities (Anderson et al., 2011; Birn et al., 

2013; Dijk et al., 2010; Gonzalez-Castillo et al., 2014; Noble et al., 2019; Shehzad et 

al., 2009). While preliminary works had initially concluded that a duration of five to ten 

minutes was sufficient to acquire resting-state fMRI scans (Dijk et al., 2010; Shehzad 

et al., 2009) subsequent studies established that test-retest reproducibility is significantly 

better for half-hour-long scans and that the functional features derived for individual study 

participants known as functional fingerprints can improve up to a cumulated scan duration 

of four hours (Anderson et al., 2011; Birn et al., 2013; Gonzalez-Castillo et al., 2014). Our 

results indicate that the number of BOLD measurements required to achieve a target OAS 

shrinkage intensity depends on the density of the functional networks under investigation 

and its number of nodes. Once that density has been obtained, for instance, by running a 

pilot data acquisition, our charts could be used to select a minimal scan duration ensuring 

that the statistical estimates of all the functional networks investigated in the study are of 

sufficient quality.

For instance, the charts of Fig. 3 indicate that for the low-resolution HCP connectome 

one hundred fifty BOLD measurements are necessary to reach an average OAS intensity 

close to 0.1, corresponding to an overall error on empirical Pearson correlations amplitude 

around 10%. For the high-resolution HCP connectome, two hundred fifty measurements 

are required to reach the same quality. As a result, the ADNI3 protocol, that consists in 
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acquiring ten-minutes-long scans at TR 3 seconds and produces scans with 200 time points 

Alzheimer’s Disease Neuro Imaging III (ADNI3), would only be sufficient for studying the 

impact of aging and neurodegenerative diseases on the low-resolution HCP connectome, 

that describes the functional connectivity between 44 large brain regions. By contrast, 

concatenating the two scans acquired for each participant of the preventAD study (304 

seconds per scan, TR 2 seconds) would provide enough measurements to study as well, in 

that cohort, the impact of Alzheimer’s Disease on the high-resolution functional connectome 

that captures the connectivity between 360 fine brain parcels (Tremblay-Mercier et al., 

2021).

Our results also suggest that the new scanning procedures with short TR, such as multi-band 

acquisitions (Feinberg and Setsompop, 2013; Moeller et al., 2010; Smitha et al., 2018), 

should improve functional connectivity estimates by providing more temporal measurements 

for similar scan duration. As long as the artifacts introduced during these acquisitions are 

maintained at a negligible level (Risk et al., 2021) and as long as increasing temporal 

resolution brings useful information for the estimation of BOLD fluctuations within the 

frequency range of 0.1 to 0.01 Hz commonly selected to study functional connectivity (Zou 

et al., 2008), an improved temporal resolution should, in theory, better capture the functional 

networks that are currently well measured and allow for the exploration of sparse networks 

more difficult to capture.

5.7. Limitations

The covariance shrinkage methods used in this work assume that the BOLD measures were 

statistically independent in time. This assumption might not hold in practice for time series 

acquired at very small repetition times. In general, the information contained in BOLD time 

series could be lower than expected, in the presence of repeated measurements or due to 

scrubbing (Power et al., 2014). As a result, we think that the methods studied in this work 

are only providing an upper bound of the connectome quality: poorly estimated connectomes 

flagged by shrinkage methods might be even more corrupted in practice. In the future, 

the use of statistical methods factoring out redundancies in BOLD time series to compress 

them to an effective duration better reflecting their underlying information might fix this 

limitation.

6. Conclusion

In this article, we used a thousand high-resolution fMRI scans from the Human Connectome 

Project to compare the ability of five prominent covariance shrinkage methods to improve 

the quality of functional connectomes. We established that OAS and QuEST were the best 

methods and NERCOME performed poorly, OAS intensity strongly depends on the density 

of the correlation matrices and the number of samples used to compute them but not so 

much on their dimension, OAS intensity is a reliable indicator of the amplitude of the 

correction that other shrinkage methods would introduce, sparse connectomes are difficult to 

estimate from short fMRI scans, shrinkage methods efficiently prune spurious connectivity 

in thresholded connectomes, and shrinkage would impact most standard fMRI scans and be 

of crucial importance for dynamic connectivity studies. We have shown how shrinkage can 
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reduce the variability in datasets with heterogeneous scans duration. Lastly, by deriving OAS 

intensity charts, we provided a tool to estimate the reliability of functional connectomes. 

These charts could be of great help when designing and analyzing fMRI experiments and, in 

particular, when conducting dynamic connectivity studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Oracle Approximating Shrinkage intensity charts for increasing correlation matrix 

dimensions p. The charts obtained for different matrix dimensions are surprisingly similar. 

For instance, when the connectome density is equal to 0.005, the smallest density shown 

here, a thousand time points correspond to a shrinkage intensity of 0.25 for a matrix of 

dimension p = 10, while this level corresponds to 800 time points for a matrix of dimension 

p = 10000. By contrast, shrinkage intensity strongly depends on the connectome density and 

the number of time points.
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Fig. 2. 
Functional networks considered in this work and displayed on the cortical surface of the 

left hemisphere. The top row presents the HCP parcellation, with different colors for the 

22 regions. The middle row shows the Default Mode Network (DMN) in green. The 

bottom row displays the dorsolateral prefrontal cortex (DLPFC) in green. The correlation 

matrices obtained for the first HCP participant and both hemipsheres are shown on the 

right (p denoting the number of parcels included in each network; the high-resolution HCP 

connectivity matrix is not shown).
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Fig. 3. 
Oracle Approximating Shrinkage intensities computed for HCP connectomes extracted for 

the entire HCP parcellation (360 parcels or 44 regions), the DLPFC network (26 parcels), 

and the DMN (76 parcels). For each connectome, these shrinkage intensities were overlaid 

over the OAS intensity charts corresponding to the dimension of the network (e.g. p = 26 for 

the DLPFC). High-resolution HCP connectomes are the sparsest and would therefore either 

require more shrinkage for the same number of time points or longer time series to achieve 

the same quality as the other functional networks.
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Fig. 4. 
Average connectome squared L2 error obtained when comparing connectomes derived from 

short time series randomly extracted from the data available for an HCP participant with the 

connectome derived using all the data for that participant; without shrinkage (baseline) or 

any shrinkage method tested in this work; for all the networks, and increasing number of 

time points. For the high-resolution HCP connectomes, the NAS method was unstable for 

number of time points close to the dimension of the connectome (360). When the number 

of time points was smaller than the dimension of the matrix, all the methods produced 

very similar improvements compared to the baseline. When the number of time points 

was significantly larger than the dimension of the connectome, all the methods except N 
ERCOM E99 produced estimates close to the baseline.
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Fig. 5. 
For all the high-resolution HCP connectomes, difference between the connectome errors 

measured: (A) before OAS shrinkage (baseline) and after OAS, (B) after Ledoit-Wolf and 

after OAS, (C) after QuEST1 and OAS, (D) after QuEST2 and OAS, as a function of the 

OAS error. The first two error differences are significantly positive (Wilcoxon sign-rank 

test p-values lower than 0.001, for a positive differences median). These results indicates 

that OAS significantly outperforms baseline and Ledoit-Wolf shrinkage. On the other 

hand, QuEST methods produced significantly better connectomes (Wilcoxon sign-rank test 

p-values lower than 0.001, for a negative differences median).
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Fig. 6. 
For the high-resolution HCP network, comparison between the connectome alterations 

introduced by the OAS and (A) Ledoit-Wolf shrinkage (LW), (B) the nonlinear analytical 

shrinkage method (NAS), (C) the best NERCOME method (N ERCOM E90), (D) QuEST 

implemented using the first solver (QuEST1), and (E) QuEST implemented using the second 

solver (QuEST2). In B, a few outliers were obtained when the NAS method diverged for 

number of time points close to the dimension of the matrix.
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Fig. 7. 
When connectomes are thresholded at correlations larger than 0.3 (τ = 0. 3), precision, 

accuracy and Jaccard index measured with and without OAS for increasing number of time 

points and (A) high-resolution HCP parcellation, and (B) low-resolution HCP parcellation.
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Fig. 8. 
Connectivity matrix spread (spread), connectivity matrix spread around the study participant 

connectivity matrix (ground truth spread, GT spread), and distance between average of the 

connectivity matrices and the study participant average connectivity matrix (bias) measured 

before and after Oracle Approximating Shrinkage (OAS) for all 250 HCP study participants 

and (A) the high-resolution HCP parcellation, (B) the low-resolution HCP parcellatioin, (C) 

the DMN, (D) the DLPFC.
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Fig. 9. 
(A) the OAS intensity of the connectivity matrices derived from the AAL atlas strongly 

depend on the acquisition site, (B) OAS intensity also depends on the parcellation, (C) 

number of scans acquired at each location, (D) proportion of pairwise connections that 

differ more after OAS, between ASD and controls, among the most significantly different 

connections before shrinkage (the worst two parcellations are not shown). Shrinkage tends to 

reinforce strong ASD effects for all the parcellations.
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